llama.cpp/common/jinja/jinja-value.h

366 lines
12 KiB
C++

#pragma once
#include <vector>
#include <string>
#include <map>
#include <functional>
#include <memory>
#include <sstream>
#include <set>
#include "jinja-string.h"
#include "jinja-type-infer.h"
namespace jinja {
struct value_t;
using value = std::shared_ptr<value_t>;
// Helper to check the type of a value
template<typename T>
struct extract_pointee {
using type = T;
};
template<typename U>
struct extract_pointee<std::shared_ptr<U>> {
using type = U;
};
template<typename T>
bool is_val(const value & ptr) {
using PointeeType = typename extract_pointee<T>::type;
return dynamic_cast<const PointeeType*>(ptr.get()) != nullptr;
}
template<typename T>
bool is_val(const value_t * ptr) {
using PointeeType = typename extract_pointee<T>::type;
return dynamic_cast<const PointeeType*>(ptr) != nullptr;
}
template<typename T, typename... Args>
std::shared_ptr<typename extract_pointee<T>::type> mk_val(Args&&... args) {
using PointeeType = typename extract_pointee<T>::type;
return std::make_shared<PointeeType>(std::forward<Args>(args)...);
}
template<typename T>
const typename extract_pointee<T>::type * cast_val(const value & ptr) {
using PointeeType = typename extract_pointee<T>::type;
return dynamic_cast<const PointeeType*>(ptr.get());
}
template<typename T>
typename extract_pointee<T>::type * cast_val(value & ptr) {
using PointeeType = typename extract_pointee<T>::type;
return dynamic_cast<PointeeType*>(ptr.get());
}
// End Helper
struct context; // forward declaration
// for converting from JSON to jinja values
// example input JSON:
// {
// "messages": [
// {"role": "user", "content": "Hello!"},
// {"role": "assistant", "content": "Hi there!"}
// ],
// "bos_token": "<s>",
// "eos_token": "</s>",
// }
//
// to mark strings as user input, wrap them in a special object:
// {
// "messages": [
// {
// "role": "user",
// "content": {"__input__": "Hello!"} // this string is user input
// },
// ...
// ],
// }
//
// marking input can be useful for tracking data provenance
// and preventing template injection attacks
//
// Note: T_JSON can be nlohmann::json or similar types
template<typename T_JSON>
void global_from_json(context & ctx, const T_JSON & json_obj);
//
// base value type
//
struct func_args; // function argument values
using func_handler = std::function<value(const func_args &)>;
using func_builtins = std::map<std::string, func_handler>;
bool value_compare(const value & a, const value & b);
struct value_t {
int64_t val_int;
double val_flt;
string val_str;
bool val_bool;
std::vector<value> val_arr;
std::map<std::string, value> val_obj;
func_handler val_func;
// for type inference
std::set<inferred_type> inf_types;
std::vector<value> inf_vals;
value_t() = default;
value_t(const value_t &) = default;
virtual ~value_t() = default;
virtual std::string type() const { return ""; }
virtual int64_t as_int() const { throw std::runtime_error(type() + " is not an int value"); }
virtual double as_float() const { throw std::runtime_error(type() + " is not a float value"); }
virtual string as_string() const { throw std::runtime_error(type() + " is not a string value"); }
virtual bool as_bool() const { throw std::runtime_error(type() + " is not a bool value"); }
virtual const std::vector<value> & as_array() const { throw std::runtime_error(type() + " is not an array value"); }
virtual const std::map<std::string, value> & as_object() const { throw std::runtime_error(type() + " is not an object value"); }
virtual value invoke(const func_args &) const { throw std::runtime_error(type() + " is not a function value"); }
virtual bool is_null() const { return false; }
virtual bool is_undefined() const { return false; }
virtual const func_builtins & get_builtins() const {
throw std::runtime_error("No builtins available for type " + type());
}
virtual std::string as_repr() const { return as_string().str(); }
};
//
// primitive value types
//
struct value_int_t : public value_t {
value_int_t(int64_t v) { val_int = v; }
virtual std::string type() const override { return "Integer"; }
virtual int64_t as_int() const override { return val_int; }
virtual double as_float() const override { return static_cast<double>(val_int); }
virtual string as_string() const override { return std::to_string(val_int); }
virtual const func_builtins & get_builtins() const override;
};
using value_int = std::shared_ptr<value_int_t>;
struct value_float_t : public value_t {
value_float_t(double v) { val_flt = v; }
virtual std::string type() const override { return "Float"; }
virtual double as_float() const override { return val_flt; }
virtual int64_t as_int() const override { return static_cast<int64_t>(val_flt); }
virtual string as_string() const override { return std::to_string(val_flt); }
virtual const func_builtins & get_builtins() const override;
};
using value_float = std::shared_ptr<value_float_t>;
struct value_string_t : public value_t {
value_string_t() { val_str = string(); }
value_string_t(const std::string & v) { val_str = string(v); }
value_string_t(const string & v) { val_str = v; }
virtual std::string type() const override { return "String"; }
virtual string as_string() const override { return val_str; }
virtual std::string as_repr() const override {
std::ostringstream ss;
for (const auto & part : val_str.parts) {
ss << (part.is_input ? "INPUT: " : "TMPL: ") << part.val << "\n";
}
return ss.str();
}
virtual bool as_bool() const override {
return val_str.length() > 0;
}
virtual const func_builtins & get_builtins() const override;
void mark_input() {
val_str.mark_input();
}
};
using value_string = std::shared_ptr<value_string_t>;
struct value_bool_t : public value_t {
value_bool_t(bool v) { val_bool = v; }
virtual std::string type() const override { return "Boolean"; }
virtual bool as_bool() const override { return val_bool; }
