llama.cpp/tools/server/server-queue.h

159 lines
5.1 KiB
C++

#pragma once
#include "server-task.h"
#include <condition_variable>
#include <deque>
#include <mutex>
#include <unordered_set>
// struct for managing server tasks
// in most cases, use server_response_reader to post new tasks and retrieve results
struct server_queue {
private:
int id = 0;
bool running;
// queues
std::deque<server_task> queue_tasks;
std::deque<server_task> queue_tasks_deferred;
std::mutex mutex_tasks;
std::condition_variable condition_tasks;
// callback functions
std::function<void(server_task &&)> callback_new_task;
std::function<void(void)> callback_update_slots;
public:
// Add a new task to the end of the queue
int post(server_task && task, bool front = false);
// multi-task version of post()
int post(std::vector<server_task> && tasks, bool front = false);
// Add a new task, but defer until one slot is available
void defer(server_task && task);
// Get the next id for creating a new task
int get_new_id();
// Register function to process a new task
void on_new_task(std::function<void(server_task &&)> callback);
// Register the function to be called when all slots data is ready to be processed
void on_update_slots(std::function<void(void)> callback);
// Call when the state of one slot is changed, it will move one task from deferred to main queue
void pop_deferred_task();
// end the start_loop routine
void terminate();
/**
* Main loop consists of these steps:
* - Wait until a new task arrives
* - Process the task (i.e. maybe copy data into slot)
* - Check if multitask is finished
* - Update all slots
*/
void start_loop();
// for metrics
size_t queue_tasks_deferred_size() {
std::unique_lock<std::mutex> lock(mutex_tasks);
return queue_tasks_deferred.size();
}
private:
void cleanup_pending_task(int id_target);
};
// struct for managing server responses
// in most cases, use server_response_reader to retrieve results
struct server_response {
private:
bool running = true;
// for keeping track of all tasks waiting for the result
std::unordered_set<int> waiting_task_ids;
// the main result queue (using ptr for polymorphism)
std::vector<server_task_result_ptr> queue_results;
std::mutex mutex_results;
std::condition_variable condition_results;
public:
// add the id_task to the list of tasks waiting for response
void add_waiting_task_id(int id_task);
void add_waiting_tasks(const std::vector<server_task> & tasks);
// when the request is finished, we can remove task associated with it
void remove_waiting_task_id(int id_task);
// remove multiple tasks from waiting list
void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks);
// This function blocks the thread until there is a response for one of the id_tasks
server_task_result_ptr recv(const std::unordered_set<int> & id_tasks);
// same as recv(), but have timeout in seconds
// if timeout is reached, nullptr is returned
server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout);
// single-task version of recv()
server_task_result_ptr recv(int id_task);
// Send a new result to a waiting id_task
void send(server_task_result_ptr && result);
// terminate the waiting loop
void terminate();
};
// utility class to make working with server_queue and server_response easier
// it provides a generator-like API for server responses
// support pooling connection state and aggregating multiple results
struct server_response_reader {
std::unordered_set<int> id_tasks;
server_queue & queue_tasks;
server_response & queue_results;
size_t received_count = 0;
bool cancelled = false;
int polling_interval_seconds;
// tracking generation state and partial tool calls
// only used by streaming completions
std::vector<task_result_state> states;
// should_stop function will be called each polling_interval_seconds
server_response_reader(server_queue & queue_tasks, server_response & queue_results, int polling_interval_seconds)
: queue_tasks(queue_tasks), queue_results(queue_results), polling_interval_seconds(polling_interval_seconds) {}
~server_response_reader() {
stop();
}
int get_new_id() {
return queue_tasks.get_new_id();
}
void post_task(server_task && task);
void post_tasks(std::vector<server_task> && tasks);
bool has_next() const;
// return nullptr if should_stop() is true before receiving a result
// note: if one error is received, it will stop further processing and return error result
server_task_result_ptr next(const std::function<bool()> & should_stop);
struct batch_response {
bool is_terminated = false; // if true, indicates that processing was stopped before all results were received
std::vector<server_task_result_ptr> results;
server_task_result_ptr error; // nullptr if no error
};
// aggregate multiple results
batch_response wait_for_all(const std::function<bool()> & should_stop);
void stop();
};