llama.cpp/ggml-qnn.cpp

814 lines
30 KiB
C++

#include <stdio.h>
#include <stdlib.h>
#include <stdatomic.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <sys/stat.h>
#include <vector>
#include <thread>
#include <mutex>
#include <set>
#include <tuple>
#include <queue>
#include <fstream>
#include <iostream>
#include <sstream>
#include <chrono>
#include <memory>
#include <regex>
#include <random>
#include <functional>
#include <condition_variable>
#include <cassert>
#include <unordered_set>
#include <utility>
#include "ggml-qnn.h"
#include "ggml-backend-impl.h"
#include "ggml-qnn/logger.hpp"
#include "ggml-qnn/utils.hpp"
#include "ggml-qnn/tensor.hpp"
#include "ggml-qnn/backend.hpp"
#include "ggml-qnn/backend-ops.hpp"
// =================================================================================================
//
// forward declaration
//
// =================================================================================================
static int free_qnn_tensor(Qnn_Tensor_t & tensor);
// =================================================================================================
//
// self-defined macro / data structure
//
// =================================================================================================
#ifdef NDEBUG
#define ENABLE_QNNBACKEND_PERF 0 // enable/disable op's perf info
#else
#define ENABLE_QNNBACKEND_PERF 1 // enable/disable op's perf info
#endif
#define QNN_BACKEND_NAME "qnn"
static struct qnn::qcom_socinfo g_qnn_soc_info_table[] = {
/* Qualcomm SnapDragon 8 Gen 1 */
[qnn::SM8450] = {
.soc_model = qnn::SM8450,
.htp_arch = qnn::V69,
.vtcm_size_in_mb = 8},
/* Qualcomm SnapDragon 8 Gen 1+ */
[qnn::SM8475] = {
.soc_model = qnn::SM8475,
.htp_arch = qnn::V69,
.vtcm_size_in_mb = 8},
/* Qualcomm SnapDragon 8 Gen 2 */
[qnn::SM8550] = {
.soc_model = qnn::SM8550,
.htp_arch = qnn::V73,
.vtcm_size_in_mb = 8},
/* Qualcomm SnapDragon 8 Gen 3 */
[qnn::SM8650] = {
.soc_model = qnn::SM8650,
.htp_arch = qnn::V75,
.vtcm_size_in_mb = 8},
};
// according to the QNN SDK Reference Guide,
// CPU - Choose a non-quantized model.Quantized models are currently incompatible with the CPU backend
// GPU - Choose a non-quantized model.Quantized models are currently incompatible with the GPU backend
// HTP - Choose a quantized model. Quantized models are required when running on the HTP backend
// DSP - Choose a quantized model. Quantized models are required when running on the DSP backend
// HTA - Choose a quantized model. Quantized models are required when running on the HTA backend
//
// only focus on Qualcomm CPU/GPU/NPU backend in this implementation of QNN backend for ggml currently,
// CPU: Qualcomm Kryo CPU
// GPU: Qualcomm Adreno GPU
// NPU: Qualcomm NPU: aka HTP(Hexagon Tensor Processor), ~= cDSP(Compute DSP) +
// HMX(Hexagon Matrix eXtensions)/HTA(Hexagon Tensor Accelerator)
static struct ggml_backend_qnn_context g_qnn_mgr[GGML_QNN_MAX_DEVICES] = {
[QNN_BACKEND_CPU] = {.device = 0,
.threads = 1,
.name = "qnn-cpu",
.lib = "libQnnCpu.so",
.instance = nullptr,
.backend = nullptr,
.raw_interface = {},
.raw_system_interface = {},
.socinfo = {}},
[QNN_BACKEND_GPU] = {.device = 1,
.threads = 1,
.name = "qnn-gpu",
