1505 lines
62 KiB
C++
1505 lines
62 KiB
C++
#include "ggml-backend-impl.h"
|
||
#include "ggml-cpu-impl.h"
|
||
#include "ggml-impl.h"
|
||
#include "ggml-openvino.h"
|
||
#include "ggml-openvino/utils.h"
|
||
|
||
#include <string>
|
||
#include <mutex>
|
||
#include <vector>
|
||
#include <openvino/openvino.hpp>
|
||
#include <openvino/op/op.hpp>
|
||
#include <openvino/op/add.hpp>
|
||
#include <openvino/op/subtract.hpp>
|
||
#include <openvino/opsets/opset1.hpp>
|
||
|
||
#define GGML_OPENVINO_MAX_STREAMS 8
|
||
|
||
struct ggml_backend_openvino_context {
|
||
int device; // the device ID currently in use
|
||
std::string name; // context Name
|
||
std::string description; // context description
|
||
|
||
// OpenVINO core components
|
||
ov::Core core; // OpenVINO core interface
|
||
std::shared_ptr<ov::CompiledModel> model; // compiled Model
|
||
ov::InferRequest infer_request; // inference Request
|
||
|
||
// OpenVINO Multi-stream support
|
||
static const int MAX_STREAMS = 8; // define the maximum number of flows
|
||
std::vector<ov::InferRequest> streams; // used to support multi-stream reasoning
|
||
int current_stream; // the currently active stream index
|
||
|
||
// state Management
|
||
bool is_initialized; // initialize
|
||
|
||
ggml_backend_openvino_context()
|
||
: device(0), name("OpenVINO"), description("OpenVINO Backend Context"),
|
||
current_stream(0), is_initialized(false) {}
|
||
};
|
||
|
||
static void ggml_backend_openvino_free(ggml_backend_t backend) {
|
||
ggml_backend_openvino_context * ctx = (ggml_backend_openvino_context *)backend->context;
|
||
delete ctx;
|
||
delete backend;
|
||
}
|
||
|
||
static const char * ggml_backend_openvino_get_name(ggml_backend_t backend) {
|
||
return GGML_OPENVINO_NAME;
|
||
GGML_UNUSED(backend);
|
||
}
|
||
|
||
static ggml_backend_buffer_type_t ggml_backend_openvino_get_default_buffer_type(ggml_backend_t backend) {
|
||
return ggml_backend_cpu_buffer_type();
|
||
GGML_UNUSED(backend);
|
||
}
|
||
|
||
static void ggml_backend_openvino_add_forward(ggml_tensor * dst) {
|
||
// Step 1: get the input tensor src0 和 src1
|
||
const struct ggml_tensor *src0 = dst->src[0];
|
||
const struct ggml_tensor *src1 = dst->src[1];
|
||
|
||
ov::Core core;
|
||
|
||
// set the shape and stride of dst
|
||
dst->ne[0] = src0->ne[0];
|
||
dst->ne[1] = src0->ne[1];
|
||
dst->nb[0] = src0->nb[0];
|
||
dst->nb[1] = src0->nb[1];
|
||
|
||
if (src0 == nullptr || src1 == nullptr) {
|
||
std::cerr << "Error: src0 or src1 is null." << std::endl;
|
||
return;
|
||
}
|
||
|
||
// Step 2: Check that the input tensor types and shapes match
|
||
if (src0->type != GGML_TYPE_F32 || src1->type != GGML_TYPE_F32) {
|
||
std::cerr << "Error: Unsupported tensor type. Only GGML_TYPE_F32 is supported for OpenVINO." << std::endl;
|
||
return;
|
||
}
|
||
if (src0->ne[0] != src1->ne[0] || src0->ne[1] != src1->ne[1]) {
|
||
std::cerr << "Error: src0 and src1 shapes do not match." << std::endl;
|
||
return;
|
||
}
|
||
|
||
ov::Tensor input0 = ov::Tensor(ov::element::f32, {static_cast<size_t>(src0->ne[0]), static_cast<size_t>(src0->ne[1])}, src0->data);
|
||
ov::Tensor input1 = ov::Tensor(ov::element::f32, {static_cast<size_t>(src1->ne[0]), static_cast<size_t>(src1->ne[1])}, src1->data);
|
||
|
||
auto input0_param = std::make_shared<ov::op::v0::Parameter>(ov::element::f32, ov::Shape{static_cast<size_t>(src0->ne[0]), static_cast<size_t>(src0->ne[1])});
|
||
auto input1_param = std::make_shared<ov::op::v0::Parameter>(ov::element::f32, ov::Shape{static_cast<size_t>(src0->ne[0]), static_cast<size_t>(src0->ne[1])});
|
||
auto add = std::make_shared<ov::op::v1::Add>(input0_param, input1_param);
|
||
auto model = std::make_shared<ov::Model>(add, ov::ParameterVector{input0_param, input1_param});
|
||
|
||
// compile model and store in context
|
||
#ifdef GGML_OPENVINO_GPU
|
||
auto compiled_model = core.compile_model(model, "GPU");
|
||
#elif GGML_OPENVINO_NPU
|
||
auto compiled_model = core.compile_model(model, "NPU");
|
||
#else
|
||
auto compiled_model = core.compile_model(model, "CPU");
|
||
#endif
|
||
// initialize infer request
|
||
auto infer_request = compiled_model.create_infer_request();
|
||
|
||
// Step 4: set input data, copy src0 and src1 data to OpenVINO input tensors
|
||
infer_request.set_tensor(input0_param, input0);
|
||
infer_request.set_tensor(input1_param, input1);
|
||
|
||
// Step 5: execute inference
|
||
infer_request.infer();
|
||
|
||
// Step 6: get output data
|
||
ov::Tensor output = infer_request.get_tensor(compiled_model.output());
|
||
|
||
// // Allocate memory for dst->data if not already allocated
|
||
// if (dst->data == nullptr) {
|
||
// dst->data = malloc(dst->nb[0] * dst->ne[0]);
|
||
// if (dst->data == nullptr) {
|
||
// std::cerr << "Error: Failed to allocate memory for dst->data." << std::endl;
|
||
// return;
|
||
// }
|
||
// }
|
||
|
||
std::memcpy(dst->data, output.data(), output.get_byte_size());
|
||
|
||
if (dst->ne[0] != src0->ne[0] || dst->ne[1] != src0->ne[1]) {
|
||
std::cerr << "Error: dst tensor shape does not match input tensor shape." << std::endl;
|
||
return;
|
||
}
|
||
|
||
// float* dst_data1 = (float*)(dst->data);
|
||
// printf("Output data:");;
|
||
// for (int i = 0; i < (10 < (int)(dst->ne[0]) ? 10 : (int)(dst->ne[0])); ++i) {
|
||
// printf("%f ", dst_data1[i]);
|
||
// }
|
||
// printf("\n");
|
||
// fflush(stdout);
|
||
}
|
||
|
||
static void ggml_backend_openvino_mul_forward(ggml_tensor * dst) {
|
||
struct ggml_tensor *src0 = dst->src[0];
|
||
struct ggml_tensor *src1 = dst->src[1];
|
||
|
||
ov::Core core;
|
||
|
||
// define shape
|
||
ov::Shape shape0 = {static_cast<size_t>(src0->ne[1]), static_cast<size_t>(src0->ne[0])}; // For Example: [7, 3072]
|
||
ov::Shape shape1 = {static_cast<size_t>(src1->ne[1]), static_cast<size_t>(src1->ne[0])}; // For Example: [1, 3072] -> broadcast to [7, 3072]
|
||
|
||
// create OpenVINO tensor (src0 and src1)
|
||
ov::Tensor tensor0(ov::element::f32, shape0, src0->data);
|
||
ov::Tensor tensor1(ov::element::f32, shape1, src1->data);
|
||
|
||
// define input parameters
|
||
auto input0 = std::make_shared<ov::op::v0::Parameter>(ov::element::f32, shape0);
|
||
auto input1 = std::make_shared<ov::op::v0::Parameter>(ov::element::f32, shape1);
|
||
|
||
// create a multiply operation using broadcasting
|
||
auto multiply = std::make_shared<ov::op::v1::Multiply>(input0, input1);
|
||
|
||
// create model
|
||
auto model = std::make_shared<ov::Model>(multiply, ov::ParameterVector{input0, input1});
|
||
// compile model and store in context
|
||
#ifdef GGML_OPENVINO_GPU
|
||
ov::CompiledModel compiled_model = core.compile_model(model, "GPU");
|
||
#elif GGML_OPENVINO_NPU
|
||
ov::CompiledModel compiled_model = core.compile_model(model, "NPU");
|
||
#else
|
||
ov::CompiledModel compiled_model = core.compile_model(model, "CPU");
|
||
#endif
|
||
|
||
ov::InferRequest infer_request = compiled_model.create_infer_request();
|
||
infer_request.set_tensor(input0, tensor0);
|
||
infer_request.set_tensor(input1, tensor1);
|
||
|
||
infer_request.infer();
|
||
|
||
// get output tensor and copy it back to dst->data
|
||
ov::Tensor output_tensor = infer_request.get_output_tensor();
|
||
std::memcpy(dst->data, output_tensor.data<float>(), src0->ne[0] * src0->ne[1] * sizeof(float));
|
||
}
|
||
|
||
static void ggml_backend_openvino_add(ggml_tensor * dst) {
|
||
// Placeholder for OpenVINO add operation
|
||
// GGML_ASSERT(ctx.device != 0);
|
||
GGML_ASSERT(dst->data != nullptr);
|
||
|
||
const struct ggml_tensor * src0 = dst->src[0];
|
||
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
||
switch (src0->type) {
|
||
case GGML_TYPE_F16:
|
||
{
|
||
if (src1->type == GGML_TYPE_F16) {
|
||
// ggml_backend_openvino_add_forward(ctx, dst, src0, src1);
|
||
} else if (src1->type == GGML_TYPE_F32) {
|
||
// ggml_compute_forward_add_f16_f32(params, dst);
|
||
} else {
|
||
GGML_ABORT("fatal error");
