676 lines
25 KiB
C++
676 lines
25 KiB
C++
|
|
#include "backend-ops.hpp"
|
|
|
|
#include "utils.hpp"
|
|
#include "logger.hpp"
|
|
#include "tensor.hpp"
|
|
|
|
|
|
static bool qnn_is_valid_params(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
|
|
const ggml_tensor* src1, ggml_tensor* dst) {
|
|
if ((nullptr == ctx) || (nullptr == src0) || (nullptr == src1) || (nullptr == dst)) {
|
|
QNN_LOG_WARN("invalid params\n");
|
|
return false;
|
|
}
|
|
|
|
qnn::qnn_instance* instance = nullptr;
|
|
Qnn_Tensor_t* tensor_0 = nullptr;
|
|
Qnn_Tensor_t* tensor_1 = nullptr;
|
|
Qnn_Tensor_t* tensor_2 = nullptr;
|
|
tensor_0 = (Qnn_Tensor_t*)src0->extra;
|
|
tensor_1 = (Qnn_Tensor_t*)src1->extra;
|
|
tensor_2 = (Qnn_Tensor_t*)dst->extra;
|
|
instance = ctx->instance;
|
|
if ((nullptr == instance) || (nullptr == tensor_0) || (nullptr == tensor_1) || (nullptr == tensor_2)) {
|
|
QNN_LOG_WARN("invalid params\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
#define CHECK_PARAMS(ctx, src0, src1, dst) \
|
|
do { \
|
|
if (!qnn_is_valid_params((ctx), (src0), (src1), (dst))) { \
|
|
return; \
|
|
} \
|
|
} while (0)
|
|
|
|
#else
|
|
#define CHECK_PARAMS(ctx, src0, src1, dst)
|
|
#endif
|
|
|
|
//TODO: this function can be removed later because there are duplicated codes with ggml_qnn_mul_mat
|
|
// keep it for illustrate how to implement a specified GGMPL OP using QNN API + QNN RPC
|
|
static void ggml_qnn_add(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
|
|
const ggml_tensor* src1, ggml_tensor* dst) {
|
|
Qnn_ErrorHandle_t error = QNN_SUCCESS;
|
|
bool graph_initialized = false;
|
|
qnn::qnn_instance* instance = nullptr;
|
|
std::string graph_name = "ggml_op_qnn_add";
|
|
Qnn_GraphHandle_t graph_handle = nullptr;
|
|
Qnn_Param_t qnn_params[] = {};
|
|
enum ggml_op ggmlop = GGML_OP_ADD;
|
|
|
|
CHECK_PARAMS(ctx, src0, src1, dst);
|
|
instance = ctx->instance;
|
|
auto qnn_raw_interface = ctx->raw_interface;
|
|
|
|
qnn::qnn_perf perf("ggml_qnn_add");
|
|
perf.start();
|
|
|
|
std::string map_entry = std::string(ggml_op_name(ggmlop));
|
|
if (instance->_qnn_graph_map.find(map_entry) !=
|
|
instance->_qnn_graph_map.end()) {
|
|
graph_initialized = true;
|
|
auto& graph_item = instance->_qnn_graph_map[map_entry];
|
|
graph_handle = std::get<0>(graph_item);
|
|
}
|
|
|
|
if (!graph_initialized) {
|
|
graph_name = graph_name + "_" + std::to_string(ctx->threads) +
|
|
"_" + src0->name + "_" + src1->name;
|
|
QNN_LOG_INFO("graph name %s", graph_name.c_str());
|
|
if (ctx->device == QNN_BACKEND_NPU) {
|
|
QnnHtpGraph_CustomConfig_t hvx_config;
|
|
hvx_config.option = QNN_HTP_GRAPH_CONFIG_OPTION_NUM_HVX_THREADS;
|
|
hvx_config.numHvxThreads = 8;
|
|
QnnGraph_Config_t graph_hvx_config;
|
|
graph_hvx_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
|
|
graph_hvx_config.customConfig = &hvx_config;
|
|
|
|
QnnHtpGraph_CustomConfig_t dlbc_config;
|
|
dlbc_config.option = QNN_HTP_GRAPH_CONFIG_OPTION_OPTIMIZATION;
