llama.cpp/ggml-qnn/tensor.hpp

147 lines
6.0 KiB
C++

#pragma once
#include "QnnTensor.h"
#include "System/QnnSystemInterface.h"
#include "ggml-qnn.h"
#include "backend.hpp"
#include "qnn.hpp"
namespace qnn {
template <Qnn_TensorType_t _tensorType> class ggml_qnn_tensor_readwrite {
public:
ggml_qnn_tensor_readwrite(const ggml_tensor* tensor,
Qnn_GraphHandle_t graph_handle,
ggml_backend_qnn_context* ctx)
: _tensor(tensor),
_qnn_tensor(reinterpret_cast<Qnn_Tensor_t*>(tensor->extra)),
_context(ctx) {
_old_dimensions = QNN_VER_PTR(*_qnn_tensor)->dimensions;
const auto qnn_data_type = datatype_from_ggml_datatype(tensor->type);
const bool is_npu = ctx->device == QNN_BACKEND_NPU;
QNN_VER_PTR(*_qnn_tensor)->type = _tensorType;
if (is_npu) {
QNN_VER_PTR(*_qnn_tensor)->memType = QNN_TENSORMEMTYPE_MEMHANDLE;
QNN_VER_PTR(*_qnn_tensor)->clientBuf = { .data = nullptr, .dataSize = 0 };
}
auto err =
ctx->raw_interface.tensorCreateGraphTensor(graph_handle, _qnn_tensor);
if (err != QNN_SUCCESS) {
QNN_LOG_INFO("error = %d\n", err);
QNN_LOG_DEBUG("tensor%p name %s", _qnn_tensor,
QNN_TENSOR_GET_NAME(*_qnn_tensor));
_context = nullptr;
return;
}
_dimensions[0] = (uint32_t)tensor->ne[0];
_dimensions[1] = (uint32_t)tensor->ne[1];
_dimensions[2] = (uint32_t)tensor->ne[2];
_dimensions[3] = (uint32_t)tensor->ne[3];
QNN_VER_PTR(*_qnn_tensor)->dimensions = _dimensions;
QNN_VER_PTR(*_qnn_tensor)->rank = qnn::get_ggml_tensor_rank(tensor);
QNN_VER_PTR(*_qnn_tensor)->dataType = qnn_data_type;
if (is_npu) {
auto* instance = ctx->instance;
uint8_t* qnn_buffer = static_cast<uint8_t*>(
instance->alloc_rpcmem(ggml_nbytes(tensor), alignof(void*)));
if (!qnn_buffer) {
QNN_LOG_WARN("alloc rpcmem failure, %s\n", strerror(errno));
QNN_LOG_DEBUG("tensor%p name %s", _qnn_tensor,
QNN_TENSOR_GET_NAME(*_qnn_tensor));
_context = nullptr;
// No free for _qnn_tensor, because it's not registered.
return;
}
else {
QNN_LOG_INFO("alloc rpcmem successfully\n");
}
instance->register_rpcmem(qnn_buffer, _qnn_tensor);
if (_tensorType == QNN_TENSOR_TYPE_APP_WRITE ||
_tensorType == QNN_TENSOR_TYPE_APP_READWRITE) {
memcpy(qnn_buffer, tensor->data, ggml_nbytes(tensor));
}
}
else {
QNN_VER_PTR(*_qnn_tensor)->clientBuf = {
tensor->data, get_ggml_tensor_data_size(tensor) };
}
}
ggml_qnn_tensor_readwrite(const ggml_tensor* tensor, Qnn_Tensor_t* qnn_tensor,
ggml_backend_qnn_context* ctx)
: _tensor(tensor), _qnn_tensor(qnn_tensor), _context(ctx) {
_old_dimensions = QNN_VER_PTR(*_qnn_tensor)->dimensions;
const auto qnn_data_type = qnn::datatype_from_ggml_datatype(tensor->type);
const bool is_npu = ctx->device == QNN_BACKEND_NPU;
_dimensions[0] = (uint32_t)tensor->ne[0];
_dimensions[1] = (uint32_t)tensor->ne[1];
_dimensions[2] = (uint32_t)tensor->ne[2];
_dimensions[3] = (uint32_t)tensor->ne[3];
QNN_VER_PTR(*_qnn_tensor)->dimensions = _dimensions;
QNN_VER_PTR(*_qnn_tensor)->rank = get_ggml_tensor_rank(tensor);
QNN_VER_PTR(*_qnn_tensor)->dataType = qnn_data_type;
if (is_npu) {
uint8_t* qnn_buffer =
static_cast<uint8_t*>(ctx->instance->get_rpcmem_from_memhandle(
QNN_VER_PTR(*_qnn_tensor)->memHandle));
if (qnn_buffer) {
memcpy(qnn_buffer, tensor->data, ggml_nbytes(tensor));
}
else {
QNN_LOG_WARN("can't find rpcmem from qnn mem handle\n");
QNN_LOG_DEBUG("tensor%p name %s", _qnn_tensor,
QNN_TENSOR_GET_NAME(*_qnn_tensor));
_context = nullptr;
return;
}
}
else {
QNN_VER_PTR(*_qnn_tensor)->clientBuf = {
tensor->data, get_ggml_tensor_data_size(tensor) };
}
}
~ggml_qnn_tensor_readwrite() {
if ((_tensorType == QNN_TENSOR_TYPE_APP_READWRITE ||
_tensorType == QNN_TENSOR_TYPE_APP_READ) &&
_context && _context->device == QNN_BACKEND_NPU) {
uint8_t* qnn_buffer =
static_cast<uint8_t*>(_context->instance->get_rpcmem_from_memhandle(
QNN_VER_PTR(*_qnn_tensor)->memHandle));
memcpy(_tensor->data, qnn_buffer, ggml_nbytes(_tensor));
}
QNN_VER_PTR(*_qnn_tensor)->dimensions = _old_dimensions;
}
bool is_valid() const { return _context; }
Qnn_Tensor_t* get_qnn_tensor() const { return _qnn_tensor; }
private:
const ggml_tensor* _tensor;
Qnn_Tensor_t* _qnn_tensor;
ggml_backend_qnn_context* _context;
uint32_t* _old_dimensions;
uint32_t _dimensions[4] = {};
ggml_qnn_tensor_readwrite(const ggml_qnn_tensor_readwrite&) = delete;
void operator=(const ggml_qnn_tensor_readwrite&) = delete;
ggml_qnn_tensor_readwrite(ggml_qnn_tensor_readwrite&&) = delete;
void operator=(ggml_qnn_tensor_readwrite&&) = delete;
};
using ggml_qnn_tensor_output =
ggml_qnn_tensor_readwrite<QNN_TENSOR_TYPE_APP_READ>;
using ggml_qnn_tensor_input =
ggml_qnn_tensor_readwrite<QNN_TENSOR_TYPE_APP_WRITE>;
} // namespace qnn