|
||
}
|
||
} break;
|
||
case GGML_TYPE_F32:
|
||
{
|
||
if (src1->type == GGML_TYPE_F32) {
|
||
{
|
||
ggml_backend_openvino_add_forward(dst);
|
||
}
|
||
}
|
||
else {
|
||
GGML_ABORT("fatal error");
|
||
}
|
||
} break;
|
||
default:
|
||
GGML_ABORT("%s: unsupported type %d\n", __func__, src1->type);
|
||
}
|
||
|
||
}
|
||
|
||
static void ggml_backend_openvino_mul(ggml_tensor * dst) {
|
||
GGML_ASSERT(dst->data != nullptr);
|
||
|
||
const struct ggml_tensor * src0 = dst->src[0];
|
||
const struct ggml_tensor * src1 = dst->src[1];
|
||
|
||
GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
|
||
|
||
switch (src0->type) {
|
||
case GGML_TYPE_F32:
|
||
{
|
||
ggml_backend_openvino_mul_forward(dst);
|
||
} break;
|
||
default:
|
||
{
|
||
GGML_ABORT("fatal error");
|
||
}
|
||
}
|
||
}
|
||
|
||
void ggml_compute_forward_get_rows_f16(struct ggml_tensor *dst) {
|
||
const struct ggml_tensor *src0 = dst->src[0];
|
||
const struct ggml_tensor *src1 = dst->src[1];
|
||
|
||
ov::Core core;
|
||
|
||
ov::Shape shape0 = {static_cast<size_t>(src0->ne[1]), static_cast<size_t>(src0->ne[0])}; // [3072, 7]
|
||
ov::Shape shape1 = {static_cast<size_t>(src1->ne[0])}; // [7]
|
||
|
||
ov::Tensor tensor0(ov::element::f16, shape0, src0->data);
|
||
ov::Tensor tensor1(ov::element::i32, shape1, src1->data);
|
||
|
||
auto input0 = std::make_shared<ov::op::v0::Parameter>(ov::element::f16, shape0);
|
||
auto input1 = std::make_shared<ov::op::v0::Parameter>(ov::element::i32, shape1);
|
||
|
||
auto gather = std::make_shared<ov::op::v8::Gather>(input0, input1, ov::op::v0::Constant::create(ov::element::i64, ov::Shape{}, {0}));
|
||
|
||
auto model = std::make_shared<ov::Model>(gather, ov::ParameterVector{input0, input1});
|
||
ov::CompiledModel compiled_model = core.compile_model(model, "CPU");
|
||
|
||
ov::InferRequest infer_request = compiled_model.create_infer_request();
|
||
infer_request.set_tensor(input0, tensor0);
|
||
infer_request.set_tensor(input1, tensor1);
|
||
|
||
infer_request.infer();
|
||
|
||
ov::Tensor output_tensor = infer_request.get_output_tensor();
|
||
// Convert output tensor data type from f16 to f32
|
||
ov::Tensor output_tensor_f32 = ov::Tensor(ov::element::f32, output_tensor.get_shape());
|
||
for (size_t i = 0; i < output_tensor.get_size(); ++i) {
|
||
output_tensor_f32.data<float>()[i] = static_cast<float>(output_tensor.data<ov::float16>()[i]);
|
||
}
|
||
|
||
// Copy the converted data to dst->data
|
||
std::memcpy(dst->data, output_tensor_f32.data<float>(), output_tensor_f32.get_byte_size());
|
||
}
|
||
|
||
void ggml_compute_forward_get_rows_f32(struct ggml_tensor *dst) {
|
||
const struct ggml_tensor *src0 = dst->src[0];
|
||
const struct ggml_tensor *src1 = dst->src[1];
|
||
|
||
ov::Core core;
|
||
|
||
ov::Shape shape0 = {static_cast<size_t>(src0->ne[1]), static_cast<size_t>(src0->ne[0])}; // [3072, 7]
|
||
ov::Shape shape1 = {static_cast<size_t>(src1->ne[0])}; // [7]
|
||
|
||
ov::Tensor tensor0(ov::element::f32, shape0, src0->data);
|
||
ov::Tensor tensor1(ov::element::i32, shape1, src1->data);
|
||
|
||
auto input0 = std::make_shared<ov::op::v0::Parameter>(ov::element::f32, shape0);
|
||
auto input1 = std::make_shared<ov::op::v0::Parameter>(ov::element::i32, shape1);
|
||
|
||
auto gather = std::make_shared<ov::op::v8::Gather>(input0, input1, ov::op::v0::Constant::create(ov::element::i64, ov::Shape{}, {0}));
|
||
|
||
auto model = std::make_shared<ov::Model>(gather, ov::ParameterVector{input0, input1});
|
||
ov::CompiledModel compiled_model = core.compile_model(model, "CPU");
|
||
|
||
ov::InferRequest infer_request = compiled_model.create_infer_request();
|
||
infer_request.set_tensor(input0, tensor0);
|
||
infer_request.set_tensor(input1, tensor1);
|
||
|
||
infer_request.infer();
|
||
|
||
ov::Tensor output_tensor = infer_request.get_output_tensor();
|
||
|
||
// Copy the converted data to dst->data
|
||
std::memcpy(dst->data, output_tensor.data<float>(), output_tensor.get_byte_size());
|
||
}
|
||
|
||
void ggml_compute_forward_get_rows(struct ggml_tensor *dst) {
|
||
const struct ggml_tensor *src0 = dst->src[0];
|
||
const struct ggml_tensor *src1 = dst->src[1];
|
||
|
||
switch (src0->type) {
|
||
case GGML_TYPE_F16:
|
||
{
|
||
ggml_compute_forward_get_rows_f16(dst);
|
||
} break;
|
||
case GGML_TYPE_F32:
|
||
{
|
||
ggml_compute_forward_get_rows_f32(dst);
|
||
} break;
|
||
default:
|
||
{
|
||
GGML_ABORT("fatal error");
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
void ggml_backend_openvino_rms_norm_f32(ggml_tensor *dst) {
|
||
const struct ggml_tensor *src0 = dst->src[0];
|
||
assert(src0 != nullptr);
|
||
|
||
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||
|
||
const int64_t ne0 = src0->ne[0];
|
||
const int64_t ne1 = src0->ne[1];
|
||
const int64_t ne2 = src0->ne[2];
|
||
|
||
const size_t input_size = ne0 * ne1 * ne2;
|
||
|
||
const float *src_data = static_cast<const float *>(src0->data);
|
||
float *dst_data = static_cast<float *>(dst->data);
|
||
assert(dst_data != nullptr);
|
||
|
||
ov::Core core;
|
||
|
||
ov::Shape input_shape = {static_cast<size_t>(ne2), static_cast<size_t>(ne1), static_cast<size_t>(ne0)};
|
||
ov::Tensor input_tensor(ov::element::f32, input_shape, const_cast<float *>(src_data));
|
||
|
||
auto input_param = std::make_shared<ov::op::v0::Parameter>(
|
||
input_tensor.get_element_type(),
|
||
input_tensor.get_shape()
|
||
);
|
||
assert(input_param != nullptr && "Input parameter creation failed!");
|
||
|
||
auto square = std::make_shared<ov::op::v1::Multiply>(input_param, input_param);
|
||
auto reduce_sum = std::make_shared<ov::op::v1::ReduceSum>(
|
||
square,
|
||
ov::op::v0::Constant::create(ov::element::i64, ov::Shape{1}, {2}),
|
||
true
|
||
);
|
||
|
||
auto mean = std::make_shared<ov::op::v1::Divide>(
|
||
reduce_sum,
|
||
ov::op::v0::Constant::create(ov::element::f32, ov::Shape{}, {static_cast<float>(ne0)})
|
||
);
|
||
|
||
float eps;
|
||
memcpy(&eps, dst->op_params, sizeof(float));
|
||
auto rms = std::make_shared<ov::op::v0::Sqrt>(
|
||
std::make_shared<ov::op::v1::Add>(
|
||
mean,
|
||
ov::op::v0::Constant::create(ov::element::f32, ov::Shape{}, {eps})
|
||
)
|
||
);
|
||
|
||
auto scale = std::make_shared<ov::op::v1::Divide>(
|
||
ov::op::v0::Constant::create(ov::element::f32, ov::Shape{}, {1.0f}),
|
||
rms
|
||
);
|
||
|
||
auto normalized_input = std::make_shared<ov::op::v1::Multiply>(input_param, scale);
|
||
|
||
ov::ParameterVector parameters = {input_param};
|
||
auto model = std::make_shared<ov::Model>(ov::NodeVector{normalized_input}, parameters);
|
||
|
||
// static bool model_saved = false;
|
||
// if (!model_saved) {
|
||
// std::cout << "\n rms model saved" << std::endl;
|
||
// ov::save_model(model, "/<Your-Host-Path>/rms_norm_model.xml");
|
||
// model_saved = true;
|
||
// }
|
||
|
||
auto compiled_model = core.compile_model(model, "CPU");
|
||
|
||
auto infer_request = compiled_model.create_infer_request();
|
||
|
||
infer_request.set_input_tensor(0, input_tensor);
|
||
|
||
infer_request.infer();
|
||
|
||
auto output_tensor = infer_request.get_output_tensor();
|
||
assert(output_tensor.get_size() == input_size);
|
||
|
||
std::memcpy(dst_data, output_tensor.data<float>(), input_size * sizeof(float));
|
||
}
|
||
|
||
void ggml_backend_openvino_rms_norm(ggml_tensor * dst) {
|
||
const struct ggml_tensor * src0 = dst->src[0];
|
||
switch (src0->type) {
|
||
case GGML_TYPE_F32:
|
||
{
|
||
ggml_backend_openvino_rms_norm_f32(dst);
|
||
} break;
|
||
default:
|
||
{
|
||
GGML_ABORT("fatal error");
|
||
}
|
||
}
|
||
}
|
||
|
||
// Extracting valid shapes
|
||
std::vector<int64_t> get_effective_shape(const ggml_tensor * t) {
|
||
std::vector<int64_t> shape;
|
||
for (int i = 2; i >= 0; i--) {
|
||
if (t->ne[i] != 1 || t->ne[2] != 1)
|
||
shape.push_back(t->ne[i]);
|
||
}
|
||
return shape;
|
||
}
|
||
|
||
/*
|
||
* Construct an index vector for Gather to extract non-contiguous data.
