llama.cpp/common/speculative.cpp

882 lines
32 KiB
C++

#include "speculative.h"
#include "common.h"
#include "ggml.h"
#include "llama.h"
#include "log.h"
#include "ngram-cache.h"
#include "ngram-map.h"
#include "sampling.h"
#include <algorithm>
#include <cstring>
#include <iomanip>
#include <map>
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
const std::vector<enum common_speculative_type> common_speculative_types = {
COMMON_SPECULATIVE_TYPE_NONE,
COMMON_SPECULATIVE_TYPE_DRAFT,
COMMON_SPECULATIVE_TYPE_EAGLE3,
COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE,
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K,
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V,
COMMON_SPECULATIVE_TYPE_NGRAM_CACHE
};
const std::map<std::string, enum common_speculative_type> common_speculative_type_from_name_map = {
{"none", COMMON_SPECULATIVE_TYPE_NONE},
{"draft", COMMON_SPECULATIVE_TYPE_DRAFT},
{"eagle3", COMMON_SPECULATIVE_TYPE_EAGLE3},
{"ngram_simple", COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE},
{"ngram_map_k", COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K},
{"ngram_map_k4v", COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V},
{"ngram_cache", COMMON_SPECULATIVE_TYPE_NGRAM_CACHE}
};
struct common_speculative_config {
common_speculative_type type;
common_params_speculative params;
common_speculative_config(common_speculative_type t,
const common_params_speculative & p = common_params_speculative{}) : type(t), params(p) {}
};
static bool common_speculative_are_compatible(
const llama_model * model_tgt,
const llama_model * model_dft) {
const llama_vocab * vocab_tgt = llama_model_get_vocab(model_tgt);
const llama_vocab * vocab_dft = llama_model_get_vocab(model_dft);
const bool vocab_type_tgt = llama_vocab_type(vocab_tgt);
LOG_DBG("%s: vocab_type tgt: %d\n", __func__, vocab_type_tgt);
const bool vocab_type_dft = llama_vocab_type(vocab_dft);
LOG_DBG("%s: vocab_type dft: %d\n", __func__, vocab_type_dft);
if (vocab_type_tgt != vocab_type_dft) {
LOG_DBG("%s: draft model vocab type must match target model to use speculation but ", __func__);
LOG_DBG("vocab_type_dft = %d while vocab_type_tgt = %d\n", vocab_type_dft, vocab_type_tgt);
return false;
}
if (
llama_vocab_get_add_bos(vocab_tgt) != llama_vocab_get_add_bos(vocab_dft) ||
llama_vocab_get_add_eos(vocab_tgt) != llama_vocab_get_add_eos(vocab_dft) ||
llama_vocab_bos(vocab_tgt) != llama_vocab_bos(vocab_dft) ||
llama_vocab_eos(vocab_tgt) != llama_vocab_eos(vocab_dft)
) {
LOG_DBG("%s: draft model special tokens must match target model to use speculation\n", __func__);
return false;
}
{
const int n_vocab_tgt = llama_vocab_n_tokens(vocab_tgt);
const int n_vocab_dft = llama_vocab_n_tokens(vocab_dft);
const int vocab_diff = n_vocab_tgt > n_vocab_dft
? n_vocab_tgt - n_vocab_dft
: n_vocab_dft - n_vocab_tgt;
if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
LOG_DBG("%s: draft model vocab must closely match target model to use speculation but ", __func__);
LOG_DBG("target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
n_vocab_tgt, llama_vocab_n_tokens(vocab_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
return false;
}
for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
const char * token_text_tgt = llama_vocab_get_text(vocab_tgt, i);
const char * token_text_dft = llama_vocab_get_text(vocab_dft, i);
if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
LOG_DBG("%s: draft model vocab must match target model to use speculation but ", __func__);
LOG_DBG("token %d content differs - target '%s', draft '%s'\n", i,
common_token_to_piece(vocab_tgt, i).c_str(),
common_token_to_piece(vocab_dft, i).c_str());
return false;
}
}
}
return true;
}
// state of an implementation of speculative decoding
//
// each implementation has a unique type and a state that is implementation-specific
// in a subclass of common_speculative_state
struct common_speculative_state {
const enum common_speculative_type type;
size_t drafts_call_count = 0; // number of times this implementation was called.
