llama.cpp/examples/model-conversion/scripts/utils/hf-upload-gguf-model.py

59 lines
1.9 KiB
Python
Executable File

#!/usr/bin/env python3
from huggingface_hub import HfApi
import argparse
import os
def upload_gguf_file(local_file_path, repo_id, filename_in_repo=None):
"""
Upload a GGUF file to a Hugging Face model repository
Args:
local_file_path: Path to your local GGUF file
repo_id: Your repository ID (e.g., "username/model-name")
filename_in_repo: Optional custom name for the file in the repo
"""
if not os.path.exists(local_file_path):
print(f"❌ File not found: {local_file_path}")
return False
if filename_in_repo is None:
filename_in_repo = os.path.basename(local_file_path)
if filename_in_repo is None or filename_in_repo == "":
filename_in_repo = os.path.basename(local_file_path)
print(f"📤 Uploading {local_file_path} to {repo_id}/{filename_in_repo}")
api = HfApi()
try:
api.upload_file(
path_or_fileobj=local_file_path,
path_in_repo=filename_in_repo,
repo_id=repo_id,
repo_type="model",
commit_message=f"Upload {filename_in_repo}"
)
print("✅ Upload successful!")
print(f"🔗 File available at: https://huggingface.co/{repo_id}/blob/main/{filename_in_repo}")
return True
except Exception as e:
print(f"❌ Upload failed: {e}")
return False
# This script requires that the environment variable HF_TOKEN is set with your
# Hugging Face API token.
api = HfApi()
parser = argparse.ArgumentParser(description='Upload a GGUF model to a Huggingface model repository')
parser.add_argument('--gguf-model-path', '-m', help='The GGUF model file to upload', required=True)
parser.add_argument('--repo-id', '-r', help='The repository to upload to', required=True)
parser.add_argument('--name', '-o', help='The name in the model repository', required=False)
args = parser.parse_args()
upload_gguf_file(args.gguf_model_path, args.repo_id, args.name)