.lib = "libQnnGpu.so",
.instance = nullptr,
.backend = nullptr,
.raw_interface = {},
.raw_system_interface = {},
.socinfo = {}},
[QNN_BACKEND_NPU] = {.device = 2,
.threads = 1,
.name = "qnn-npu",
.lib = "libQnnHtp.so",
.instance = nullptr,
.backend = nullptr,
.raw_interface = {},
.raw_system_interface = {},
.socinfo = {}},
};
struct ggml_backend_qnn_buffer_context {
ggml_backend_qnn_buffer_context(size_t device)
: device(device)
, name(QNN_BACKEND_NAME + std::to_string(device)) {}
~ggml_backend_qnn_buffer_context() {
if (buffer) {
free(buffer);
}
for (auto * sub_buffer : sub_buffers) {
free(sub_buffer);
}
for (auto * qnn_tensor : qnn_tensors) {
free_qnn_tensor(*qnn_tensor);
free(qnn_tensor);
}
sub_buffers.clear();
qnn_tensors.clear();
}
void * buffer = nullptr;
struct ggml_backend_qnn_context * backend_ctx = nullptr;
size_t buffer_size = 0;
std::vector<void *> sub_buffers;
std::vector<Qnn_Tensor_t *> qnn_tensors;
size_t device;
std::string name;
};
struct ggml_backend_qnn_buffer_type_context {
size_t device;
std::string name;
};
// =================================================================================================
//
// QNN backend internal helper functions
//
// =================================================================================================
static size_t memscpy(void * dst, size_t dst_size, const void * src, size_t copy_size) {
if (!dst || !src || !dst_size || !copy_size) return 0;
size_t min_size = dst_size < copy_size ? dst_size : copy_size;
memcpy(dst, src, min_size);
return min_size;
}
static int deep_copy_qnn_tensors(Qnn_Tensor_t & src, Qnn_Tensor_t & dst) {
int err = 0;
VALIDATE_TENSOR_VERSION(src, err);
dst.version = src.version;
QNN_TENSOR_SET_NAME(
dst, ::strndup(QNN_TENSOR_GET_NAME(src),std::string(QNN_TENSOR_GET_NAME(src)).size()));
if (nullptr == QNN_TENSOR_GET_NAME(dst)) {
return 1;
}
QNN_TENSOR_SET_ID(dst, QNN_TENSOR_GET_ID(src));
QNN_TENSOR_SET_TYPE(dst, QNN_TENSOR_GET_TYPE(src));
QNN_TENSOR_SET_DATA_FORMAT(dst, QNN_TENSOR_GET_DATA_FORMAT(src));
QNN_TENSOR_SET_DATA_TYPE(dst, QNN_TENSOR_GET_DATA_TYPE(src));
QNN_TENSOR_SET_MEM_TYPE(dst, QNN_TENSOR_GET_MEM_TYPE(src));
if (QNN_TENSOR_GET_MEM_TYPE(src) == QNN_TENSORMEMTYPE_RAW) {
Qnn_ClientBuffer_t client_buf = {nullptr, 0};
QNN_TENSOR_SET_CLIENT_BUF(dst, client_buf);
} else if (QNN_TENSOR_GET_MEM_TYPE(src) == QNN_TENSORMEMTYPE_MEMHANDLE) {
QNN_TENSOR_SET_MEM_HANDLE(dst, nullptr);
} else {
return 1;
}
Qnn_QuantizeParams_t src_qparam = QNN_TENSOR_GET_QUANT_PARAMS(src);
Qnn_QuantizationEncoding_t encoding = src_qparam.quantizationEncoding;
if (encoding == QNN_QUANTIZATION_ENCODING_AXIS_SCALE_OFFSET) {
Qnn_QuantizeParams_t src_qparam_cpy = src_qparam;
Qnn_AxisScaleOffset_t & axis_scale_offset = src_qparam_cpy.axisScaleOffsetEncoding;
Qnn_ScaleOffset_t ** scaleOffset = & axis_scale_offset.scaleOffset;
size_t scaleOffsetSize = axis_scale_offset.numScaleOffsets * sizeof(Qnn_ScaleOffset_t);
*scaleOffset = (Qnn_ScaleOffset_t *) malloc(scaleOffsetSize);
memscpy(*scaleOffset, scaleOffsetSize,
src_qparam.axisScaleOffsetEncoding.scaleOffset,
scaleOffsetSize);
QNN_TENSOR_SET_QUANT_PARAMS(dst, src_qparam_cpy);
