llama.cpp/examples/model-conversion/scripts/causal/run-org-model.py

153 lines
5.6 KiB
Python
Executable File

#!/usr/bin/env python3
import argparse
import os
import sys
import importlib
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..'))
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForImageTextToText, AutoConfig
import torch
import numpy as np
from utils.common import debug_hook
parser = argparse.ArgumentParser(description="Process model with specified path")
parser.add_argument("--model-path", "-m", help="Path to the model")
parser.add_argument("--prompt-file", "-f", help="Optional prompt file", required=False)
parser.add_argument("--verbose", "-v", action="store_true", help="Enable verbose debug output")
args = parser.parse_args()
model_path = os.environ.get("MODEL_PATH", args.model_path)
if model_path is None:
parser.error(
"Model path must be specified either via --model-path argument or MODEL_PATH environment variable"
)
### If you want to dump RoPE activations, uncomment the following lines:
### === START ROPE DEBUG ===
# from utils.common import setup_rope_debug
# setup_rope_debug("transformers.models.apertus.modeling_apertus")
### == END ROPE DEBUG ===
print("Loading model and tokenizer using AutoTokenizer:", model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
multimodal = False
full_config = config
print("Model type: ", config.model_type)
if "vocab_size" not in config and "text_config" in config:
config = config.text_config
multimodal = True
print("Vocab size: ", config.vocab_size)
print("Hidden size: ", config.hidden_size)
print("Number of layers: ", config.num_hidden_layers)
print("BOS token id: ", config.bos_token_id)
print("EOS token id: ", config.eos_token_id)
unreleased_model_name = os.getenv("UNRELEASED_MODEL_NAME")
if unreleased_model_name:
model_name_lower = unreleased_model_name.lower()
unreleased_module_path = (
f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
)
class_name = f"{unreleased_model_name}ForCausalLM"
print(f"Importing unreleased model module: {unreleased_module_path}")
try:
model_class = getattr(
importlib.import_module(unreleased_module_path), class_name
)
model = model_class.from_pretrained(
model_path
) # Note: from_pretrained, not fromPretrained
except (ImportError, AttributeError) as e:
print(f"Failed to import or load model: {e}")
exit(1)
else:
if multimodal:
model = AutoModelForImageTextToText.from_pretrained(
model_path, device_map="auto", offload_folder="offload", trust_remote_code=True, config=full_config
)
else:
model = AutoModelForCausalLM.from_pretrained(
model_path, device_map="auto", offload_folder="offload", trust_remote_code=True, config=config
)
if args.verbose:
for name, module in model.named_modules():
if len(list(module.children())) == 0: # only leaf modules
module.register_forward_hook(debug_hook(name))
model_name = os.path.basename(model_path)
# Printing the Model class to allow for easier debugging. This can be useful
# when working with models that have not been publicly released yet and this
# migth require that the concrete class is imported and used directly instead
# of using AutoModelForCausalLM.
print(f"Model class: {model.__class__.__name__}")
device = next(model.parameters()).device
if args.prompt_file:
with open(args.prompt_file, encoding='utf-8') as f:
prompt = f.read()
elif os.getenv("MODEL_TESTING_PROMPT"):
prompt = os.getenv("MODEL_TESTING_PROMPT")
else:
prompt = "Hello, my name is"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
print(f"Input tokens: {input_ids}")
print(f"Input text: {repr(prompt)}")
print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}")
batch_size = 512
with torch.no_grad():
past = None
outputs = None
for i in range(0, input_ids.size(1), batch_size):
print(f"Processing chunk with tokens {i} to {i + batch_size}")
chunk = input_ids[:, i:i + batch_size]
outputs = model(chunk.to(model.device), past_key_values=past, use_cache=True)
past = outputs.past_key_values
logits = outputs.logits # type: ignore
# Extract logits for the last token (next token prediction)
last_logits = logits[0, -1, :].float().cpu().numpy()
print(f"Logits shape: {logits.shape}")
print(f"Last token logits shape: {last_logits.shape}")
print(f"Vocab size: {len(last_logits)}")
data_dir = Path("data")
data_dir.mkdir(exist_ok=True)
bin_filename = data_dir / f"pytorch-{model_name}.bin"
txt_filename = data_dir / f"pytorch-{model_name}.txt"
# Save to file for comparison
last_logits.astype(np.float32).tofile(bin_filename)
# Also save as text file for easy inspection
with open(txt_filename, "w") as f:
for i, logit in enumerate(last_logits):
f.write(f"{i}: {logit:.6f}\n")
# Print some sample logits for quick verification
print(f"First 10 logits: {last_logits[:10]}")
print(f"Last 10 logits: {last_logits[-10:]}")
# Show top 5 predicted tokens
top_indices = np.argsort(last_logits)[-5:][::-1]
print("Top 5 predictions:")
for idx in top_indices:
token = tokenizer.decode([idx])
print(f" Token {idx} ({repr(token)}): {last_logits[idx]:.6f}")
print(f"Saved bin logits to: {bin_filename}")
print(f"Saved txt logist to: {txt_filename}")