size_t drafts_generated_count = 0; // number of times a draft or part was generated by this implementation.
size_t drafts_accepted_count = 0; // number of times a draft or part was accepted by the target model.
size_t drafts_generated_tokens = 0; // number of tokens generated by this implementation.
size_t drafts_accepted_tokens = 0; // number of tokens accepted by the target model.
// TODO: track performance of most recent calls
const bool gen_perf = true; // whether to generate performance stats.
int64_t gen_duration_us = 0; // total time spent in this implementation in microseconds.
common_speculative_state(enum common_speculative_type type) : type(type) {}
virtual ~common_speculative_state() = default;
virtual void begin(const llama_tokens & prompt) = 0;
virtual void draft(
const common_params_speculative & params,
const llama_tokens & prompt_tgt,
llama_token id_last,
llama_tokens & result) = 0;
virtual void accept(uint16_t n_accepted) = 0;
};
struct common_speculative_state_draft : public common_speculative_state {
llama_context * ctx_tgt; // only used for retokenizing from ctx_dft
llama_context * ctx_dft;
common_sampler * smpl;
llama_batch batch;
llama_tokens prompt_dft;
bool vocab_cmpt = true; // whether retokenization is needed
std::unordered_map<std::string, std::string> vocab_map;
common_speculative_state_draft(
enum common_speculative_type type,
llama_context * ctx_tgt,
llama_context * ctx_dft,
const std::vector<std::pair<std::string, std::string>> & replacements)
: common_speculative_state(type)
, ctx_tgt(ctx_tgt)
, ctx_dft(ctx_dft)
{
batch = llama_batch_init(llama_n_batch(ctx_dft), 0, 1);
smpl = nullptr;
// TODO: optimize or pass from outside?
// {
// common_params_sampling params;
// params.no_perf = false;
//
// params.top_k = 40;
// params.top_p = 0.9;
//
// params.samplers = {
// COMMON_SAMPLER_TYPE_TOP_K,
// COMMON_SAMPLER_TYPE_TOP_P,
// COMMON_SAMPLER_TYPE_INFILL,
// };
//
// result->smpl = common_sampler_init(llama_get_model(ctx_dft), params);
// }
{
common_params_sampling params;
params.no_perf = false;
params.top_k = 10;
params.samplers = {
COMMON_SAMPLER_TYPE_TOP_K,
};
smpl = common_sampler_init(llama_get_model(ctx_dft), params);
}
vocab_cmpt = common_speculative_are_compatible(llama_get_model(ctx_tgt), llama_get_model(ctx_dft));
LOG_DBG("vocab_cmpt = %d\n", vocab_cmpt);
if (!vocab_cmpt) {
LOG_WRN("the target and draft vocabs are not compatible - tokens will be translated between the two\n");
for (const auto & pair : replacements) {
vocab_map[pair.first] = pair.second;
}
}
}
~common_speculative_state_draft() override {
llama_perf_context_print(ctx_dft);
llama_free(ctx_dft);
common_sampler_free(smpl);
llama_batch_free(batch);
}
void begin(const llama_tokens & prompt) override {
GGML_UNUSED(prompt);
}
void draft(
const common_params_speculative & params,
const llama_tokens & prompt_tgt,
llama_token id_last,
llama_tokens & result) override {
auto * spec = this;
auto & batch = spec->batch;
auto & ctx_tgt = spec->ctx_tgt;
auto & ctx_dft = spec->ctx_dft;
auto & smpl = spec->smpl;
auto & prompt_dft = spec->prompt_dft;
auto * mem_dft = llama_get_memory(ctx_dft);
int reuse_i = 0;
int reuse_n = 0;
const int n_ctx = llama_n_ctx(ctx_dft) - params.n_max;
llama_tokens prompt_cnv;
if (!spec->vocab_cmpt) {
std::string text;
text = common_detokenize(ctx_tgt, prompt_tgt, true);
text = replace_to_dft(text);
LOG_DBG("%s: main->draft detokenized string: '%s'\n", __func__, text.c_str());
prompt_cnv = common_tokenize(ctx_dft, text, false, true);