|
||
* Parameters:
|
||
* - valid_cols: number of valid columns per row (e.g., for src0, valid columns = 96)
|
||
* - num_rows: number of rows in each batch (e.g., src0: 32 rows per batch)
|
||
* - batch: number of batches (e.g., 32)
|
||
* - row_stride: physical row length (in elements), e.g., src0: nb[1]/(element_size) = 6144/2 = 3072
|
||
* - batch_stride: physical batch stride (in elements), e.g., src0: nb[2]/(element_size) = 192/2 = 96
|
||
*/
|
||
std::vector<int64_t> build_indices(int valid_cols, int num_rows, int batch, int row_stride, int batch_stride) {
|
||
std::vector<int64_t> indices;
|
||
indices.reserve(valid_cols * num_rows * batch);
|
||
for (int b = 0; b < batch; b++) {
|
||
for (int r = 0; r < num_rows; r++) {
|
||
for (int c = 0; c < valid_cols; c++) {
|
||
// 计算物理索引 = b * batch_stride + r * row_stride + c
|
||
indices.push_back(b * batch_stride + r * row_stride + c);
|
||
}
|
||
}
|
||
}
|
||
return indices;
|
||
}
|
||
|
||
void ggml_backend_openvino_mul_mat(struct ggml_tensor * dst) {
|
||
assert(dst && dst->src[0] && dst->src[1]);
|
||
const ggml_tensor * src0 = dst->src[0]; // src0 type F16
|
||
const ggml_tensor * src1 = dst->src[1]; // src1 type F32
|
||
|
||
if(!ggml_is_contiguous(src1) || dst->src[1]->ne[0] * dst->src[1]->nb[0] != dst->src[1]->nb[1]) {
|
||
int valid_cols_src0 = src0->ne[0]; // 96
|
||
int num_rows_src0 = src0->ne[1]; // 32
|
||
int batch_src0 = src0->ne[2]; // 32
|
||
|
||
int valid_cols_src1 = src1->ne[0]; // 96
|
||
int num_rows_src1 = src1->ne[1]; // 7
|
||
int batch_src1 = src1->ne[2]; // 32
|
||
|
||
// 对 src0:row_stride = nb[1] / nb[0]
|
||
int row_stride_src0 = src0->nb[1] / src0->nb[0]; // 6144 / 2 = 3072
|
||
int batch_stride_src0 = src0->nb[2] / src0->nb[0]; // 192 / 2 = 96
|
||
|
||
// 对 src1:row_stride = nb[1] / nb[0]
|
||
int row_stride_src1 = src1->nb[1] / src1->nb[0]; // 12288 / 4 = 3072
|
||
int batch_stride_src1 = src1->nb[2] / src1->nb[0]; // 384 / 4 = 96
|
||
|
||
std::vector<int64_t> indices_src0 = build_indices(valid_cols_src0, num_rows_src0, batch_src0, row_stride_src0, batch_stride_src0);
|
||
std::vector<int64_t> indices_src1 = build_indices(valid_cols_src1, num_rows_src1, batch_src1, row_stride_src1, batch_stride_src1);
|
||
|
||
size_t total_src0 = indices_src0.size(); // = 96 * 32 * 32
|
||
size_t total_src1 = indices_src1.size(); // = 96 * 7 * 32
|
||
|
||
ov::Shape orig_shape_src0 = { static_cast<size_t>(src0->ne[0]),
|
||
static_cast<size_t>(src0->ne[1]),
|
||
static_cast<size_t>(src0->ne[2])};
|
||
ov::Shape orig_shape_src1 = { static_cast<size_t>(src1->ne[0]),
|
||
static_cast<size_t>(src1->ne[1]),
|
||
static_cast<size_t>(src1->ne[2])};
|
||
|
||
auto param_src0 = std::make_shared<ov::op::v0::Parameter>(ov::element::f16, orig_shape_src0);
|
||
auto param_src1 = std::make_shared<ov::op::v0::Parameter>(ov::element::f32, orig_shape_src1);
|
||
|
||
ov::Shape flat_shape_src0 = { total_src0 };
|
||
ov::Shape flat_shape_src1 = { total_src1 };
|
||
|
||
auto flatten_src0 = std::make_shared<ov::op::v1::Reshape>(
|
||
param_src0,
|
||
ov::op::v0::Constant::create(ov::element::i64, {1}, std::vector<int64_t>{ static_cast<int64_t>(total_src0) }),
|
||
false);
|
||
auto flatten_src1 = std::make_shared<ov::op::v1::Reshape>(
|
||
param_src1,
|
||
ov::op::v0::Constant::create(ov::element::i64, {1}, std::vector<int64_t>{ static_cast<int64_t>(total_src1) }),
|
||
false);
|
||
|
||
auto indices_const_src0 = ov::op::v0::Constant::create(ov::element::i64, flat_shape_src0, indices_src0);
|
||
auto indices_const_src1 = ov::op::v0::Constant::create(ov::element::i64, flat_shape_src1, indices_src1);
|
||
auto axis_const = ov::op::v0::Constant::create(ov::element::i64, {1}, {0});
|
||
|
||
auto gathered_src0 = std::make_shared<ov::op::v8::Gather>(flatten_src0, indices_const_src0, axis_const);
|
||
auto gathered_src1 = std::make_shared<ov::op::v8::Gather>(flatten_src1, indices_const_src1, axis_const);
|
||
|
||
std::vector<int64_t> shape_src0_cont = { batch_src0, num_rows_src0, valid_cols_src0 };
|
||
auto reshape_src0 = std::make_shared<ov::op::v1::Reshape>(
|
||
gathered_src0,
|
||
ov::op::v0::Constant::create(ov::element::i64, { shape_src0_cont.size() }, shape_src0_cont),
|
||
false);
|
||
|
||
std::vector<int64_t> shape_src1_cont = { batch_src1, num_rows_src1, valid_cols_src1 };
|
||
auto reshape_src1 = std::make_shared<ov::op::v1::Reshape>(
|
||
gathered_src1,
|
||
ov::op::v0::Constant::create(ov::element::i64, { shape_src1_cont.size() }, shape_src1_cont),
|
||
false);
|
||
|
||
auto src0_f32 = std::make_shared<ov::op::v0::Convert>(reshape_src0, ov::element::f32);
|
||
auto transpose_order = ov::op::v0::Constant::create(ov::element::i64, {3}, std::vector<int64_t>{0, 2, 1});
|
||
auto src0_transposed = std::make_shared<ov::op::v1::Transpose>(src0_f32, transpose_order);
|
||
|
||
auto A = src0_transposed;
|
||
auto B = reshape_src1;
|
||
|
||
auto batched_matmul = std::make_shared<ov::op::v0::MatMul>(B, A, false, false);
|
||
|
||
std::vector<int64_t> final_output_shape = {static_cast<int64_t>(dst->ne[2]),
|
||
static_cast<int64_t>(dst->ne[1]),
|
||
static_cast<int64_t>(dst->ne[0])};
|
||
|
||
auto reshape_output = std::make_shared<ov::op::v1::Reshape>(
|
||
batched_matmul,
|
||
ov::op::v0::Constant::create(ov::element::i64, {3}, final_output_shape),
|
||
false
|
||
);
|
||
|
||
auto model = std::make_shared<ov::Model>(ov::NodeVector{ reshape_output },
|
||
ov::ParameterVector{ param_src0, param_src1 });
|
||
|
||
ov::Tensor tensor_src0{ ov::element::f16, orig_shape_src0, src0->data };
|
||
ov::Tensor tensor_src1{ ov::element::f32, orig_shape_src1, src1->data };
|
||
ov::Shape output_shape = { static_cast<size_t>(dst->ne[2]),
|
||
static_cast<size_t>(dst->ne[1]),
|
||
static_cast<size_t>(dst->ne[0]) };
|
||
ov::Tensor tensor_dst(ov::element::f32, output_shape, dst->data);
|
||
|
||
ov::Core core;
|
||
auto compiled_model = core.compile_model(model, "CPU");
|
||
auto infer_request = compiled_model.create_infer_request();
|
||
infer_request.set_input_tensor(0, tensor_src0);
|
||
infer_request.set_input_tensor(1, tensor_src1);
|
||
infer_request.set_output_tensor(0, tensor_dst);
|
||
infer_request.infer();
|
||
return ;
|
||
}
|
||
|
||
int rank = 0;
|
||
if (dst->ne[2] == 1 && dst->ne[3] == 1) {
|
||
rank = 2;
|
||
} else if (dst->ne[3] == 1) {
|
||
rank = 3;
|
||
} else {
|
||
throw std::runtime_error("Only rank 2 or rank 3 are supported in this implementation.");
|
||
}
|
||
|
||
std::vector<int64_t> eff_shape_src0 = get_effective_shape(src0);
|
||
std::vector<int64_t> eff_shape_src1 = get_effective_shape(src1);
|
||
std::vector<int64_t> eff_shape_dst = get_effective_shape(dst);
|
||
|
||
ov::Shape orig_shape_src0 = { static_cast<size_t>(src0->ne[0]),
|
||
static_cast<size_t>(src0->ne[1]),
|
||
static_cast<size_t>(src0->ne[2])};
|
||
ov::Shape orig_shape_src1 = { static_cast<size_t>(src1->ne[0]),
|
||
static_cast<size_t>(src1->ne[1]),
|
||
static_cast<size_t>(src1->ne[2])};
|
||
auto param_src0 = std::make_shared<ov::op::v0::Parameter>(ov::element::f16, orig_shape_src0);
|
||
auto param_src1 = std::make_shared<ov::op::v0::Parameter>(ov::element::f32, orig_shape_src1);
|
||
|
||
auto reshape_src0 = std::make_shared<ov::op::v1::Reshape>(
|
||
param_src0,
|
||
ov::op::v0::Constant::create(ov::element::i64, { eff_shape_src0.size() }, eff_shape_src0),
|
||
false);
|
||
auto reshape_src1 = std::make_shared<ov::op::v1::Reshape>(