virtual string as_string() const override { return std::string(val_bool ? "True" : "False"); }
virtual const func_builtins & get_builtins() const override;
};
using value_bool = std::shared_ptr<value_bool_t>;
struct value_array_t : public value_t {
value_array_t() = default;
value_array_t(value & v) {
// point to the same underlying data
val_arr = v->val_arr;
}
void push_back(const value & val) {
val_arr.push_back(val);
}
virtual std::string type() const override { return "Array"; }
virtual const std::vector<value> & as_array() const override { return val_arr; }
virtual string as_string() const override {
std::ostringstream ss;
ss << "[";
for (size_t i = 0; i < val_arr.size(); i++) {
if (i > 0) ss << ", ";
ss << val_arr.at(i)->as_repr();
}
ss << "]";
return ss.str();
}
virtual bool as_bool() const override {
return !val_arr.empty();
}
virtual const func_builtins & get_builtins() const override;
};
using value_array = std::shared_ptr<value_array_t>;
struct value_object_t : public value_t {
value_object_t() = default;
value_object_t(value & v) {
// point to the same underlying data
val_obj = v->val_obj;
}
value_object_t(const std::map<std::string, value> & obj) {
val_obj = std::map<std::string, value>();
for (const auto & pair : obj) {
val_obj[pair.first] = pair.second;
}
}
void insert(const std::string & key, const value & val) {
val_obj[key] = val;
}
virtual std::string type() const override { return "Object"; }
virtual const std::map<std::string, value> & as_object() const override { return val_obj; }
virtual bool as_bool() const override {
return !val_obj.empty();
}
virtual const func_builtins & get_builtins() const override;
};
using value_object = std::shared_ptr<value_object_t>;
//
// null and undefined types
//
struct value_null_t : public value_t {
virtual std::string type() const override { return "Null"; }
virtual bool is_null() const override { return true; }
virtual bool as_bool() const override { return false; }
virtual std::string as_repr() const override { return type(); }
virtual const func_builtins & get_builtins() const override;
};
using value_null = std::shared_ptr<value_null_t>;
struct value_undefined_t : public value_t {
std::string hint; // for debugging, to indicate where undefined came from
value_undefined_t(const std::string & h = "") : hint(h) {}
virtual std::string type() const override { return hint.empty() ? "Undefined" : "Undefined (hint: '" + hint + "')"; }
virtual bool is_undefined() const override { return true; }
virtual bool as_bool() const override { return false; }
virtual std::string as_repr() const override { return type(); }
};
using value_undefined = std::shared_ptr<value_undefined_t>;
//
// function type
//
struct func_args {
std::string func_name; // for error messages
std::vector<value> args;
context & ctx;
func_args(context & ctx) : ctx(ctx) {}
value get_kwarg(const std::string & key) const;
void ensure_count(size_t min, size_t max = 999) const {
size_t n = args.size();
if (n < min || n > max) {
throw std::runtime_error("Function '" + func_name + "' expected between " + std::to_string(min) + " and " + std::to_string(max) + " arguments, got " + std::to_string(n));
}
}
template<typename T> void ensure_val(const value & ptr) const {
if (!is_val<T>(ptr)) {
throw std::runtime_error("Function '" + func_name + "' expected value of type " + std::string(typeid(T).name()) + ", got " + ptr->type());
}
}
template<typename T0> void ensure_vals(bool required0 = true) const {
if (required0 && args.size() > 0) ensure_val<T0>(args[0]);
}
template<typename T0, typename T1> void ensure_vals(bool required0 = true, bool required1 = true) const {
if (required0 && args.size() > 0) ensure_val<T0>(args[0]);
if (required1 && args.size() > 1) ensure_val<T1>(args[1]);
}
template<typename T0, typename T1, typename T2> void ensure_vals(bool required0 = true, bool required1 = true, bool required2 = true) const {
if (required0 && args.size() > 0) ensure_val<T0>(args[0]);
if (required1 && args.size() > 1) ensure_val<T1>(args[1]);
if (required2 && args.size() > 2) ensure_val<T2>(args[2]);
}
};
struct value_func_t : public value_t {
std::string name;
value arg0; // bound "this" argument, if any
value_func_t(const std::string & name, const func_handler & func) : name(name) {
val_func = func;
}
value_func_t(const std::string & name, const func_handler & func, const value & arg_this) : name(name), arg0(arg_this) {
val_func = func;
}
virtual value invoke(const func_args & args) const override {
func_args new_args(args); // copy
new_args.func_name = name;
if (arg0) {
new_args.args.insert(new_args.args.begin(), arg0);
}
return val_func(new_args);
}
virtual std::string type() const override { return "Function"; }
virtual std::string as_repr() const override { return type(); }
};
using value_func = std::shared_ptr<value_func_t>;
// special value for kwarg
struct value_kwarg_t : public value_t {
std::string key;
value val;
value_kwarg_t(const std::string & k, const value & v) : key(k), val(v) {}
virtual std::string type() const override { return "KwArg"; }
virtual std::string as_repr() const override { return type(); }
};
using value_kwarg = std::shared_ptr<value_kwarg_t>;
// utils
const func_builtins & global_builtins();
static inferred_type value_to_inferred_type(const value & val) {
if (is_val<value_int>(val) || is_val<value_float>(val)) {
return inferred_type::numeric;
} else if (is_val<value_string>(val)) {
return inferred_type::string;
} else if (is_val<value_bool>(val)) {
return inferred_type::boolean;
} else if (is_val<value_array>(val)) {
return inferred_type::array;
} else if (is_val<value_object>(val)) {
return inferred_type::object;
} else if (is_val<value_null>(val) || is_val<value_undefined>(val)) {
return inferred_type::optional;
} else {
return inferred_type::unknown;
}
}
} // namespace jinja