// convert id_last to draft vocab. llama_detokenize is called directly to avoid an allocation
const auto * model_tgt = llama_get_model(ctx_tgt);
const auto * vocab_tgt = llama_model_get_vocab(model_tgt);
int32_t n_chars = llama_detokenize(vocab_tgt, &id_last, 1, nullptr, 0, false, false);
GGML_ASSERT(n_chars < 0 && "failed to detokenize id_last");
text.resize(-n_chars);
llama_detokenize(vocab_tgt, &id_last, 1, text.data(), text.size(), false, false);
text = replace_to_dft(text);
LOG_DBG("main->draft detokenized id_last(%d): '%s'\n", id_last, text.c_str());
id_last = common_tokenize(ctx_dft, text, false, true)[0];
}
const llama_tokens & prompt_cur = spec->vocab_cmpt ? prompt_tgt : prompt_cnv;
const int i_start = std::max<int>(0, (int) prompt_cur.size() - n_ctx);
// reuse as much as possible from the old draft context
// ideally, the draft context should be as big as the target context and we will always reuse the entire prompt
for (int i = 0; i < (int) prompt_dft.size(); ++i) {
int cur = 0;
while (i_start + cur < (int) prompt_cur.size() &&
i + cur < (int) prompt_dft.size() &&
prompt_cur[i_start + cur] == prompt_dft[i + cur]) {
cur++;
}
if ((cur >= 256 || n_ctx >= (int) prompt_cur.size()) && cur > reuse_n) {
reuse_i = i;
reuse_n = cur;
}
}
LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt_dft.size());
result.clear();
result.reserve(params.n_max);
if (reuse_n == 0) {
llama_memory_clear(mem_dft, false);
prompt_dft.clear();
} else {
// this happens when a previous draft has been discarded (for example, due to being too small), but the
// target model agreed with it. in this case, we simply pass back the previous results to save compute
if (reuse_i + reuse_n < (int) prompt_dft.size() && prompt_dft[reuse_i + reuse_n] == id_last) {
for (int i = reuse_i + reuse_n + 1; i < (int) prompt_dft.size(); ++i) {
result.push_back(prompt_dft[i]);
if (params.n_max <= (int) result.size()) {
break;
}
}
return;
}
if (reuse_i > 0) {
llama_memory_seq_rm (mem_dft, 0, 0, reuse_i);
llama_memory_seq_add(mem_dft, 0, reuse_i, -1, -reuse_i);
prompt_dft.erase(prompt_dft.begin(), prompt_dft.begin() + reuse_i);
}
if (reuse_n < (int) prompt_dft.size()) {
llama_memory_seq_rm (mem_dft, 0, reuse_n, -1);
prompt_dft.erase(prompt_dft.begin() + reuse_n, prompt_dft.end());
}
}
// prepare a batch to evaluate any new tokens in the prompt
common_batch_clear(batch);
for (size_t i = i_start + reuse_n; i < prompt_cur.size(); ++i) {
//LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_cur[i]);
common_batch_add(batch, prompt_cur[i], i - i_start, { 0 }, false);
prompt_dft.push_back(prompt_cur[i]);
}
// we should rarely end-up here during normal decoding
if (batch.n_tokens > 0) {
//LOG_DBG("%s: draft prompt batch: %s\n", __func__, string_from(ctx, batch).c_str());
llama_decode(ctx_dft, batch);
}
const llama_pos n_past = prompt_dft.size();
LOG_DBG("%s: n_past = %d\n", __func__, n_past);
common_batch_clear(batch);
common_batch_add (batch, id_last, n_past, { 0 }, true);
prompt_dft.push_back(id_last);
LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx_dft, prompt_dft).c_str());
llama_decode(ctx_dft, batch);
common_sampler_reset(smpl);
// sample n_draft tokens from the draft model
for (int i = 0; i < params.n_max; ++i) {
common_batch_clear(batch);
common_sampler_sample(smpl, ctx_dft, 0, true);
const auto * cur_p = common_sampler_get_candidates(smpl, true);
for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) {
LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n",