} else if (encoding == QNN_QUANTIZATION_ENCODING_BW_AXIS_SCALE_OFFSET) {
Qnn_QuantizeParams_t src_qparam_cpy = src_qparam;
Qnn_BwAxisScaleOffset_t & bwaxis_scale_offset = src_qparam_cpy.bwAxisScaleOffsetEncoding;
size_t scaleSize = bwaxis_scale_offset.numElements * sizeof(float);
float ** scales = &bwaxis_scale_offset.scales;
int32_t ** offsets = &bwaxis_scale_offset.offsets;
*scales = (float *) malloc(scaleSize);
memscpy(*scales, scaleSize, src_qparam.bwAxisScaleOffsetEncoding.scales,
scaleSize);
if (bwaxis_scale_offset.offsets != nullptr) {
size_t offsetSize = bwaxis_scale_offset.numElements * sizeof(int32_t);
*offsets = (int32_t *) malloc(offsetSize);
memscpy(*offsets, offsetSize,
src_qparam.bwAxisScaleOffsetEncoding.offsets, offsetSize);
}
QNN_TENSOR_SET_QUANT_PARAMS(dst, src_qparam_cpy);
} else {
QNN_TENSOR_SET_QUANT_PARAMS(dst, src_qparam);
}
uint32_t rank = QNN_TENSOR_GET_RANK(src);
QNN_TENSOR_SET_RANK(dst, rank);
size_t dim_size = rank * sizeof(uint32_t);
uint32_t * dimensions = (uint32_t *) malloc(dim_size);
if (dimensions == nullptr) {
QNN_LOG_WARN("deep_copy_qnn_tensors() allocation error while copying "
"tensor %s\n",
QNN_TENSOR_GET_NAME(src));
return 1;
}
memscpy(dimensions, dim_size, QNN_TENSOR_GET_DIMENSIONS(src), dim_size);
QNN_TENSOR_SET_DIMENSIONS(dst, dimensions);
return err;
}
static int free_qnn_tensor(Qnn_Tensor_t & tensor) {
int err = 0;
VALIDATE_TENSOR_VERSION(tensor, err);
free((void *) QNN_TENSOR_GET_NAME(tensor));
free(QNN_TENSOR_GET_DIMENSIONS(tensor));
return err;
}
// =================================================================================================
//
// implementation of QNN backend for GGML
//
// =================================================================================================
static bool ggml_qnn_can_handle_op(ggml_backend_qnn_context * ctx,
const struct ggml_tensor * tensor,
bool b_dump_tensor_info) {
if (ggml_is_empty(tensor) || !qnn::ggml_qnn_op_array()[tensor->op]) {
return false;
}
const struct ggml_tensor * src0 = tensor->src[0];
const struct ggml_tensor * src1 = tensor->src[1];
if (nullptr == src0 || nullptr == src1) {
return false;
}
const auto ne00 = src0->ne[0];
const auto ne01 = src0->ne[1];
const auto ne10 = src1->ne[0];
const auto ne11 = src1->ne[1];
// make qnn_get_ggml_tensor_rank and QNN SDK happy
if (ne00 <= 1 || ne01 <= 1 || ne10 <= 1 || ne11 <= 1) {
return false;
}
// TODO: support other GGML OPs using QNN API
// a GENERAL approach could fix this problem in a standalone PR of refine ggml backend
// subsystem for hybrid inference between CPU&GPU / CPU&NPU easily(less the 100 LoC and no
// side-effect to the existing codes) for ANY ggml backends which the backend's
// ggml_backend_xxx_buffer_is_host return true. this approach could be found at:
// https://github.com/ggerganov/llama.cpp/pull/7641
bool supported_op = false;
supported_op = (tensor->op == GGML_OP_ADD);
supported_op = ((tensor->op == GGML_OP_ADD) || (tensor->op == GGML_OP_MUL_MAT));
if (!supported_op) {
return false;
}
//TODO: support other quantized data type
if (ggml_is_quantized(src0->type)) {
if (src0->type != GGML_TYPE_Q8_0 && src0->type != GGML_TYPE_Q4_0) {
return false;
}
}
if (tensor->op == GGML_OP_MUL_MAT) {