|
|
dlbc_config.optimizationOption.type = QNN_HTP_GRAPH_OPTIMIZATION_TYPE_ENABLE_DLBC;
|
|
dlbc_config.optimizationOption.floatValue = 1.0; // set to 0.0 to turn off DLBC
|
|
QnnGraph_Config_t graph_dlbc_config;
|
|
graph_dlbc_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
|
|
graph_dlbc_config.customConfig = &dlbc_config;
|
|
|
|
QnnHtpGraph_CustomConfig_t opt_config;
|
|
opt_config.optimizationOption.type = QNN_HTP_GRAPH_OPTIMIZATION_TYPE_FINALIZE_OPTIMIZATION_FLAG;
|
|
opt_config.optimizationOption.floatValue = 1; // 1 / 3
|
|
QnnGraph_Config_t graph_opt_config;
|
|
graph_opt_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
|
|
graph_opt_config.customConfig = &opt_config;
|
|
|
|
QnnHtpGraph_CustomConfig_t vtcm_config;
|
|
vtcm_config.option = QNN_HTP_GRAPH_CONFIG_OPTION_VTCM_SIZE;
|
|
vtcm_config.vtcmSizeInMB = ctx->socinfo.vtcm_size_in_mb;
|
|
QnnGraph_Config_t graph_vtcm_config;
|
|
graph_vtcm_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
|
|
graph_vtcm_config.customConfig = &vtcm_config;
|
|
|
|
const QnnGraph_Config_t* p_graphconfig[] = { &graph_hvx_config,
|
|
&graph_dlbc_config,
|
|
&graph_vtcm_config,
|
|
&graph_opt_config,
|
|
NULL };
|
|
error = qnn_raw_interface.graphCreate(
|
|
instance->get_qnn_context_handle(), graph_name.c_str(), p_graphconfig,
|
|
&graph_handle);
|
|
}
|
|
else {
|
|
error = qnn_raw_interface.graphCreate(
|
|
instance->get_qnn_context_handle(), graph_name.c_str(), nullptr,
|
|
&graph_handle);
|
|
}
|
|
|
|
if (QNN_SUCCESS != error) {
|
|
QNN_LOG_INFO("can't create qnn graph handle with graph name %s, "
|
|
"error = %d\n",
|
|
graph_name.c_str(), error);
|
|
goto failure;
|
|
}
|
|
else {
|
|
QNN_LOG_INFO("create qnn graph handle with graph name %s ok\n", graph_name.c_str());
|
|
}
|
|
|
|
qnn::ggml_qnn_tensor_input tensor_input0(src0, graph_handle, ctx);
|
|
if (!tensor_input0.is_valid()) {
|
|
goto failure;
|
|
}
|
|
qnn::ggml_qnn_tensor_input tensor_input1(src1, graph_handle, ctx);
|
|
if (!tensor_input1.is_valid()) {
|
|
QNN_LOG_INFO("error = %d\n", error);
|
|
goto failure;
|
|
}
|
|
qnn::ggml_qnn_tensor_output tensor_output(dst, graph_handle, ctx);
|
|
if (!tensor_output.is_valid()) {
|
|
goto failure;
|
|
}
|
|
|
|
Qnn_Tensor_t tensor_inputs[] = { *tensor_input0.get_qnn_tensor(), *tensor_input1.get_qnn_tensor() };
|
|
Qnn_Tensor_t tensor_outputs[] = { *tensor_output.get_qnn_tensor() };
|
|
Qnn_OpConfig_t op_config = {
|
|
(Qnn_OpConfigVersion_t)1,
|
|
.v1 = {"ggml_op_add",
|
|
QNN_OP_PACKAGE_NAME_QTI_AISW,
|
|
QNN_OP_ELEMENT_WISE_ADD,
|
|
0, qnn_params,
|
|
2, tensor_inputs,
|
|
1,tensor_outputs}
|
|
};
|
|
error = qnn_raw_interface.graphAddNode(graph_handle, op_config);
|
|
if (QNN_SUCCESS != error) {
|
|
QNN_LOG_INFO("error = %d\n", error);
|
|
goto failure;
|
|
}
|
|
error = qnn_raw_interface.graphFinalize(graph_handle,
|
|
nullptr, nullptr);
|
|
if (QNN_SUCCESS != error) {
|
|
QNN_LOG_INFO("error = %d\n", error);