|
||
param_src1,
|
||
ov::op::v0::Constant::create(ov::element::i64, { eff_shape_src1.size() }, eff_shape_src1),
|
||
false);
|
||
|
||
auto src0_f32 = std::make_shared<ov::op::v0::Convert>(reshape_src0, ov::element::f32);
|
||
|
||
ov::Output<ov::Node> A_for_mul;
|
||
if (rank == 2) {
|
||
auto trans_order = ov::op::v0::Constant::create(ov::element::i64, { 2 }, std::vector<int64_t>{1, 0});
|
||
A_for_mul = std::make_shared<ov::op::v1::Transpose>(src0_f32, trans_order);
|
||
} else if (rank == 3) {
|
||
auto trans_order = ov::op::v0::Constant::create(ov::element::i64, { 3 }, std::vector<int64_t>{0, 2, 1});
|
||
A_for_mul = std::make_shared<ov::op::v1::Transpose>(src0_f32, trans_order);
|
||
} else {
|
||
A_for_mul = src0_f32;
|
||
}
|
||
|
||
auto matmul = std::make_shared<ov::op::v0::MatMul>(reshape_src1, A_for_mul, false, false);
|
||
|
||
auto matmul_output_shape = matmul->get_output_shape(0);
|
||
std::vector<int64_t> final_output_shape;
|
||
if (matmul_output_shape.size() == 1) {
|
||
final_output_shape = { 1, 1, static_cast<int64_t>(matmul_output_shape[0]) };
|
||
} else if (matmul_output_shape.size() == 2) {
|
||
final_output_shape = { 1, static_cast<int64_t>(matmul_output_shape[0]), static_cast<int64_t>(matmul_output_shape[1]) };
|
||
} else {
|
||
final_output_shape = { static_cast<int64_t>(matmul_output_shape[0]), static_cast<int64_t>(matmul_output_shape[1]), static_cast<int64_t>(matmul_output_shape[2]) };
|
||
}
|
||
|
||
auto reshape_output = std::make_shared<ov::op::v1::Reshape>(
|
||
matmul,
|
||
ov::op::v0::Constant::create(ov::element::i64, {3}, final_output_shape),
|
||
false
|
||
);
|
||
|
||
auto model = std::make_shared<ov::Model>(ov::NodeVector{ reshape_output },
|
||
ov::ParameterVector{ param_src0, param_src1 });
|
||
|
||
ov::Tensor tensor_src0{ ov::element::f16, orig_shape_src0, (void *)src0->data };
|
||
ov::Tensor tensor_src1{ ov::element::f32, orig_shape_src1, (void *)src1->data };
|
||
|
||
ov::Shape output_shape = { static_cast<size_t>(dst->ne[2]),
|
||
static_cast<size_t>(dst->ne[1]),
|
||
static_cast<size_t>(dst->ne[0]) };
|
||
ov::Tensor tensor_dst(ov::element::f32, output_shape, dst->data);
|
||
|
||
ov::Core core;
|
||
auto compiled_model = core.compile_model(model, "CPU");
|
||
auto infer_request = compiled_model.create_infer_request();
|
||
infer_request.set_input_tensor(0, tensor_src0);
|
||
infer_request.set_input_tensor(1, tensor_src1);
|
||
infer_request.set_output_tensor(0, tensor_dst);
|
||
infer_request.infer();
|
||
}
|
||
|
||
void ggml_backend_openvino_reshape(ggml_tensor *dst) {
|
||
|
||
GGML_UNUSED(dst);
|
||
}
|
||
|
||
void ggml_backend_openvino_view(ggml_tensor *dst) {
|
||
ov::Core core;
|
||
ov::Shape tensor_shape{static_cast<size_t>(dst->ne[3]), static_cast<size_t>(dst->ne[2]), static_cast<size_t>(dst->ne[1]), static_cast<size_t>(dst->ne[0])};
|
||
|
||
// auto param = std::make_shared<ov::op::v0::Parameter>(ov::element::f32, tensor_shape);
|
||
auto param = std::make_shared<ov::op::v0::Parameter>(ov::element::f16, tensor_shape);
|
||
|
||
auto reshaped = std::make_shared<ov::op::v1::Reshape>(param,
|
||
ov::op::v0::Constant::create(ov::element::i64, { tensor_shape.size() }, tensor_shape),
|
||
false);
|
||
|
||
auto model = std::make_shared<ov::Model>(ov::NodeVector{reshaped}, ov::ParameterVector{param});
|
||
// ov::save_model(model, "/home/user/zhan/merge_git_commits/llama.cpp-ov/003_backend_view_model.xml");
|
||
|
||
auto compiled_model = core.compile_model(model, "CPU");
|
||
|
||
ov::InferRequest infer_request = compiled_model.create_infer_request();
|
||
|
||
// ov::Tensor input_tensor(ov::element::f32, tensor_shape, dst->data);
|
||
ov::Tensor input_tensor(ov::element::f16, tensor_shape, dst->data);
|
||
// infer_request.set_tensor(param, input_tensor);
|
||
infer_request.set_input_tensor(0, input_tensor);
|
||
|
||
// ov::Tensor output_tensor(ov::element::f32, tensor_shape, dst->data);
|
||
ov::Tensor output_tensor(ov::element::f16, tensor_shape, dst->data);
|
||
infer_request.set_output_tensor(0, output_tensor);
|
||
|
||
infer_request.infer();
|
||
// auto output_tensor = infer_request.get_output_tensor(0);
|
||
// dst->data = output_tensor.data();
|
||
}
|
||
|
||
void ggml_backend_openvino_dup_bytes(struct ggml_tensor *dst) {
|
||
const struct ggml_tensor *src0 = dst->src[0];
|
||
|
||
// Validate tensor properties
|
||
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
|
||
GGML_ASSERT(src0->type == dst->type);
|
||
|
||
// Determine tensor properties
|
||
const size_t element_size = ggml_type_size(src0->type);
|
||
|
||
// Case 1: Both tensors are contiguous
|
||
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
|
||
ov::Shape input_shape = {
|
||
static_cast<size_t>(src0->ne[2]),
|
||
static_cast<size_t>(src0->ne[1]),
|
||
static_cast<size_t>(src0->ne[0])
|
||
};
|
||
size_t num_elements = 1;
|
||
for (auto d : input_shape) {
|
||
num_elements *= d;
|
||
}
|
||
ov::Shape flat_shape = { num_elements };
|
||
|
||
ov::Shape dst_shape = {
|
||
static_cast<size_t>(dst->ne[2]),
|
||
static_cast<size_t>(dst->ne[1]),
|
||
static_cast<size_t>(dst->ne[0])
|
||
};
|
||
|
||
auto input_param = std::make_shared<ov::op::v0::Parameter>(ov::element::f32, input_shape);
|
||
|
||
std::vector<int64_t> flat_shape_vec(flat_shape.begin(), flat_shape.end());
|
||
auto flat_reshape_const = ov::op::v0::Constant::create(ov::element::i64, { flat_shape_vec.size() }, flat_shape_vec);
|
||
auto flat_reshape = std::make_shared<ov::op::v1::Reshape>(input_param, flat_reshape_const, false);
|
||
|
||
std::vector<int64_t> dst_shape_vec(dst_shape.begin(), dst_shape.end());
|
||
auto dst_reshape_const = ov::op::v0::Constant::create(ov::element::i64, { dst_shape_vec.size() }, dst_shape_vec);
|
||
auto final_reshape = std::make_shared<ov::op::v1::Reshape>(flat_reshape, dst_reshape_const, false);
|
||
|
||
auto model = std::make_shared<ov::Model>(ov::OutputVector{ final_reshape }, ov::ParameterVector{ input_param });
|
||
|
||
ov::Core core;
|
||
auto compiled_model = core.compile_model(model, "CPU");
|
||
auto infer_request = compiled_model.create_infer_request();
|
||
|
||
ov::Tensor input_tensor(ov::element::f32, input_shape, src0->data);
|
||
infer_request.set_input_tensor(0, input_tensor);
|
||
|
||
ov::Tensor output_tensor(ov::element::f32, dst_shape, dst->data);
|
||
infer_request.set_output_tensor(0, output_tensor);
|
||
|
||
infer_request.infer();
|
||
return;
|
||
}
|
||
|
||
// Case 2: Compatible types, dimensions, and strides
|
||
const size_t ne00 = src0->ne[0];
|
||
const size_t ne01 = src0->ne[1];
|
||
const size_t nb00 = src0->nb[0];
|
||
const size_t nb01 = src0->nb[1];
|
||
const size_t nb0 = dst->nb[0];
|
||
|
||
if (src0->type == dst->type && ne00 == dst->ne[0] && nb00 == element_size && nb0 == element_size) {
|
||
const size_t valid_elems = static_cast<size_t>(src0->ne[0]);
|
||
const size_t num_rows = static_cast<size_t>(src0->ne[1]);
|
||
const size_t dim2 = static_cast<size_t>(src0->ne[2]);
|
||
const size_t dim3 = static_cast<size_t>(src0->ne[3]);
|
||
|
||
size_t phys_stride = static_cast<size_t>(src0->nb[1]) / element_size;
|
||
size_t total_logical = valid_elems * num_rows * dim2 * dim3;
|
||
|
||
std::vector<float> contiguous_data(total_logical);
|
||
|
||
for (size_t j = 0; j < num_rows; j++) {
|
||
const float *src_row = reinterpret_cast<const float*>(src0->data) + j * phys_stride;
|
||