if (ne00 <= 32 || ne01 <= 32 || ne10 <= 32 || ne11 <= 32) {
//comment it for make UT of mul_mat with QNN RPC happy
//return false;
}
}
return true;
}
bool ggml_qnn_compute_forward(ggml_backend_qnn_context * ctx,
struct ggml_compute_params * params,
struct ggml_tensor * tensor) {
auto func = qnn::ggml_qnn_op_array()[tensor->op];
if (!func) {
QNN_LOG_WARN("unsupported op %d", tensor->op);
return false;
}
func(ctx, tensor->src[0], tensor->src[1], tensor);
return true;
}
static const char * ggml_backend_qnn_buffer_get_name(ggml_backend_buffer_t buffer) {
GGML_UNUSED(buffer);
return "QNN";
}
GGML_CALL static bool ggml_backend_buffer_is_qnn(ggml_backend_buffer_t buffer) {
return buffer->iface.get_name == ggml_backend_qnn_buffer_get_name;
}
GGML_CALL static void ggml_backend_qnn_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_qnn_buffer_context * ctx = (ggml_backend_qnn_buffer_context *) buffer->context;
delete ctx;
}
GGML_CALL static void * ggml_backend_qnn_buffer_get_base(ggml_backend_buffer_t buffer) {
ggml_backend_qnn_buffer_context * ctx = (ggml_backend_qnn_buffer_context *) buffer->context;
return ctx->buffer;
}
GGML_CALL static void ggml_backend_qnn_buffer_init_tensor(ggml_backend_buffer_t buffer,
ggml_tensor * tensor) {
Qnn_ErrorHandle_t error = QNN_SUCCESS;
ggml_backend_qnn_buffer_context * ctx = (ggml_backend_qnn_buffer_context *) buffer->context;
static int idx = 0;
char tensor_name[GGML_MAX_NAME] = {0};
snprintf(tensor_name, GGML_MAX_NAME, "tensor_%04d", idx++);
uint32_t dimensions[] = {(uint32_t) tensor->ne[0], (uint32_t) tensor->ne[1],
(uint32_t) tensor->ne[2],
(uint32_t) tensor->ne[3]};
Qnn_DataType_t qnn_data_type =
qnn::datatype_from_ggml_datatype(tensor->type);
Qnn_TensorType_t qnn_tensor_type = QNN_TENSOR_TYPE_APP_WRITE;
if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
qnn_tensor_type = QNN_TENSOR_TYPE_APP_WRITE;
} else if (tensor->flags & GGML_TENSOR_FLAG_OUTPUT) {
qnn_tensor_type = QNN_TENSOR_TYPE_APP_READ;
}
Qnn_Tensor_t qnn_tensor = QNN_TENSOR_INIT;
Qnn_TensorMemType_t qnn_mem_type = QNN_TENSORMEMTYPE_RAW;
if (ctx->device == QNN_BACKEND_GPU) {
qnn_mem_type = QNN_TENSORMEMTYPE_MEMHANDLE;
}
qnn_tensor = {
.version = QNN_TENSOR_VERSION_1,
{.v1 = {.id = 0,
.name = tensor_name,
.type = qnn_tensor_type,
.dataFormat = QNN_TENSOR_DATA_FORMAT_FLAT_BUFFER,
.dataType = qnn_data_type,
.quantizeParams =
{QNN_DEFINITION_UNDEFINED,
QNN_QUANTIZATION_ENCODING_UNDEFINED,
{.scaleOffsetEncoding = {.scale = 0.0000000000000000f,
.offset = 0}}},
.rank = qnn::get_ggml_tensor_rank(tensor),
.dimensions = dimensions,
.memType = qnn_mem_type,
{.clientBuf = {.data = nullptr, .dataSize = 0}}}}};
Qnn_Tensor_t * p_qnn_tensor =
(Qnn_Tensor_t *)calloc(1, sizeof(Qnn_Tensor_t));
if (nullptr == p_qnn_tensor) {
QNN_LOG_WARN("calloc failed");
return;
}
error = deep_copy_qnn_tensors(qnn_tensor, *p_qnn_tensor);
if (error != QNN_SUCCESS) {
free(p_qnn_tensor);
QNN_LOG_WARN("init tensor failed");
return;
}
tensor->extra = p_qnn_tensor;
ctx->qnn_tensors.push_back(p_qnn_tensor);
}
GGML_CALL static void ggml_backend_qnn_buffer_set_tensor(ggml_backend_buffer_t buffer,
ggml_tensor * tensor, const void * data,
size_t offset, size_t size) {
GGML_UNUSED(buffer);