|
|
goto failure;
|
|
}
|
|
error = qnn_raw_interface.graphExecute(graph_handle,
|
|
tensor_inputs, 2,
|
|
tensor_outputs, 1,
|
|
nullptr, nullptr);
|
|
if (ctx->device == QNN_BACKEND_NPU) {
|
|
if (QNN_COMMON_ERROR_SYSTEM_COMMUNICATION == error) {
|
|
QNN_LOG_WARN("NPU crashed. SSR detected. Caused QNN graph execute error\n");
|
|
}
|
|
}
|
|
if (QNN_SUCCESS != error) {
|
|
QNN_LOG_INFO("error = %d\n", error);
|
|
goto failure;
|
|
}
|
|
|
|
auto graph_item = std::make_tuple(graph_handle,
|
|
tensor_input0.get_qnn_tensor(),
|
|
tensor_input1.get_qnn_tensor(),
|
|
tensor_output.get_qnn_tensor());
|
|
instance->_qnn_graph_map[map_entry] = graph_item;
|
|
}
|
|
else {
|
|
auto& graph_item = instance->_qnn_graph_map[map_entry];
|
|
qnn::ggml_qnn_tensor_input tensor_input0(src0, std::get<1>(graph_item), ctx);
|
|
qnn::ggml_qnn_tensor_input tensor_input1(src1, std::get<2>(graph_item), ctx);
|
|
qnn::ggml_qnn_tensor_output tensor_output(dst, std::get<3>(graph_item), ctx);
|
|
|
|
Qnn_Tensor_t tensor_inputs[] = { *tensor_input0.get_qnn_tensor(), *tensor_input1.get_qnn_tensor() };
|
|
Qnn_Tensor_t tensor_outputs[] = { *tensor_output.get_qnn_tensor() };
|
|
error = qnn_raw_interface.graphExecute(graph_handle,
|
|
tensor_inputs, 2,
|
|
tensor_outputs, 1,
|
|
nullptr, nullptr);
|
|
if (ctx->device == QNN_BACKEND_NPU) {
|
|
if (QNN_COMMON_ERROR_SYSTEM_COMMUNICATION == error) {
|
|
QNN_LOG_WARN("NPU crashed. SSR detected. Caused QNN graph execute error\n");
|
|
}
|
|
}
|
|
if (QNN_SUCCESS != error) {
|
|
QNN_LOG_INFO("error = %d\n", error);
|
|
goto failure;
|
|
}
|
|
}
|
|
|
|
failure:
|
|
if (QNN_SUCCESS != error) {
|
|
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
|
|
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
|
|
src0->name, src0->type, ggml_type_name(src0->type),
|
|
src0->ne[0], src0->ne[1], src0->ne[2], src0->nb[0],
|
|
src0->nb[1], src0->nb[2]);
|
|
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
|
|
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
|
|
src1->name, src1->type, ggml_type_name(src1->type),
|
|
src1->ne[0], src1->ne[1], src1->ne[2], src1->nb[0],
|
|
src1->nb[1], src1->nb[2]);
|
|
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
|
|
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
|
|
dst->name, dst->type, ggml_type_name(dst->type),
|
|
dst->ne[0], dst->ne[1], dst->ne[2], dst->nb[0],
|
|
dst->nb[1], dst->nb[2]);
|
|
}
|
|
|
|
perf.info();
|
|
}
|
|
|
|
/*
|
|
* ggml_qnn_mul_mat was re-added as a standalone function because
|
|
* the following comments came from https://github.com/ggerganov/llama.cpp/pull/1632
|
|
* MUL_MAT take most of the compute time (about 95%).
|
|
* So to speed up llama, we have to focus on MUL_MAT.
|
|
*
|
|
* We have three kinds of MUL_MAT to compute:
|
|
* mul_mat_f32: both src0 and src1 are F32.
|
|
* mul_mat_f16_f32: src0 is F16 and src1 is F32.
|
|
* mul_mat_q_f32: src0 is quantized (Q4_0, Q4_1, ...), and src1 is F32.