k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx_dft, cur_p->data[k].id).c_str());
}
// add drafted token for each sequence
const llama_token id = cur_p->data[0].id;
common_sampler_accept(smpl, id, true);
result.push_back(id);
if (params.n_max <= (int) result.size()) {
break;
}
// only collect very high-confidence draft tokens
if (cur_p->data[0].p < params.p_min) {
break;
}
common_batch_add(batch, id, n_past + i + 1, { 0 }, true);
// evaluate the drafted tokens on the draft model
llama_decode(ctx_dft, batch);
prompt_dft.push_back(id);
}
if (!spec->vocab_cmpt) {
std::string detokenized = common_detokenize(ctx_dft, result, true);
detokenized = replace_to_tgt(detokenized);
LOG_DBG("draft->main detokenized string: '%s'\n", detokenized.c_str());
result = common_tokenize(ctx_tgt, detokenized, false, true);
if (result.size() > (size_t)params.n_max) {
result.resize(params.n_max);
}
}
}
void accept(uint16_t n_accepted) override {
// noop
GGML_UNUSED(n_accepted);
}
std::string replace_to_dft(const std::string & input) const {
std::string result = input;
for (const auto & pair : this->vocab_map) {
size_t pos = result.find(pair.first);
while (pos != std::string::npos) {
result.replace(pos, pair.first.length(), pair.second);
pos = result.find(pair.first, pos + pair.second.length());
}
}
return result;
}
std::string replace_to_tgt(const std::string & input) const {
std::string result = input;
for (const auto & pair : this->vocab_map) {
size_t pos = result.find(pair.second);
while (pos != std::string::npos) {
result.replace(pos, pair.second.length(), pair.first);
pos = result.find(pair.second, pos + pair.first.length());
}
}
return result;
}
};
struct common_speculative_state_eagle3 : public common_speculative_state {
common_speculative_state_eagle3(enum common_speculative_type type) : common_speculative_state(type) {}
void begin(const llama_tokens & prompt) override {
GGML_UNUSED(prompt);
}
void draft(
const common_params_speculative & params,
const llama_tokens & prompt_tgt,
llama_token id_last,
llama_tokens & draft_tokens) override {
// TODO: implement
GGML_UNUSED(params);
GGML_UNUSED(prompt_tgt);
GGML_UNUSED(id_last);
GGML_UNUSED(draft_tokens);
}
void accept(uint16_t n_accepted) override {
// noop
GGML_UNUSED(n_accepted);
}
};
// state of self-speculation (simple implementation, not ngram-map)
struct common_speculative_state_ngram_simple : public common_speculative_state {
common_ngram_simple_state state;
common_speculative_state_ngram_simple(
enum common_speculative_type type,
common_ngram_simple_state state)
: common_speculative_state(type), state(state) {}
void begin(const llama_tokens & prompt) override {
GGML_UNUSED(prompt);
}
void draft(
const common_params_speculative & params,
const llama_tokens & prompt_tgt,
llama_token id_last,
llama_tokens & result) override {
result = common_ngram_simple_draft(state, prompt_tgt, id_last);
GGML_UNUSED(params);
}
void accept(uint16_t n_accepted) override {
// noop
GGML_UNUSED(n_accepted);
}
};
struct common_speculative_state_ngram_map_k : public common_speculative_state {
// draft ngram map for speculative decoding without draft model
common_ngram_map map;
common_speculative_state_ngram_map_k(
enum common_speculative_type type,
common_ngram_map map)
: common_speculative_state(type), map(std::move(map)) {}
void begin(const llama_tokens & prompt) override {
GGML_UNUSED(prompt);
}
void draft(
const common_params_speculative & params,
const llama_tokens & prompt_tgt,
llama_token id_last,