memcpy((char *) tensor->data + offset, data, size);
}
GGML_CALL static void ggml_backend_qnn_buffer_get_tensor(ggml_backend_buffer_t buffer,
const ggml_tensor * tensor, void * data,
size_t offset, size_t size) {
GGML_UNUSED(buffer);
memcpy(data, (const char *) tensor->data + offset, size);
}
GGML_CALL static bool ggml_backend_qnn_buffer_cpy_tensor(ggml_backend_buffer_t buffer,
const struct ggml_tensor * src,
struct ggml_tensor * dst) {
GGML_UNUSED(buffer);
if (ggml_backend_buffer_is_host(src->buffer)) {
memcpy(dst->data, src->data, ggml_nbytes(src));
return true;
}
return false;
}
GGML_CALL static void ggml_backend_qnn_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_qnn_buffer_context * ctx = (ggml_backend_qnn_buffer_context *) buffer->context;
memset(ctx->buffer, value, ctx->buffer_size);
}
static ggml_backend_buffer_i ggml_backend_qnn_buffer_interface = {
/* .get_name = */ ggml_backend_qnn_buffer_get_name,
/* .free_buffer = */ ggml_backend_qnn_buffer_free_buffer,
/* .get_base = */ ggml_backend_qnn_buffer_get_base,
/* .init_tensor = */ ggml_backend_qnn_buffer_init_tensor,
/* .set_tensor = */ ggml_backend_qnn_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_qnn_buffer_get_tensor,
/* .cpy_tensor = */ ggml_backend_qnn_buffer_cpy_tensor,
/* .clear = */ ggml_backend_qnn_buffer_clear,
/* .reset = */ nullptr,
};
GGML_CALL static const char * ggml_backend_qnn_buffer_type_name(ggml_backend_buffer_type_t buft) {
return "QNN";
}
static void * ggml_qnn_host_malloc(size_t n) {
void * data = nullptr;
int result = posix_memalign((void **) &data, sysconf(_SC_PAGESIZE), n);
if (result != 0) {
QNN_LOG_WARN("%s: error: posix_memalign failed\n", __func__);
return nullptr;
}
return data;
}
GGML_CALL static ggml_backend_buffer_t ggml_backend_qnn_buffer_type_alloc_buffer(
ggml_backend_buffer_type_t buft, size_t size) {
ggml_backend_qnn_buffer_type_context * buft_ctx = (ggml_backend_qnn_buffer_type_context *)buft->context;
ggml_backend_qnn_buffer_context * ctx = new ggml_backend_qnn_buffer_context(buft_ctx->device);
size_t size_page = sysconf(_SC_PAGESIZE);
size_t size_aligned = size;
if ((size_aligned % size_page) != 0) {
size_aligned += (size_page - (size_aligned % size_page));
}
// TODO:use pre-allocated buffer in internal memory pool
ctx->buffer = ggml_qnn_host_malloc(size_aligned);
ctx->buffer_size = size_aligned;
ctx->backend_ctx = &g_qnn_mgr[buft_ctx->device];
if (nullptr == ctx->buffer) {
QNN_LOG_WARN("%s: failed to allocate %.2f MiB\n", __func__, size / (1 << 20));
return nullptr;
}
return ggml_backend_buffer_init(buft, ggml_backend_qnn_buffer_interface,ctx, size);
}
GGML_CALL static size_t ggml_backend_qnn_buffer_type_get_alignment(
ggml_backend_buffer_type_t buft) {
GGML_UNUSED(buft);
return 32;
}
// TODO: this value is an experimental value, works fine with whisper/llm/minicpm-v inference on Android
GGML_CALL static size_t ggml_backend_qnn_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
GGML_UNUSED(buft);
return (96 * 1024 * 1024);
}
GGML_CALL static bool ggml_backend_qnn_buffer_type_supports_backend(
ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
GGML_UNUSED(buft);
return ggml_backend_is_qnn(backend) || ggml_backend_is_cpu(backend);
