189 lines
5.9 KiB
Python
189 lines
5.9 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
Test script to compare llama.cpp mtmd-cli output with HuggingFace reference implementation
|
|
for DeepSeek-OCR model using embedding similarity.
|
|
"""
|
|
|
|
import argparse
|
|
import subprocess
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
from sentence_transformers import SentenceTransformer
|
|
from sentence_transformers import util
|
|
|
|
|
|
def run_mtmd_deepseek_ocr(
|
|
model_path: str,
|
|
mmproj_path: str,
|
|
image_path: str,
|
|
bin_path: str,
|
|
prompt: str = "Free OCR."
|
|
) -> str:
|
|
"""
|
|
Run inference using llama.cpp mtmd-cli.
|
|
"""
|
|
cmd = [
|
|
bin_path,
|
|
"-m", model_path,
|
|
"--mmproj", mmproj_path,
|
|
"--image", image_path,
|
|
# "-p", "<|grounding|>Convert the document to markdown.",
|
|
"-p", prompt,
|
|
"--chat-template", "deepseek-ocr",
|
|
"--temp", "0",
|
|
"-n", "1024",
|
|
# "--verbose"
|
|
]
|
|
|
|
print(f"Running llama.cpp command: {' '.join(cmd)}")
|
|
|
|
result = subprocess.run(
|
|
cmd,
|
|
capture_output=True,
|
|
text=False,
|
|
timeout=300
|
|
)
|
|
|
|
if result.returncode != 0:
|
|
stderr = result.stderr.decode('utf-8', errors='replace')
|
|
print(f"llama.cpp stderr: {stderr}")
|
|
raise RuntimeError(f"llama-mtmd-cli failed with code {result.returncode}")
|
|
|
|
output = result.stdout.decode('utf-8', errors='replace').strip()
|
|
print(f"llama.cpp output length: {len(output)} chars")
|
|
return output
|
|
|
|
|
|
def compute_embedding_similarity(text1: str, text2: str, model_name: str) -> float:
|
|
"""
|
|
Compute cosine similarity between two texts using embedding model.
|
|
"""
|
|
print(f"Loading embedding model: {model_name}")
|
|
|
|
# Use sentence-transformers for easier embedding extraction
|
|
embed_model = SentenceTransformer(model_name)
|
|
|
|
print("Computing embeddings...")
|
|
embeddings = embed_model.encode([text1, text2], convert_to_numpy=True)
|
|
|
|
similarity = util.similarity.cos_sim([embeddings[0]], [embeddings[1]])[0][0]
|
|
return float(similarity)
|
|
|
|
|
|
def read_expected_output(file_path: str) -> str:
|
|
"""
|
|
Read expected OCR output from file.
|
|
"""
|
|
cur_path = Path(__file__).parent
|
|
expected_path = str(cur_path / file_path)
|
|
with open(expected_path, "r", encoding="utf-8") as f:
|
|
return f.read().strip()
|
|
|
|
|
|
def main():
|
|
ap = argparse.ArgumentParser(description="Compare llama.cpp and HuggingFace DeepSeek-OCR outputs")
|
|
ap.add_argument("--llama-model", default="gguf_models/deepseek-ai/deepseek-ocr-f16.gguf",
|
|
help="Path to llama.cpp GGUF model")
|
|
ap.add_argument("--mmproj", default="gguf_models/deepseek-ai/mmproj-deepseek-ocr-f16.gguf",
|
|
help="Path to mmproj GGUF file")
|
|
ap.add_argument("--image", default="test-1.jpeg",
|
|
help="Path to test image")
|
|
ap.add_argument("--llama-bin", default="build/bin/llama-mtmd-cli",
|
|
help="Path to llama-mtmd-cli binary")
|
|