llama_tokens & result) override {
common_ngram_map_draft(map, prompt_tgt, id_last, result);
GGML_UNUSED(params);
}
void accept(uint16_t n_accepted) override {
common_ngram_map_accept(map, n_accepted);
}
};
struct common_speculative_state_ngram_cache : public common_speculative_state {
uint16_t n_draft;
bool save_dynamic;
bool save_static;
common_ngram_cache ngram_cache_context;
common_ngram_cache ngram_cache_dynamic;
common_ngram_cache ngram_cache_static;
size_t cache_size = 0; // number of tokens in n-gram cache
common_speculative_state_ngram_cache(
const enum common_speculative_type type,
const std::string & path_static,
const std::string & path_dynamic,
uint16_t n_draft,
bool save_dynamic,
bool save_static)
: common_speculative_state(type)
, n_draft(n_draft)
, save_dynamic(save_dynamic)
, save_static(save_static)
{
if (!path_static.empty()) {
try {
ngram_cache_static = common_ngram_cache_load(path_static);
} catch (...) {
LOG_ERR("failed to open static lookup cache: %s", path_static.c_str());
GGML_ABORT("Couldn't read static lookup cache");
}
}
if (!path_dynamic.empty()) {
try {
ngram_cache_dynamic = common_ngram_cache_load(path_dynamic);
} catch (...) {
LOG_ERR("failed to open dynamic lookup cache: %s", path_dynamic.c_str());
GGML_ABORT("Couldn't read dynamic lookup cache");
}
}
}
void begin(const llama_tokens & prompt) override {
GGML_UNUSED(prompt);
}
void draft(
const common_params_speculative & params,
const llama_tokens & prompt_tgt,
llama_token id_last,
llama_tokens & result) override {
GGML_UNUSED(params);
if (cache_size < prompt_tgt.size() + 1) {
llama_tokens tokens_new;
tokens_new.reserve(prompt_tgt.size() + 1 - cache_size);
for (size_t j = cache_size; j < prompt_tgt.size(); ++j) {
tokens_new.push_back(prompt_tgt[j]);
}
tokens_new.push_back(id_last); // add the last token
// Update context ngram cache with new prompt_tgt:
common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX,
tokens_new, tokens_new.size(), false);
cache_size = prompt_tgt.size() + 1;
}
llama_tokens inp;
inp.reserve(prompt_tgt.size() + 1);
for (size_t j = 0; j < prompt_tgt.size(); ++j) {
inp.push_back(prompt_tgt[j]);
}
inp.push_back(id_last);
result.push_back(id_last);
common_ngram_cache_draft(inp, result, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX,
ngram_cache_context,
ngram_cache_dynamic,
ngram_cache_static);
if (result.size() > 0) {
// delete first token in result (which is the id_last token)
result.erase(result.begin());
}
}
void accept(uint16_t n_accepted) override {
// TODO: noop
GGML_UNUSED(n_accepted);
}
};
struct common_speculative {
std::vector<std::unique_ptr<common_speculative_state>> impls; // list of implementations to use and their states
common_speculative_state * curr_impl = nullptr; // current implementation in use (for stats)
};
static common_ngram_map get_common_ngram_map(const common_speculative_config & config) {
uint16_t size_key = config.params.ngram_size_n;
uint16_t size_value = config.params.ngram_size_m;
bool key_only = (config.type == COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K);
uint16_t check_rate = config.params.ngram_check_rate;
uint16_t min_hits = config.params.ngram_min_hits;
return common_ngram_map(size_key, size_value, key_only, check_rate, min_hits);
}
static common_speculative_state_ngram_cache create_state_ngram_cache(
const std::string & path_static, const std::string & path_dynamic,
const common_speculative_config & config) {
uint16_t n_draft = 8; // TODO get from config?