float *dst_row = contiguous_data.data() + j * valid_elems;
|
||
std::copy(src_row, src_row + valid_elems, dst_row);
|
||
}
|
||
|
||
ov::Shape logical_shape = { dim2, num_rows, valid_elems};
|
||
auto input_param = std::make_shared<ov::op::v0::Parameter>(ov::element::f32, logical_shape);
|
||
auto identity_const = ov::op::v0::Constant::create(ov::element::i64,
|
||
{ logical_shape.size() },
|
||
std::vector<int64_t>(logical_shape.begin(), logical_shape.end()));
|
||
auto identity_op = std::make_shared<ov::op::v1::Reshape>(input_param, identity_const, false);
|
||
|
||
auto model = std::make_shared<ov::Model>(ov::OutputVector{identity_op},
|
||
ov::ParameterVector{input_param});
|
||
|
||
ov::Core core;
|
||
auto compiled_model = core.compile_model(model, "CPU");
|
||
auto infer_request = compiled_model.create_infer_request();
|
||
|
||
ov::Tensor input_tensor(ov::element::f32, logical_shape, contiguous_data.data());
|
||
infer_request.set_input_tensor(0, input_tensor);
|
||
|
||
ov::Tensor output_tensor(ov::element::f32, logical_shape, dst->data);
|
||
infer_request.set_output_tensor(0, output_tensor);
|
||
|
||
infer_request.infer();
|
||
/*
|
||
for (size_t i01 = 0; i01 < ne01; ++i01) {
|
||
const char *src_row = reinterpret_cast<const char *>(src0->data) + i01 * nb01;
|
||
char *dst_row = reinterpret_cast<char *>(dst->data) + i01 * dst->nb[1];
|
||
|
||
ov::Tensor src_row_tensor(ov::element::f32, {ne00}, const_cast<void *>(reinterpret_cast<const void *>(src_row)));
|
||
ov::Tensor dst_row_tensor(ov::element::f32, {ne00}, reinterpret_cast<void *>(dst_row));
|
||
|
||
std::memcpy(dst_row_tensor.data<float>(), src_row_tensor.data<float>(), ne00 * sizeof(float));
|
||
}*/
|
||
return;
|
||
}
|
||
|
||
// Case 3: Non-contiguous source, contiguous destination
|
||
const int64_t ne02 = src0->ne[2];
|
||
const int64_t ne03 = src0->ne[3];
|
||
const int64_t nb02 = src0->nb[2];
|
||
const int64_t nb03 = src0->nb[3];
|
||
|
||
// dst->ne =[3072,7,1,1], dst->nb =[4,12288,86016,86016], dst->type=GGML_TYPE_F32
|
||
// dst->src[0]->ne=[96,32,7,1], dst->src[0]->nb=[4,2688,384,86016], dst->src[0]->type=GGML_TYPE_F32
|
||
if (ggml_is_contiguous(dst)) {
|
||
size_t valid_i = static_cast<size_t>(src0->ne[0]); // 96
|
||
size_t valid_j = static_cast<size_t>(src0->ne[1]); // 32
|
||
size_t valid_k = static_cast<size_t>(src0->ne[2]); // 7
|
||
size_t valid_l = static_cast<size_t>(src0->ne[3]); // 1
|
||
|
||
size_t total_valid = valid_i * valid_j * valid_k; // 96 * 32 * 7 = 21504
|
||
size_t stride_j = static_cast<size_t>(src0->nb[1]) / element_size; // 672
|
||
size_t stride_k = static_cast<size_t>(src0->nb[2]) / element_size; // 96
|
||
|
||
std::vector<float> contiguous_data(total_valid);
|
||
const float *src_data = reinterpret_cast<const float*>(src0->data);
|
||
for (size_t k = 0; k < valid_k; k++) {
|
||
for (size_t j = 0; j < valid_j; j++) {
|
||
for (size_t i = 0; i < valid_i; i++) {
|
||
size_t out_index = k * (valid_i * valid_j) + j * valid_i + i;
|
||
size_t src_index = j * stride_j + k * stride_k + i;
|
||
contiguous_data[out_index] = src_data[src_index];
|
||
}
|
||
}
|
||
}
|
||
|
||
// ov::Shape input_shape = { dst->src[0]->ne[0], dst->src[0]->ne[1], dst->src[0]->ne[2] };
|
||
ov::Shape input_shape = { dst->src[0]->ne[2], dst->src[0]->ne[1], dst->src[0]->ne[0]};
|
||
auto input_param = std::make_shared<ov::op::v0::Parameter>(ov::element::f32, input_shape);
|
||
|
||
// ov::Shape target_shape = { dst->ne[0], dst->ne[1], dst->ne[2] };
|
||
// std::vector<int64_t> target_shape_vec = { static_cast<int64_t>(dst->ne[0]),
|
||
// static_cast<int64_t>(dst->ne[1]), dst->ne[2]};
|
||
ov::Shape target_shape = { dst->ne[2], dst->ne[1], dst->ne[0] };
|
||
std::vector<int64_t> target_shape_vec = { static_cast<int64_t>(dst->ne[2]),
|
||
static_cast<int64_t>(dst->ne[1]), dst->ne[0]};
|
||
auto reshape_const = ov::op::v0::Constant::create(ov::element::i64, {3}, target_shape_vec);
|
||
auto reshaped = std::make_shared<ov::op::v1::Reshape>(input_param, reshape_const, false);
|
||
|
||
auto model = std::make_shared<ov::Model>(ov::OutputVector{reshaped}, ov::ParameterVector{input_param});
|
||
|
||
ov::Core core;
|
||
auto compiled_model = core.compile_model(model, "CPU");
|
||
auto infer_request = compiled_model.create_infer_request();
|
||
|
||
ov::Tensor input_tensor(ov::element::f32, input_shape, contiguous_data.data());
|
||
infer_request.set_input_tensor(0, input_tensor);
|
||
|
||
ov::Tensor output_tensor(ov::element::f32, target_shape, dst->data);
|
||
infer_request.set_output_tensor(0, output_tensor);
|
||
|
||
infer_request.infer();
|
||
return;
|
||
}
|
||
}
|
||
|
||
static void ggml_backend_openvino_transpose(ggml_tensor *dst) {
|
||
// NOP
|
||
GGML_UNUSED(dst);
|
||
}
|
||
|
||
static void ggml_backend_openvino_permute(const struct ggml_tensor * dst) {
|
||
// NOP
|
||
GGML_UNUSED(dst);
|
||
}
|
||
|
||
void ggml_backend_openvino_cpy(struct ggml_tensor *dst) {
|
||
const struct ggml_tensor *src0 = dst->src[0];
|
||
assert(src0 != nullptr);
|
||
assert(ggml_nelements(dst) == ggml_nelements(src0));
|
||
|
||
// Extract shapes
|
||
ov::Shape src_shape(src0->ne, src0->ne + 4);
|
||
ov::Shape dst_shape(dst->ne, dst->ne + 4);
|
||
|
||
// Initialize OpenVINO core
|
||
ov::Core core;
|
||
|
||
// Create OpenVINO parameter for the source tensor
|
||
auto src_input = std::make_shared<ov::op::v0::Parameter>(ov::element::f32, src_shape);
|
||
|
||
std::shared_ptr<ov::Model> model;
|
||
if (ggml_is_contiguous(dst)) {
|
||
// Contiguous Case: Flatten src and reshape to dst shape
|
||
ov::Shape flattened_shape = {ggml_nelements(src0)};
|
||
auto flatten = std::make_shared<ov::op::v1::Reshape>(
|
||
src_input, ov::op::v0::Constant::create(ov::element::i64, {1}, flattened_shape), false);
|
||
|
||
auto reshape_to_dst = std::make_shared<ov::op::v1::Reshape>(
|
||
flatten, ov::op::v0::Constant::create(ov::element::i64, {4}, dst_shape), false);
|
||
|
||
auto dst_output = std::make_shared<ov::op::v0::Convert>(reshape_to_dst, ov::element::f16);
|
||
|
||
model = std::make_shared<ov::Model>(
|
||
ov::ResultVector{std::make_shared<ov::op::v0::Result>(dst_output)},
|
||
ov::ParameterVector{src_input},
|
||
"ContiguousCopy");
|
||
// Compile and execute the model
|
||
auto compiled_model = core.compile_model(model, "CPU");
|
||
|
||
ov::Tensor src_tensor(ov::element::f32, src_shape, src0->data);
|
||
ov::Tensor dst_tensor(ov::element::f16, dst_shape, dst->data);
|
||
|
||
auto infer_request = compiled_model.create_infer_request();
|
||
infer_request.set_input_tensor(0, src_tensor);
|
||
infer_request.set_output_tensor(0, dst_tensor);
|
||
infer_request.infer();
|
||
} else {
|
||
std::vector<int64_t> gather_idx;
|
||
for (int row = 0; row < dst->src[0]->ne[1]; row++) {
|
||
for (int col = 0; col < dst->src[0]->ne[0]; col++) {
|
||
gather_idx.push_back((row*dst->src[0]->nb[1]+col*dst->src[0]->nb[0])/4);
|
||
}
|
||
}
|
||
size_t N = gather_idx.size();
|
||
ov::Shape gather_idx_shape = {N, 1};
|
||
std::vector<int64_t> scatter_idx;
|
||
for (int row = 0; row < dst->ne[1]; row++) {
|
||
for (int col = 0; col < dst->ne[0]; col++) {
|
||
scatter_idx.push_back(row * dst->nb[1] / 2 + col);
|
||
}
|
||
}
|
||
ov::Shape scatter_idx_shape = {N, 1};
|
||
|
||
// param_src0 shape => 1D, rank=1, size is large enough. For example, row*col= 21504 + some padding, e.g. 80000
|
||
// ov::Shape flat_src0_shape = {80000};
|
||