ap.add_argument("--embedding-model", default="Qwen/Qwen3-Embedding-0.6B",
|
|
help="Embedding model for similarity computation")
|
|
ap.add_argument("--threshold", type=float, default=0.7,
|
|
help="Minimum similarity threshold for pass")
|
|
args = ap.parse_args()
|
|
|
|
# Validate paths
|
|
# script directory + image
|
|
mtmd_dir = Path(__file__).parent.parent
|
|
args.image = str(mtmd_dir / args.image)
|
|
# project directory + llama model
|
|
args.llama_model = str(mtmd_dir.parent.parent / args.llama_model)
|
|
# project directory + mmproj
|
|
args.mmproj = str(mtmd_dir.parent.parent / args.mmproj)
|
|
args.llama_bin = str(mtmd_dir.parent.parent / args.llama_bin)
|
|
if not Path(args.image).exists():
|
|
print(f"Error: Image not found: {args.image}")
|
|
sys.exit(1)
|
|
if not Path(args.llama_model).exists():
|
|
print(f"Error: Model not found: {args.llama_model}")
|
|
sys.exit(1)
|
|
if not Path(args.mmproj).exists():
|
|
print(f"Error: mmproj not found: {args.mmproj}")
|
|
sys.exit(1)
|
|
|
|
print("=" * 60)
|
|
print("DeepSeek-OCR: llama.cpp vs HuggingFace Comparison")
|
|
print("=" * 60)
|
|
|
|
# Default paths based on your command
|
|
|
|
# Run llama.cpp inference
|
|
print("\n[2/3] Running llama.cpp implementation...")
|
|
llama_free_ocr = run_mtmd_deepseek_ocr(
|
|
args.llama_model,
|
|
args.mmproj,
|
|
args.image,
|
|
args.llama_bin
|
|
)
|
|
|
|
llama_md_ocr = run_mtmd_deepseek_ocr(
|
|
args.llama_model,
|
|
args.mmproj,
|
|
args.image,
|
|
args.llama_bin,
|
|
prompt="<|grounding|>Convert the document to markdown."
|
|
)
|
|
|
|
expected_free_ocr = read_expected_output("test-1-extracted.txt")
|
|
expected_md_ocr = read_expected_output("test-1-extracted.md")
|
|
|
|
# Compute similarity
|
|
print("\n[3/3] Computing embedding similarity...")
|
|
free_ocr_similarity = compute_embedding_similarity(
|
|
expected_free_ocr,
|
|
llama_free_ocr,
|
|
args.embedding_model
|
|
)
|
|
|
|
md_ocr_similarity = compute_embedding_similarity(
|
|
expected_md_ocr,
|
|
llama_md_ocr,
|
|
args.embedding_model
|
|
)
|
|
|
|
# Results
|
|
print("\n" + "=" * 60)
|
|
print("RESULTS")
|
|
print("=" * 60)
|
|
print(f"\nReference Model output:\n{'-' * 40}")
|
|
print(expected_free_ocr)
|
|
print(f"\nDeepSeek-OCR output:\n{'-' * 40}")
|
|
print(llama_free_ocr)
|
|
print(f"\n{'=' * 60}")
|
|
print(f"Cosine Similarity: {free_ocr_similarity:.4f}")
|
|
print(f"Threshold: {args.threshold}")
|
|
print(f"Result: {'PASS' if free_ocr_similarity >= args.threshold else 'FAIL'}")
|
|
print("=" * 60)
|
|
|
|
# Markdown OCR results
|
|
print(f"\nReference Model Markdown output:\n{'-' * 40}")
|
|
print(expected_md_ocr)
|
|
print(f"\nDeepSeek-OCR Markdown output:\n{'-' * 40}")
|
|
print(llama_md_ocr)
|
|
print(f"\n{'=' * 60}")
|
|
print(f"Cosine Similarity (Markdown): {md_ocr_similarity:.4f}")
|
|
print(f"Threshold: {args.threshold}")
|
|
print(f"Result: {'PASS' if md_ocr_similarity >= args.threshold else 'FAIL'}")
|
|
print("=" * 60)
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|