|
|
*/
|
|
static void ggml_qnn_mul_mat(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0, const ggml_tensor* src1,
|
|
ggml_tensor* dst) {
|
|
Qnn_ErrorHandle_t error = QNN_SUCCESS;
|
|
bool graph_initialized = false;
|
|
qnn::qnn_instance* instance = nullptr;
|
|
std::string graph_name = "ggml_op_qnn_mul_mat";
|
|
Qnn_GraphHandle_t graph_handle = nullptr;
|
|
Qnn_Param_t qnn_params[] = {};
|
|
enum ggml_op ggmlop = GGML_OP_MUL_MAT;
|
|
|
|
CHECK_PARAMS(ctx, src0, src1, dst);
|
|
instance = ctx->instance;
|
|
auto qnn_raw_interface = ctx->raw_interface;
|
|
|
|
qnn::qnn_perf perf("ggml_qnn_mul_mat");
|
|
perf.start();
|
|
|
|
std::string map_entry = std::string(ggml_op_name(ggmlop));
|
|
if (instance->_qnn_graph_map.find(map_entry) !=
|
|
instance->_qnn_graph_map.end()) {
|
|
graph_initialized = true;
|
|
auto& graph_item = instance->_qnn_graph_map[map_entry];
|
|
graph_handle = std::get<0>(graph_item);
|
|
}
|
|
|
|
//TODO: for scenarios of quantized data in src0
|
|
// pass-1: dequantize src0 to FP32
|
|
// pass-2: dq-src0 * src1
|
|
// the performance gains is worth although there is performance loss in pass-1
|
|
|
|
if (!graph_initialized) {
|
|
graph_name = graph_name + "_" + std::to_string(ctx->threads) +
|
|
"_" + src0->name + "_" + src1->name;
|
|
QNN_LOG_INFO("graph name %s", graph_name.c_str());
|
|
if (ctx->device == QNN_BACKEND_NPU) {
|
|
QnnHtpGraph_CustomConfig_t hvx_config;
|
|
hvx_config.option = QNN_HTP_GRAPH_CONFIG_OPTION_NUM_HVX_THREADS;
|
|
hvx_config.numHvxThreads = 8;
|
|
QnnGraph_Config_t graph_hvx_config;
|
|
graph_hvx_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
|
|
graph_hvx_config.customConfig = &hvx_config;
|
|
|
|
QnnHtpGraph_CustomConfig_t dlbc_config;
|
|
dlbc_config.option = QNN_HTP_GRAPH_CONFIG_OPTION_OPTIMIZATION;
|
|
dlbc_config.optimizationOption.type = QNN_HTP_GRAPH_OPTIMIZATION_TYPE_ENABLE_DLBC;
|
|
dlbc_config.optimizationOption.floatValue = 1.0; // set to 0.0 to turn off DLBC
|
|
QnnGraph_Config_t graph_dlbc_config;
|
|
graph_dlbc_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
|
|
graph_dlbc_config.customConfig = &dlbc_config;
|
|
|
|
QnnHtpGraph_CustomConfig_t opt_config;
|
|
opt_config.optimizationOption.type = QNN_HTP_GRAPH_OPTIMIZATION_TYPE_FINALIZE_OPTIMIZATION_FLAG;
|
|
opt_config.optimizationOption.floatValue = 1; //1 / 3
|
|
QnnGraph_Config_t graph_opt_config;
|
|
graph_opt_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
|
|
graph_opt_config.customConfig = &opt_config;
|
|
|
|
QnnHtpGraph_CustomConfig_t vtcm_config;
|
|
vtcm_config.option = QNN_HTP_GRAPH_CONFIG_OPTION_VTCM_SIZE;
|
|
vtcm_config.vtcmSizeInMB = ctx->socinfo.vtcm_size_in_mb;
|
|
QnnGraph_Config_t graph_vtcm_config;
|
|
graph_vtcm_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
|
|
graph_vtcm_config.customConfig = &vtcm_config;
|
|
|
|
const QnnGraph_Config_t* p_graphconfig[] = { &graph_hvx_config,
|
|
&graph_dlbc_config,
|
|
&graph_vtcm_config,
|
|
&graph_opt_config,
|
|
NULL };
|
|
error = qnn_raw_interface.graphCreate(
|
|
instance->get_qnn_context_handle(), graph_name.c_str(), p_graphconfig,
|
|
&graph_handle);
|
|
}
|
|
else {
|
|
error = qnn_raw_interface.graphCreate(
|
|
instance->get_qnn_context_handle(), graph_name.c_str(), nullptr,
|
|
&graph_handle);
|
|
}
|
|
if (QNN_SUCCESS != error) {
|
|
QNN_LOG_INFO("can't create qnn graph handle with graph name %s, "
|
|
"error = %d\n",
|
|
graph_name.c_str(), error);
|
|
goto failure;
|
|
}
|
|
|
|
qnn::ggml_qnn_tensor_input tensor_input0(src0, graph_handle, ctx);
|
|
if (!tensor_input0.is_valid()) {
|
|
goto failure;
|
|
}
|
|
qnn::ggml_qnn_tensor_input tensor_input1(src1, graph_handle, ctx);