ov::Shape flat_src0_shape = {dst->src[0]->nb[2]};
|
||
auto param_src0 = std::make_shared<ov::op::v0::Parameter>(ov::element::f32, flat_src0_shape);
|
||
// auto param_src00 = std::make_shared<ov::op::v0::Parameter>(ov::element::f32, flat_src0_shape);
|
||
|
||
auto gather_indices_const = ov::op::v0::Constant::create(ov::element::i64, gather_idx_shape, gather_idx);
|
||
auto gather_axis_const = ov::op::v0::Constant::create(ov::element::i64, {1}, {0});
|
||
auto gathered = std::make_shared<ov::op::v8::Gather>(
|
||
param_src0, gather_indices_const, gather_axis_const);
|
||
|
||
auto converted = std::make_shared<ov::op::v0::Convert>(gathered, ov::element::f16);
|
||
|
||
// param_dst_base shape => 1D, rank=1, size够大, e.g. row=3072 => i up to 3071 => offset i*64=196544 + j*2, e.g.200000
|
||
// ov::Shape flat_dst_shape = {200000, 1};
|
||
ov::Shape flat_dst_shape = {dst->nb[2], 1};
|
||
auto param_dst_base = std::make_shared<ov::op::v0::Parameter>(ov::element::f16, flat_dst_shape);
|
||
// auto param_dst_base11 = std::make_shared<ov::op::v0::Parameter>(ov::element::f16, flat_dst_shape);
|
||
|
||
auto scatter_indices_const = ov::op::v0::Constant::create(ov::element::i64, scatter_idx_shape, scatter_idx);
|
||
|
||
// ScatterNDUpdate( base, scatter_indices, updates )
|
||
// scatter_indices last dimension = 1 => each index is 1D coordinate
|
||
auto scatter = std::make_shared<ov::op::v3::ScatterNDUpdate>(
|
||
param_dst_base, scatter_indices_const, converted
|
||
);
|
||
|
||
ov::ParameterVector params = { param_src0, param_dst_base };
|
||
// ov::ParameterVector params = { param_src0};
|
||
// ov::ParameterVector params = { param_src00, param_dst_base11};
|
||
auto model = std::make_shared<ov::Model>(ov::OutputVector{ scatter }, params);
|
||
|
||
auto compiled_model = core.compile_model(model, "CPU");
|
||
auto infer_request = compiled_model.create_infer_request();
|
||
|
||
ov::Tensor tensor_src0(ov::element::f32, flat_src0_shape, src0->data);
|
||
ov::Tensor tensor_dst_base(ov::element::f16, flat_dst_shape, dst->data);
|
||
|
||
infer_request.set_input_tensor(0, tensor_src0);
|
||
infer_request.set_input_tensor(1, tensor_dst_base);
|
||
|
||
ov::Tensor out_tensor(ov::element::f16, flat_dst_shape, dst->data);
|
||
infer_request.set_output_tensor(0, out_tensor);
|
||
|
||
infer_request.infer();
|
||
}
|
||
}
|
||
|
||
static enum ggml_status ggml_backend_openvino_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||
// Find the indices of GGML_OP_CONT, GGML_OP_CPY nodes, GGML_OP_MUL_MAT and so on.
|
||
std::vector<int> cont_indices;
|
||
std::vector<int> reshape_indices;
|
||
std::vector<int> view_indices;
|
||
|
||
std::vector<int> cpy_indices;
|
||
std::vector<int> transpose_indices;
|
||
std::vector<int> permute_indices;
|
||
|
||
std::vector<int> mul_mat_indices;
|
||
|
||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||
if (cgraph->nodes[i]->op == GGML_OP_CONT) {
|
||
cont_indices.push_back(i);
|
||
} else if (cgraph->nodes[i]->op == GGML_OP_RESHAPE) {
|
||
reshape_indices.push_back(i);
|
||
} else if (cgraph->nodes[i]->op == GGML_OP_VIEW) {
|
||
view_indices.push_back(i);
|
||
} else if (cgraph->nodes[i]->op == GGML_OP_CPY) {
|
||
cpy_indices.push_back(i);
|
||
} else if (cgraph->nodes[i]->op == GGML_OP_TRANSPOSE) {
|
||
transpose_indices.push_back(i);
|
||
} else if (cgraph->nodes[i]->op == GGML_OP_PERMUTE) {
|
||
permute_indices.push_back(i);
|
||
} else if (cgraph->nodes[i]->op == GGML_OP_MUL_MAT) {
|
||
mul_mat_indices.push_back(i);
|
||
}
|
||
}
|
||
|
||
int end_node = cgraph->n_nodes - 1;
|
||
// openvino_frontend_compute(backend, cgraph, 0, end_node);
|
||
// openvino_frontend_compute(backend, cgraph);
|
||
// Process nodes in order
|
||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||
if (std::find(permute_indices.begin(), permute_indices.end(), i) != permute_indices.end()) {
|
||
ggml_backend_openvino_permute(cgraph->nodes[i]);
|
||
} else if (std::find(cont_indices.begin(), cont_indices.end(), i) != cont_indices.end()) {
|
||
ggml_backend_openvino_dup_bytes(cgraph->nodes[i]);
|
||
} else if (std::find(view_indices.begin(), view_indices.end(), i) != view_indices.end()) {
|
||
ggml_backend_openvino_view(cgraph->nodes[i]);
|
||
} else if (std::find(cpy_indices.begin(), cpy_indices.end(), i) != cpy_indices.end()) {
|
||
ggml_backend_openvino_cpy(cgraph->nodes[i]);
|
||
} else if (std::find(transpose_indices.begin(), transpose_indices.end(), i) != transpose_indices.end()) {
|
||
ggml_backend_openvino_transpose(cgraph->nodes[i]);
|
||
} else if (std::find(reshape_indices.begin(), reshape_indices.end(), i) != reshape_indices.end()) {
|
||
ggml_backend_openvino_reshape(cgraph->nodes[i]);
|
||
} else if (std::find(mul_mat_indices.begin(), mul_mat_indices.end(), i) != mul_mat_indices.end()) {
|
||
ggml_backend_openvino_mul_mat(cgraph->nodes[i]);
|
||
} else {
|
||
// Process a range of nodes with openvino_frontend_compute
|
||
int start_index = i;
|
||
while (i < cgraph->n_nodes
|
||
&& std::find(view_indices.begin(), view_indices.end(), i) == view_indices.end()
|
||
&& std::find(cpy_indices.begin(), cpy_indices.end(), i) == cpy_indices.end()
|
||
&& std::find(cont_indices.begin(), cont_indices.end(), i) == cont_indices.end()
|
||
&& std::find(mul_mat_indices.begin(), mul_mat_indices.end(), i) == mul_mat_indices.end()
|
||
) {
|
||
i++;
|
||
}
|
||
if (start_index < i) {
|
||
openvino_frontend_compute(backend, cgraph, start_index, --i);
|
||
}
|
||
}
|
||
}
|
||
|
||
return GGML_STATUS_SUCCESS;
|
||
|
||
GGML_UNUSED(backend);
|
||
GGML_UNUSED(ctx);
|
||
}
|
||
|
||
static const ggml_backend_i ggml_backend_openvino_interface = {
|
||
/* .get_name = */ ggml_backend_openvino_get_name,
|
||
/* .free = */ ggml_backend_openvino_free,
|
||
/* .get_default_buffer_type = */ ggml_backend_openvino_get_default_buffer_type,
|
||
/* .set_tensor_async = */ NULL,
|
||
/* .get_tensor_async = */ NULL,
|
||
/* .cpy_tensor_async = */ NULL,
|
||
/* .synchronize = */ NULL,
|
||
/* .graph_plan_create = */ NULL,
|
||
/* .graph_plan_free = */ NULL,
|
||
/* .graph_plan_update = */ NULL,
|
||
/* .graph_plan_compute = */ NULL,
|
||
/* .graph_compute = */ ggml_backend_openvino_graph_compute,
|
||
/* .supports_op = */ NULL,
|
||
/* .supports_buft = */ NULL,
|
||
/* .offload_op = */ NULL,
|
||
/* .event_record = */ NULL,
|
||
/* .event_wait = */ NULL,
|
||
};
|
||
|
||
int ggml_backend_openvino_get_device_count() {
|
||
return ggml_openvino_info().device_count;
|
||
}
|
||
|
||
static ggml_guid_t ggml_backend_openvino_guid(void) {
|
||
static ggml_guid guid = { 0x12, 0xa8, 0xae, 0xf4, 0xc0, 0x1e, 0x61, 0x97, 0x8f, 0xeb, 0x33, 0x04, 0xa1, 0x33, 0x51, 0x2d };
|
||
return &guid;
|
||
}
|
||
|
||
// backend API
|
||
GGML_API ggml_backend_t ggml_backend_openvino_init(int device) {
|
||
if (device < 0 || device >= ggml_backend_openvino_get_device_count()) {
|
||
GGML_LOG_ERROR("%s: invalid device %d\n", __func__, device);
|
||
return nullptr;
|
||
}
|
||
|
||
ggml_backend_openvino_context * ctx = new ggml_backend_openvino_context;
|
||
if (ctx == nullptr) {
|
||
GGML_LOG_ERROR("%s: failed to allocate context\n", __func__);
|
||
return nullptr;
|
||
}
|
||
|
||
ggml_backend_t openvino_backend = new ggml_backend {
|
||
/* .guid = */ ggml_backend_openvino_guid(),
|
||
/* .interface = */ ggml_backend_openvino_interface,
|
||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_openvino_reg(), device),
|
||