// TODO bool param in common/common.h to set save_static/save_dynamic?
bool save_static = false;
bool save_dynamic = false;
common_speculative_state_ngram_cache state(config.type, path_static, path_dynamic, n_draft, save_static, save_dynamic);
return state;
}
std::string common_speculative_type_name_str() {
std::string result;
for (size_t i = 0; i < common_speculative_types.size(); i++) {
if (i > 0) {
result += ", ";
}
result += common_speculative_type_to_str(common_speculative_types[i]);
}
return result;
}
std::string common_speculative_type_to_str(enum common_speculative_type type) {
switch (type) {
case COMMON_SPECULATIVE_TYPE_NONE: return "none";
case COMMON_SPECULATIVE_TYPE_DRAFT: return "draft";
case COMMON_SPECULATIVE_TYPE_EAGLE3: return "eagle3";
case COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE: return "ngram_simple";
case COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K: return "ngram_map_k";
case COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V: return "ngram_map_k4v";
case COMMON_SPECULATIVE_TYPE_NGRAM_CACHE: return "ngram_cache";
default: return "unknown";
}
}
enum common_speculative_type common_speculative_type_from_name(const std::string & name) {
const auto it = common_speculative_type_from_name_map.find(name);
if (it == common_speculative_type_from_name_map.end()) {
return COMMON_SPECULATIVE_TYPE_COUNT;
}
return it->second;
}
// initialization of the speculative decoding system
//
common_speculative * common_speculative_init(
const common_params_speculative & params,
llama_context * ctx_tgt) {
llama_context * ctx_dft = nullptr;
if (params.model_dft) {
ctx_dft = llama_init_from_model(params.model_dft, params.cparams_dft);
if (ctx_dft == nullptr) {
LOG_ERR("%s", "failed to create draft context\n");
return nullptr;
}
}
// Compute the implementations to use based on the config and their order of preference
std::vector<common_speculative_config> configs = {}; // list of speculative configs to try
{
bool has_draft = !params.mparams_dft.path.empty();
bool has_draft_eagle3 = false; // TODO PR-18039: if params.speculative.eagle3
bool has_ngram_cache = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_CACHE);
bool has_ngram_simple = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE);
bool has_ngram_map_k = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K);
bool has_ngram_map_k4v = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V);
// In a more complex implementation we could use the same implementation but with different parameters.
// This was initially used in PR-18471 but removed to simplify the code.
if (has_ngram_simple) {
// This implementation can guess a lot of tokens without any draft model.
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE, params));
}
if (has_ngram_map_k) {
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K, params));
}
if (has_ngram_map_k4v) {
// This implementation can guess tokens with high acceptance rate but is more expensive.