|
|
if (!tensor_input1.is_valid()) {
|
|
goto failure;
|
|
}
|
|
qnn::ggml_qnn_tensor_output tensor_output(dst, graph_handle, ctx);
|
|
if (!tensor_output.is_valid()) {
|
|
goto failure;
|
|
}
|
|
|
|
Qnn_Tensor_t tensor_inputs[] = { *tensor_input0.get_qnn_tensor(), *tensor_input1.get_qnn_tensor() };
|
|
Qnn_Tensor_t tensor_outputs[] = { *tensor_output.get_qnn_tensor() };
|
|
Qnn_OpConfig_t op_config = {
|
|
(Qnn_OpConfigVersion_t)1,
|
|
.v1 = {"ggml_op_mul_mat",
|
|
QNN_OP_PACKAGE_NAME_QTI_AISW,
|
|
QNN_OP_MAT_MUL,
|
|
0, qnn_params,
|
|
2, tensor_inputs,
|
|
1, tensor_outputs}
|
|
};
|
|
error = qnn_raw_interface.graphAddNode(graph_handle, op_config);
|
|
if (QNN_SUCCESS != error) {
|
|
QNN_LOG_INFO("error = %d\n", error);
|
|
goto failure;
|
|
}
|
|
error = qnn_raw_interface.graphFinalize(graph_handle,
|
|
nullptr, nullptr);
|
|
if (QNN_SUCCESS != error) {
|
|
QNN_LOG_INFO("error = %d\n", error);
|
|
goto failure;
|
|
}
|
|
error = qnn_raw_interface.graphExecute(graph_handle,
|
|
tensor_inputs, 2,
|
|
tensor_outputs, 1,
|
|
nullptr, nullptr);
|
|
if (ctx->device == QNN_BACKEND_NPU) {
|
|
if (QNN_COMMON_ERROR_SYSTEM_COMMUNICATION == error) {
|
|
QNN_LOG_WARN("NPU crashed. SSR detected. Caused QNN graph execute error\n");
|
|
}
|
|
}
|
|
if (QNN_SUCCESS != error) {
|
|
QNN_LOG_INFO("error = %d\n", error);
|
|
goto failure;
|
|
}
|
|
|
|
auto graph_item = std::make_tuple(graph_handle,
|
|
tensor_input0.get_qnn_tensor(),
|
|
tensor_input1.get_qnn_tensor(),
|
|
tensor_output.get_qnn_tensor());
|
|
instance->_qnn_graph_map[map_entry] = graph_item;
|
|
}
|
|
else {
|
|
auto& graph_item = instance->_qnn_graph_map[map_entry];
|
|
qnn::ggml_qnn_tensor_input tensor_input0(src0, std::get<1>(graph_item), ctx);
|
|
qnn::ggml_qnn_tensor_input tensor_input1(src1, std::get<2>(graph_item), ctx);
|
|
qnn::ggml_qnn_tensor_output tensor_output(dst, std::get<3>(graph_item), ctx);
|
|
|
|
Qnn_Tensor_t tensor_inputs[] = { *tensor_input0.get_qnn_tensor(), *tensor_input1.get_qnn_tensor() };
|
|
Qnn_Tensor_t tensor_outputs[] = { *tensor_output.get_qnn_tensor() };
|
|
error = qnn_raw_interface.graphExecute(graph_handle,
|
|
tensor_inputs, 2,
|
|
tensor_outputs, 1,
|
|
nullptr, nullptr);
|
|
if (ctx->device == QNN_BACKEND_NPU) {
|
|
if (QNN_COMMON_ERROR_SYSTEM_COMMUNICATION == error) {
|
|
QNN_LOG_WARN("NPU crashed. SSR detected. Caused QNN graph execute error\n");
|
|
}
|
|
}
|
|
if (QNN_SUCCESS != error) {
|
|
QNN_LOG_INFO("error = %d\n", error);
|
|
goto failure;
|
|
}
|
|
}
|
|
|
|
failure:
|
|
if (QNN_SUCCESS != error) {
|
|
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
|
|
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
|
|
src0->name, src0->type, ggml_type_name(src0->type),
|
|
src0->ne[0], src0->ne[1], src0->ne[2], src0->nb[0],
|
|
src0->nb[1], src0->nb[2]);
|
|
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
|
|
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
|
|
src1->name, src1->type, ggml_type_name(src1->type),
|
|
src1->ne[0], src1->ne[1], src1->ne[2], src1->nb[0],
|
|
src1->nb[1], src1->nb[2]);
|
|
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
|
|
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
|
|
dst->name, dst->type, ggml_type_name(dst->type), dst->ne[0],
|
|
dst->ne[1], dst->ne[2], dst->nb[0], dst->nb[1], dst->nb[2]);
|
|
}
|
|
|
|
perf.info();
|
|
}
|
|
|
|
static void ggml_qnn_repeat(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0, const ggml_tensor* src1,
|
|
ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_get_rows(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0, const ggml_tensor* src1,
|
|
ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_acc(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
|
|
const ggml_tensor* src1, ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_div(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
|
|
const ggml_tensor* src1, ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_gelu(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0, const ggml_tensor* src1,
|
|
ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_silu(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0, const ggml_tensor* src1,
|
|
ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_gelu_quick(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0,
|
|
const ggml_tensor* src1, ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_tanh(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0, const ggml_tensor* src1,
|
|
ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_relu(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0, const ggml_tensor* src1,
|
|
ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_hardsigmoid(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0,
|
|
const ggml_tensor* src1, ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_hardswish(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0, const ggml_tensor* src1,
|
|
ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_leaky_relu(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0,
|
|
const ggml_tensor* src1, ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_sqr(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
|
|
const ggml_tensor* src1, ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_norm(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0, const ggml_tensor* src1,
|
|
ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_group_norm(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0,
|
|
const ggml_tensor* src1, ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_concat(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0, const ggml_tensor* src1,
|
|
ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_upscale(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0, const ggml_tensor* src1,
|
|
ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_pad(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
|
|
const ggml_tensor* src1, ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_rms_norm(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0, const ggml_tensor* src1,
|
|
ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_cpy(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
|
|
const ggml_tensor* src1, ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_dup(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
|
|
const ggml_tensor* src1, ggml_tensor* dst) {
|
|
ggml_qnn_cpy(ctx, src0, dst, nullptr);
|
|
(void)src1;
|
|
}
|
|
|
|
static void ggml_qnn_mul_mat_id(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0,
|
|
const ggml_tensor* src1, ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_scale(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0, const ggml_tensor* src1,
|
|
ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_clamp(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0, const ggml_tensor* src1,
|
|
ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_diag_mask_inf(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0,
|
|
const ggml_tensor* src1, ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_soft_max(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0, const ggml_tensor* src1,
|
|
ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_rope(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0, const ggml_tensor* src1,
|