/* .context = */ ctx,
|
||
};
|
||
|
||
return openvino_backend;
|
||
}
|
||
|
||
GGML_API bool ggml_backend_is_openvino(ggml_backend_t backend) {
|
||
GGML_ASSERT(backend->context != nullptr);
|
||
return true;
|
||
}
|
||
|
||
// device buffer
|
||
GGML_API ggml_backend_buffer_type_t
|
||
ggml_backend_openvino_buffer_type(int device) {
|
||
GGML_ASSERT(device >= 0);
|
||
return nullptr;
|
||
}
|
||
|
||
// split tensor buffer that splits matrices by rows across multiple devices
|
||
GGML_API ggml_backend_buffer_type_t
|
||
ggml_backend_openvino_split_buffer_type(const float *tensor_split) {
|
||
GGML_ASSERT(tensor_split != nullptr);
|
||
return nullptr;
|
||
}
|
||
|
||
// pinned host buffer for use with the CPU backend for faster copies between CPU
|
||
// and GPU
|
||
GGML_API ggml_backend_buffer_type_t
|
||
ggml_backend_openvino_host_buffer_type(void) { return nullptr;}
|
||
|
||
|
||
struct ggml_backend_openvino_buffer_type_context {
|
||
int device;
|
||
std::string name;
|
||
};
|
||
|
||
static const char * ggml_backend_openvino_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||
ggml_backend_openvino_buffer_type_context * ctx = (ggml_backend_openvino_buffer_type_context *)buft->context;
|
||
|
||
return ctx->name.c_str();
|
||
}
|
||
static bool ggml_backend_buft_is_openvino(ggml_backend_buffer_type_t buft) {
|
||
return buft->iface.get_name == ggml_backend_openvino_buffer_type_get_name;
|
||
}
|
||
|
||
|
||
static const char * ggml_backend_openvino_split_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||
return GGML_OPENVINO_NAME "_Split";
|
||
|
||
GGML_UNUSED(buft);
|
||
}
|
||
|
||
static bool ggml_backend_buft_is_openvino_split(ggml_backend_buffer_type_t buft) {
|
||
return buft->iface.get_name == ggml_backend_openvino_split_buffer_type_get_name;
|
||
}
|
||
|
||
struct ggml_backend_openvino_device_context {
|
||
int device;
|
||
std::string name;
|
||
std::string description;
|
||
};
|
||
|
||
static const char * ggml_backend_openvino_device_get_name(ggml_backend_dev_t dev) {
|
||
ggml_backend_openvino_device_context * ctx = (ggml_backend_openvino_device_context *)dev->context;
|
||
return ctx->name.c_str();
|
||
}
|
||
|
||
static const char * ggml_backend_openvino_device_get_description(ggml_backend_dev_t dev) {
|
||
ggml_backend_openvino_device_context * ctx = (ggml_backend_openvino_device_context *)dev->context;
|
||
return ctx->description.c_str();
|
||
}
|
||
|
||
// TODO
|
||
static void ggml_backend_openvino_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
||
GGML_ASSERT(dev->context != nullptr);
|
||
GGML_ASSERT(free != nullptr);
|
||
GGML_ASSERT(total != nullptr);
|
||
ggml_backend_openvino_device_context * ctx = (ggml_backend_openvino_device_context *)dev->context;
|
||
// Placeholder
|
||
GGML_ASSERT(ctx->device >= 0);
|
||
// ggml_openvino_set_device(ctx->device);
|
||
}
|
||
|
||
static enum ggml_backend_dev_type ggml_backend_openvino_device_get_type(ggml_backend_dev_t dev) {
|
||
GGML_UNUSED(dev);
|
||
return GGML_BACKEND_DEVICE_TYPE_CPU;
|
||
// return GGML_BACKEND_DEVICE_TYPE_GPU_FULL;
|
||
}
|
||
|
||
static void ggml_backend_openvino_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
|
||
props->name = ggml_backend_openvino_device_get_name(dev);
|
||
props->description = ggml_backend_openvino_device_get_description(dev);
|
||
props->type = ggml_backend_openvino_device_get_type(dev);
|
||
ggml_backend_openvino_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
||
|
||
bool host_buffer = getenv("GGML_OPENVINO_NO_PINNED") == nullptr;
|
||
#ifdef GGML_OPENVINO_NO_PEER_COPY
|
||
bool events = false;
|
||
#else
|
||
bool events = true;
|
||
#endif
|
||
|
||
props->caps = {
|
||
/* .async = */ true,
|
||
/* .host_buffer = */ host_buffer,
|
||
/* .buffer_from_host_ptr = */ false,
|
||
/* .events = */ events,
|
||
};
|
||
}
|
||
|
||
static ggml_backend_t ggml_backend_openvino_device_init(ggml_backend_dev_t dev, const char * params) {
|
||
GGML_UNUSED(params);
|
||
ggml_backend_openvino_device_context * ctx = (ggml_backend_openvino_device_context *)dev->context;
|
||
return ggml_backend_openvino_init(ctx->device);
|
||
}
|
||
|
||
static ggml_backend_buffer_type_t ggml_backend_openvino_device_get_buffer_type(ggml_backend_dev_t dev) {
|
||
ggml_backend_openvino_device_context * ctx = (ggml_backend_openvino_device_context *)dev->context;
|
||
return ggml_backend_openvino_buffer_type(ctx->device);
|
||
}
|
||
|
||
static ggml_backend_buffer_type_t ggml_backend_openvino_device_get_host_buffer_type(ggml_backend_dev_t dev) {
|
||
GGML_UNUSED(dev);
|
||
return ggml_backend_openvino_host_buffer_type();
|
||
}
|
||
|
||
static ggml_backend_buffer_t ggml_backend_openvino_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
|
||
GGML_UNUSED(dev);
|
||
GGML_UNUSED(ptr);
|
||
GGML_UNUSED(size);
|
||
GGML_UNUSED(max_tensor_size);
|
||
return nullptr;
|
||
}
|
||
|
||
static ggml_backend_buffer_t ggml_backend_openvino_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
|
||
GGML_UNUSED(dev);
|
||
GGML_UNUSED(ptr);
|
||
GGML_UNUSED(size);
|
||
GGML_UNUSED(max_tensor_size);
|
||
return nullptr;
|
||
}
|
||
|
||
std::set<std::string> get_openvino_available_opsets() {
|
||
ov::Core core;
|
||
std::set<std::string> unique_ops;
|
||
for (const auto& opset : ov::get_available_opsets()) {
|
||
for (const auto& op : opset.second().get_type_info_set()) {
|
||
unique_ops.insert(op.name);
|
||
}
|
||
}
|
||
return unique_ops;
|
||
}
|
||
|
||
static bool ggml_backend_openvino_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
|
||
GGML_ASSERT(dev->reg != nullptr);
|
||
|
||
#ifdef OPENVINO_OP_DEBUG
|
||
static const std::set<std::string>& openvino_ops = []() -> const std::set<std::string>& {
|
||
static const std::set<std::string> ops = get_openvino_available_opsets();
|
||
return ops;
|
||
}();
|
||
switch (op->op) {
|
||
case GGML_OP_NONE:
|
||
case GGML_OP_PERMUTE:
|
||
case GGML_OP_RESHAPE:
|
||
case GGML_OP_TRANSPOSE:
|
||
case GGML_OP_VIEW:
|
||
return true;
|
||
case GGML_OP_ADD:
|
||
return true;
|
||
case GGML_OP_MUL:
|
||
return false;
|
||
case GGML_OP_MUL_MAT:
|
||
return false;
|
||
case GGML_OP_UNARY:
|
||
switch (ggml_get_unary_op(op))
|
||
{
|
||
case GGML_UNARY_OP_SILU:
|
||
return false;
|
||
case GGML_UNARY_OP_ABS:
|
||
case GGML_UNARY_OP_SGN:
|
||
case GGML_UNARY_OP_NEG:
|
||
case GGML_UNARY_OP_STEP:
|
||
case GGML_UNARY_OP_TANH:
|
||
case GGML_UNARY_OP_ELU:
|
||
case GGML_UNARY_OP_RELU:
|
||
case GGML_UNARY_OP_SIGMOID:
|
||
case GGML_UNARY_OP_GELU:
|
||
case GGML_UNARY_OP_GELU_QUICK:
|
||
case GGML_UNARY_OP_HARDSWISH:
|
||
case GGML_UNARY_OP_HARDSIGMOID:
|
||
case GGML_UNARY_OP_EXP:
|
||
case GGML_UNARY_OP_COUNT:
|
||
return false;
|
||
}
|
||
return false;
|
||
default:
|
||
return false;
|
||
}
|
||
#else
|
||
static const std::set<std::string>& openvino_ops = []() -> const std::set<std::string>& {
|
||
static const std::set<std::string> ops = get_openvino_available_opsets();
|
||
return ops;
|
||
}();
|
||
|
||
static const std::map<ggml_op, std::vector<std::string>> op_mapping = {
|
||
{GGML_OP_ACC, {"Add"}},
|
||
{GGML_OP_ADD, {"Add"}},
|
||
{GGML_OP_ADD1, {"Add"}},
|
||
{GGML_OP_ADD_REL_POS, {"Add", "MatMul", "Reshape"}},
|
||
{GGML_OP_ARANGE, {"Range"}},
|
||
{GGML_OP_ARGMAX, {"TopK"}},
|
||
{GGML_OP_ARGSORT, {"TopK"}},
|
||
{GGML_OP_CLAMP, {"Clamp"}},
|
||
{GGML_OP_CONCAT, {"Concat"}},
|
||
{GGML_OP_CONV_TRANSPOSE_1D, {"ConvolutionBackpropData"}},