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V, params));
}
if (has_ngram_cache) {
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_NGRAM_CACHE, params));
}
if (has_draft) {
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_DRAFT, params));
}
if (has_draft_eagle3) {
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_EAGLE3, params));
}
}
std::vector<std::unique_ptr<common_speculative_state>> impls = {};
for (const common_speculative_config & config : configs) {
LOG_DBG("%s: adding implementation %s\n", __func__, common_speculative_type_to_str(config.type).c_str());
switch (config.type) {
case COMMON_SPECULATIVE_TYPE_NONE:
break;
case COMMON_SPECULATIVE_TYPE_DRAFT: {
impls.push_back(std::make_unique<common_speculative_state_draft>(config.type,
/* .ctx_tgt = */ ctx_tgt,
/* .ctx_dft = */ ctx_dft,
/* .replacements = */ params.replacements
));
break;
}
case COMMON_SPECULATIVE_TYPE_EAGLE3: {
impls.push_back(std::make_unique<common_speculative_state_eagle3>(config.type));
break;
}
case COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE: {
common_ngram_map ngram_map = get_common_ngram_map(config);
uint16_t ngram_size_key = ngram_map.size_key;
uint16_t mgram_size_value = ngram_map.size_value;
uint16_t check_rate = ngram_map.check_rate;
auto config_simple = common_ngram_simple_config{
/* .size_ngram = */ ngram_size_key,
/* .size_mgram = */ mgram_size_value,
/* .check_rate = */ check_rate
};
auto state = std::make_unique<common_speculative_state_ngram_simple>(
/* .type = */ config.type,
/* .state = */ common_ngram_simple_state(config_simple)
);
impls.push_back(std::move(state));
break;
}
case COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K:
case COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V: {
impls.push_back(std::make_unique<common_speculative_state_ngram_map_k>(
(config.type),
get_common_ngram_map(config)
));
break;
}
case COMMON_SPECULATIVE_TYPE_NGRAM_CACHE: {
auto state = create_state_ngram_cache(
params.lookup_cache_static, params.lookup_cache_dynamic, config);
impls.push_back(std::make_unique<common_speculative_state_ngram_cache>(state));
break;
}
default:
break;
}
}
if (impls.empty()) {
LOG_WRN("%s", "no implementations specified for speculative decoding\n");
return nullptr;
}
auto * result = new common_speculative {
/* .impls = */ std::move(impls)
};
return result;
}
void common_speculative_free(common_speculative * spec) {
if (spec == nullptr) {
return;
}
delete spec;
}
void common_speculative_begin(common_speculative * spec, const llama_tokens & prompt) {
if (spec == nullptr) {
return;
}
for (auto & impl : spec->impls) {
impl->begin(prompt);
}
}
llama_tokens common_speculative_draft(
common_speculative * spec,
const common_params_speculative & params,
const llama_tokens & prompt_tgt, // specified in target model vocab
llama_token id_last) {
llama_tokens result;
spec->curr_impl = nullptr; // reset current implementation
for (auto & impl : spec->impls) {
{
const int64_t t_start_us = impl->gen_perf ? ggml_time_us() : 0;
impl->draft(params, prompt_tgt, id_last, result);
const int64_t t_now_us = impl->gen_perf ? ggml_time_us() : 0;
impl->drafts_call_count++;
impl->gen_duration_us += t_now_us - t_start_us; // accumulate duration for this implementation
}
if (!result.empty()) {
LOG_DBG("%s: called impl %s, hist size = %zu, call_count = %zu, gen = %zu\n", __func__,
common_speculative_type_to_str(impl.get()->type).c_str(),
prompt_tgt.size(),
impl.get()->drafts_call_count, result.size());
spec->curr_impl = impl.get(); // set current implementation for stats
impl->drafts_generated_count++;
impl->drafts_generated_tokens += result.size();
break; // We have a draft, so break out of the loop and return it.
}
}
return result;
}
void common_speculative_accept(common_speculative * spec, uint16_t n_accepted) {
if (n_accepted == 0) {
return;
}
common_speculative_state * impl = spec->curr_impl;
GGML_ASSERT(impl);
if (n_accepted > 0) {
impl->drafts_accepted_count++;
impl->drafts_accepted_tokens += n_accepted;
}
impl->accept(n_accepted);
}
void common_speculative_print_stats(const common_speculative * spec) {
if (spec == nullptr) {
return;
}
for (const auto & impl : spec->impls) {
std::string str_perf;
if (impl->gen_perf) {
std::ostringstream oss;
oss << std::fixed << std::setprecision(3) << impl->gen_duration_us / 1000.0;
str_perf = ", dur = " + oss.str() + " ms";
} else {
str_perf = "";
}
LOG_INF("statistics %s: #calls = %zu, #gen drafts = %zu, #acc drafts = %zu, #gen tokens = %zu, #acc tokens = %zu%s\n",
common_speculative_type_to_str(impl->type).c_str(),
impl->drafts_call_count,
impl->drafts_generated_count,
impl->drafts_accepted_count,
impl->drafts_generated_tokens,
impl->drafts_accepted_tokens,
str_perf.c_str());
}
}