|
ggml_tensor* dst) {
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
}
|
|
|
|
static void ggml_qnn_pool2d(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0, const ggml_tensor* src1,
|
|
ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_im2col(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0, const ggml_tensor* src1,
|
|
ggml_tensor* dst) {
|
|
}
|
|
|
|
static void ggml_qnn_sum_rows(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0, const ggml_tensor* src1,
|
|
ggml_tensor* dst) {
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
}
|
|
|
|
static void ggml_qnn_argsort(ggml_backend_qnn_context* ctx,
|
|
const ggml_tensor* src0, const ggml_tensor* src1,
|
|
ggml_tensor* dst) {
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
}
|
|
|
|
static void ggml_qnn_nop(ggml_backend_qnn_context* ctx, const ggml_tensor* src0,
|
|
const ggml_tensor* src1, ggml_tensor* dst) {
|
|
(void)src0;
|
|
(void)src1;
|
|
(void)dst;
|
|
}
|
|
|
|
qnn::ggml_qnn_op_array_t qnn::ggml_qnn_op_array() {
|
|
static constexpr const qnn::ggml_qnn_op_t kQnnOpsTable[GGML_OP_COUNT] = {
|
|
nullptr, // GGML_OP_NONE
|
|
nullptr, // GGML_OP_DUP
|
|
ggml_qnn_add, // GGML_OP_ADD
|
|
nullptr, // GGML_OP_ADD1
|
|
nullptr, // GGML_OP_ACC
|
|
nullptr, // GGML_OP_SUB
|
|
nullptr, // GGML_OP_MUL
|
|
nullptr, // GGML_OP_DIV
|
|
nullptr, // GGML_OP_SQR
|
|
nullptr, // GGML_OP_SQRT
|
|
nullptr, // GGML_OP_LOG
|
|
nullptr, // GGML_OP_SUM
|
|
nullptr, // GGML_OP_SUM_ROWS
|
|
nullptr, // GGML_OP_MEAN
|
|
nullptr, // GGML_OP_ARGMAX
|
|
nullptr, // GGML_OP_REPEAT
|
|
nullptr, // GGML_OP_REPEAT_BACK
|
|
nullptr, // GGML_OP_CONCAT
|
|
nullptr, // GGML_OP_SILU_BACK
|
|
nullptr, // GGML_OP_NORM
|
|
nullptr, // GGML_OP_RMS_NORM
|
|
nullptr, // GGML_OP_RMS_NORM_BACK
|
|
nullptr, // GGML_OP_GROUP_NORM
|
|
|
|
ggml_qnn_mul_mat, // GGML_OP_MUL_MAT
|
|
nullptr, // GGML_OP_MUL_MAT_ID
|
|
nullptr, // GGML_OP_OUT_PROD
|
|
|
|
nullptr, // GGML_OP_SCALE
|
|
nullptr, // GGML_OP_SET
|
|
nullptr, // GGML_OP_CPY
|
|
nullptr, // GGML_OP_CONT
|
|
nullptr, // GGML_OP_RESHAPE
|
|
nullptr, // GGML_OP_VIEW
|
|
nullptr, // GGML_OP_PERMUTE
|
|
nullptr, // GGML_OP_TRANSPOSE
|
|
nullptr, // GGML_OP_GET_ROWS
|
|
nullptr, // GGML_OP_GET_ROWS_BACK
|
|
nullptr, // GGML_OP_DIAG
|
|
nullptr, // GGML_OP_DIAG_MASK_INF
|
|
nullptr, // GGML_OP_DIAG_MASK_ZERO
|
|
nullptr, // GGML_OP_SOFT_MAX
|
|
nullptr, // GGML_OP_SOFT_MAX_BACK
|
|
nullptr, // GGML_OP_ROPE
|
|
nullptr, // GGML_OP_ROPE_BACK
|
|
nullptr, // GGML_OP_CLAMP
|
|
nullptr, // GGML_OP_CONV_TRANSPOSE_1D
|
|
nullptr, // GGML_OP_IM2COL
|
|
nullptr, // GGML_OP_CONV_TRANSPOSE_2D
|
|
nullptr, // GGML_OP_POOL_1D
|
|
nullptr, // GGML_OP_POOL_2D
|
|
nullptr, // GGML_OP_UPSCALE
|
|
nullptr, // GGML_OP_PAD
|
|
nullptr, // GGML_OP_ARANGE
|
|
nullptr, // GGML_OP_TIMESTEP_EMBEDDING
|
|
nullptr, // GGML_OP_ARGSORT
|
|
nullptr, // GGML_OP_LEAKY_RELU
|
|
|
|
nullptr, // GGML_OP_FLASH_ATTN_EXT
|
|
nullptr, // GGML_OP_FLASH_ATTN_BACK
|
|
nullptr, // GGML_OP_SSM_CONV
|
|
nullptr, // GGML_OP_SSM_SCAN
|
|
nullptr, // GGML_OP_WIN_PART
|
|
nullptr, // GGML_OP_WIN_UNPART
|
|
nullptr, // GGML_OP_GET_REL_POS
|
|
nullptr, // GGML_OP_ADD_REL_POS
|
|
|
|
nullptr, // GGML_OP_UNARY
|
|
|
|
nullptr, // GGML_OP_MAP_UNARY
|
|
nullptr, // GGML_OP_MAP_BINARY
|
|
|
|
nullptr, // GGML_OP_MAP_CUSTOM1_F32
|
|
nullptr, // GGML_OP_MAP_CUSTOM2_F32
|
|
nullptr, // GGML_OP_MAP_CUSTOM3_F32
|
|
|
|
nullptr, // GGML_OP_MAP_CUSTOM1
|
|
nullptr, // GGML_OP_MAP_CUSTOM2
|
|
nullptr, // GGML_OP_MAP_CUSTOM3
|
|
|
|
nullptr, // GGML_OP_CROSS_ENTROPY_LOSS
|
|
nullptr, // GGML_OP_CROSS_ENTROPY_LOSS_BACK
|
|
};
|
|
|
|
return kQnnOpsTable;
|
|
}
|