|
||
{GGML_OP_CONV_TRANSPOSE_2D, {"ConvolutionBackpropData"}},
|
||
{GGML_OP_COS, {"Cos"}},
|
||
{GGML_OP_CROSS_ENTROPY_LOSS, {"Softmax", "Log", "Multiply", "ReduceSum", "Negative"}},
|
||
{GGML_OP_DIAG, {"Eye", "Multiply"}},
|
||
{GGML_OP_DIAG_MASK_INF, {"Eye", "Multiply", "Select", "Broadcast"}},
|
||
{GGML_OP_DIAG_MASK_ZERO, {"Eye", "Multiply", "Select", "Broadcast"}},
|
||
{GGML_OP_DIV, {"Divide"}},
|
||
{GGML_OP_FLASH_ATTN_EXT, {"ScaledDotProductAttention"}},
|
||
{GGML_OP_GET_ROWS, {"Gather"}},
|
||
{GGML_OP_GROUP_NORM, {"GroupNormalization"}},
|
||
{GGML_OP_IM2COL, {"Custom", "Reshape", "Transpose"}},
|
||
{GGML_OP_LEAKY_RELU, {"PReLU"}},
|
||
{GGML_OP_LOG, {"Log"}},
|
||
{GGML_OP_MEAN, {"ReduceMean"}},
|
||
{GGML_OP_MUL, {"Multiply"}},
|
||
{GGML_OP_MUL_MAT, {"MatMul"}},
|
||
{GGML_OP_MUL_MAT_ID, {"MatMul", "Identity"}},
|
||
{GGML_OP_NORM, {"NormalizeL2"}},
|
||
{GGML_OP_OUT_PROD, {"MatMul", "Reshape"}},
|
||
{GGML_OP_PAD, {"Pad"}},
|
||
{GGML_OP_PERMUTE, {"Transpose"}},
|
||
{GGML_OP_POOL_1D, {"AvgPool", "MaxPool"}},
|
||
{GGML_OP_POOL_2D, {"AvgPool", "MaxPool"}},
|
||
{GGML_OP_REPEAT, {"Tile"}},
|
||
{GGML_OP_RESHAPE, {"Reshape"}},
|
||
{GGML_OP_RMS_NORM, {"Multiply", "Divide", "Sqrt"}},
|
||
{GGML_OP_ROPE, {"Custom"}},
|
||
{GGML_OP_SCALE, {"Multiply", "Constant"}},
|
||
{GGML_OP_SET, {"Assign"}},
|
||
{GGML_OP_SIN, {"Sin"}},
|
||
{GGML_OP_SOFT_MAX, {"Softmax"}},
|
||
{GGML_OP_SQR, {"Power"}},
|
||
{GGML_OP_SQRT, {"Sqrt"}},
|
||
{GGML_OP_SSM_CONV, {"Custom"}},
|
||
{GGML_OP_SSM_SCAN, {"Custom"}},
|
||
{GGML_OP_SUB, {"Subtract"}},
|
||
{GGML_OP_SUM, {"ReduceSum"}},
|
||
{GGML_OP_SUM_ROWS, {"ReduceSum", "Squeeze", "Unsqueeze"}},
|
||
{GGML_OP_TIMESTEP_EMBEDDING, {"Range", "Power", "Multiply", "Sin", "Cos", "Concat"}},
|
||
{GGML_OP_TRANSPOSE, {"Transpose"}},
|
||
{GGML_OP_UPSCALE, {"Interpolate"}},
|
||
{GGML_OP_VIEW, {"Reshape"}},
|
||
{GGML_OP_WIN_PART, {"StridedSlice", "Concat", "Reshape", "Custom"}},
|
||
{GGML_OP_WIN_UNPART, {"Reshape", "Transpose", "Custom"}},
|
||
};
|
||
|
||
auto it = op_mapping.find(op->op);
|
||
if (it == op_mapping.end()) {
|
||
return false;
|
||
}
|
||
|
||
for (const std::string& op_name : it->second) {
|
||
if (openvino_ops.count(op_name) == 0) {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
#endif
|
||
}
|
||
|
||
static bool ggml_backend_openvino_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
||
return ggml_backend_buft_is_host(buft);
|
||
GGML_UNUSED(dev);
|
||
}
|
||
|
||
static const struct ggml_backend_device_i ggml_backend_openvino_device_interface = {
|
||
/* .get_name = */ ggml_backend_openvino_device_get_name,
|
||
/* .get_description = */ ggml_backend_openvino_device_get_description,
|
||
/* .get_memory = */ ggml_backend_openvino_device_get_memory,
|
||
/* .get_type = */ ggml_backend_openvino_device_get_type,
|
||
/* .get_props = */ ggml_backend_openvino_device_get_props,
|
||
/* .init_backend = */ ggml_backend_openvino_device_init,
|
||
/* .get_buffer_type = */ ggml_backend_openvino_device_get_buffer_type,
|
||
/* .get_host_buffer_type = */ NULL,
|
||
/* .buffer_from_host_ptr = */ ggml_backend_openvino_device_buffer_from_ptr,
|
||
/* .supports_op = */ ggml_backend_openvino_device_supports_op,
|
||
/* .supports_buft = */ ggml_backend_openvino_device_supports_buft,
|
||
/* .offload_op = */ NULL,
|
||
/* .event_new = */ NULL,
|
||
/* .event_free = */ NULL,
|
||
/* .event_synchronize = */ NULL,
|
||
};
|
||
|
||
struct ggml_backend_openvino_reg_context {
|
||
std::vector<ggml_backend_dev_t> devices;
|
||
};
|
||
|
||
static const char * ggml_backend_openvino_reg_get_name(ggml_backend_reg_t reg) {
|
||
return GGML_OPENVINO_NAME;
|
||
GGML_UNUSED(reg);
|
||
}
|
||
|
||
static size_t ggml_backend_openvino_reg_get_device_count(ggml_backend_reg_t reg) {
|
||
return ggml_openvino_info().device_count;
|
||
GGML_UNUSED(reg);
|
||
|
||
// TODO
|
||
ggml_backend_openvino_reg_context * ctx = (ggml_backend_openvino_reg_context *)reg->context;
|
||
|
||
return ctx->devices.size();
|
||
}
|
||
|
||
static ggml_backend_dev_t ggml_backend_openvino_reg_get_device(ggml_backend_reg_t reg, size_t index) {
|
||
ggml_backend_openvino_reg_context * ctx = (ggml_backend_openvino_reg_context *)reg->context;
|
||
GGML_ASSERT(index < ctx->devices.size());
|
||
return ctx->devices[index];
|
||
// GGML_ASSERT(index == 0);
|
||
|
||
// static ggml_backend_device ggml_backend_openvino_device = {
|
||
// /* .iface = */ ggml_backend_openvino_device_interface,
|
||
// /* .reg = */ reg,
|
||
// /* .context = */ nullptr,
|
||
// };
|
||
|
||
// return &ggml_backend_openvino_device;
|
||
|
||
// GGML_UNUSED(reg);
|
||
// GGML_UNUSED(index);
|
||
}
|
||
|
||
static void * ggml_backend_openvino_get_proc_address(ggml_backend_reg_t reg, const char * name) {
|
||
GGML_UNUSED(reg);
|
||
if (strcmp(name, "ggml_backend_split_buffer_type") == 0) {
|
||
return (void *)ggml_backend_openvino_split_buffer_type;
|
||
}
|
||
// if (strcmp(name, "ggml_backend_register_host_buffer") == 0) {
|
||
// return (void *)ggml_backend_openvino_register_host_buffer;
|
||
// }
|
||
// if (strcmp(name, "ggml_backend_unregister_host_buffer") == 0) {
|
||
// return (void *)ggml_backend_openvino_unregister_host_buffer;
|
||
// }
|
||
return nullptr;
|
||
}
|
||
|
||
static const struct ggml_backend_reg_i ggml_backend_openvino_reg_interface = {
|
||
/* .get_name = */ ggml_backend_openvino_reg_get_name,
|
||
/* .get_device_count = */ ggml_backend_openvino_reg_get_device_count,
|
||
/* .get_device = */ ggml_backend_openvino_reg_get_device,
|
||
/* .get_proc_address = */ ggml_backend_openvino_get_proc_address,
|
||
};
|
||
|
||
static int get_openvino_device_count() {
|
||
ov::Core core;
|
||
auto devices = core.get_available_devices();
|
||
// return devices.size();
|
||
return 1;
|
||
}
|
||
|
||
static ggml_openvino_device_info ggml_openvino_init() {
|
||
ggml_openvino_device_info info = {};
|
||
// TODO
|
||
info.device_count = get_openvino_device_count();
|
||
return info;
|
||
}
|
||
|
||
const ggml_openvino_device_info & ggml_openvino_info() {
|
||
static ggml_openvino_device_info info = ggml_openvino_init();
|
||
return info;
|
||
}
|
||
|
||
GGML_API ggml_backend_reg_t ggml_backend_openvino_reg(void) {
|
||
static ggml_backend_reg reg;
|
||
|
||
static bool initialized = false;
|
||
{
|
||
static std::mutex mutex;
|
||
std::lock_guard<std::mutex> lock(mutex);
|
||
if (!initialized) {
|
||
ggml_backend_openvino_reg_context * ctx = new ggml_backend_openvino_reg_context;
|
||
|
||
// GGML_LOG_DEBUG("ggml_openvino_info().device_count = %d \n", ggml_openvino_info().device_count);
|
||
for (int i = 0; i < ggml_openvino_info().device_count; i++) {
|
||
ggml_backend_openvino_device_context * dev_ctx = new ggml_backend_openvino_device_context;
|
||
dev_ctx->device = i;
|
||
dev_ctx->name = GGML_OPENVINO_NAME + std::to_string(i);
|
||
|
||
// ggml_openvino_set_device(i);
|
||
dev_ctx->description = ov::get_openvino_version().description;
|
||
|
||
ggml_backend_dev_t dev = new ggml_backend_device {
|
||
/* .interface = */ ggml_backend_openvino_device_interface,
|
||
/* .reg = */ ®,
|
||
/* .context = */ dev_ctx
|
||
};
|
||
ctx->devices.push_back(dev);
|
||
}
|
||
|
||
reg = ggml_backend_reg {
|
||
/* .interface = */ ggml_backend_openvino_reg_interface,
|
||
/* .context = */ ctx
|
||
};
|
||
}
|
||
|
||
initialized = true;
|
||
}
|
||
|
||
return ®
|
||
}
|
||
|