}
GGML_CALL static bool ggml_backend_qnn_buffer_is_host(ggml_backend_buffer_type_t buft) {
GGML_UNUSED(buft);
return true;
}
GGML_CALL static const char * ggml_backend_qnn_name(ggml_backend_t backend) {
return "QNN";
}
GGML_CALL static void ggml_backend_qnn_free(ggml_backend_t backend) {
QNN_LOG_INFO("enter %s", __func__);
ggml_backend_qnn_context * ctx = (ggml_backend_qnn_context *) backend->context;
QNN_LOG_INFO("idx %d, name:%s", ctx->device, g_qnn_mgr[ctx->device].name);
auto *instance = g_qnn_mgr[ctx->device].instance;
if (instance != nullptr) {
// TODO: this should be done inside the destructor
std::map<std::string,
std::tuple<Qnn_GraphHandle_t, Qnn_Tensor_t *, Qnn_Tensor_t *,
Qnn_Tensor_t *>>::iterator graph_it;
for (graph_it = instance->_qnn_graph_map.begin();
graph_it != instance->_qnn_graph_map.end(); graph_it++) {
auto & graph_item = graph_it->second;
Qnn_GraphHandle_t & graph_handle = std::get<0>(graph_item);
GGML_UNUSED(graph_handle);
QNN_LOG_INFO("graph type:%s", graph_it->first.c_str());
}
instance->_qnn_graph_map.clear();
instance->qnn_finalize();
delete instance;
g_qnn_mgr[ctx->device].instance = nullptr;
}
if (g_qnn_mgr[ctx->device].backend != nullptr) {
delete backend;
g_qnn_mgr[ctx->device].backend = nullptr;
}
QNN_LOG_INFO("leave %s", __func__);
}
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_qnn_get_default_buffer_type(ggml_backend_t backend) {
ggml_backend_qnn_context * ctx = (ggml_backend_qnn_context *) backend->context;
return ggml_backend_qnn_buffer_type(ctx->device);
}
GGML_CALL static ggml_status ggml_backend_qnn_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
enum ggml_status result = GGML_STATUS_SUCCESS;
ggml_backend_qnn_context * ctx = (ggml_backend_qnn_context *) backend->context;
GGML_UNUSED(ctx);
ggml_compute_params params = {};
params.type = GGML_TASK_TYPE_COMPUTE;
params.ith = 0;
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE ||
node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW ||
node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
continue;
}
bool ok = ggml_qnn_compute_forward(ctx, &params, node);
if (!ok) {
QNN_LOG_DEBUG("error: op not supported %s (%s)\n", node->name, ggml_op_name(node->op));
}
}
return result;
}
GGML_CALL static bool ggml_backend_qnn_supports_op(ggml_backend_t backend,
const ggml_tensor * op) {
ggml_backend_qnn_context *ctx = (ggml_backend_qnn_context *) backend->context;
return (ggml_qnn_can_handle_op(ctx, op, false));
}
GGML_CALL static bool ggml_backend_qnn_offload_op(ggml_backend_t backend,const ggml_tensor * tensor) {
ggml_backend_qnn_context * ctx = (ggml_backend_qnn_context *) backend->context;
return ggml_qnn_can_handle_op(ctx, tensor, false);
}
static ggml_backend_i ggml_backend_qnn_interface = {
/* .get_name = */ ggml_backend_qnn_name,
/* .free = */ ggml_backend_qnn_free,
/* .get_default_buffer_type = */ ggml_backend_qnn_get_default_buffer_type,
/* .set_tensor_async = */ nullptr,
/* .get_tensor_async = */ nullptr,
/* .cpy_tensor_async = */ nullptr,
/* .synchronize = */ nullptr,
/* .graph_plan_create = */ nullptr,
/* .graph_plan_free = */ nullptr,
/* .graph_plan_compute = */ nullptr,
/* .graph_compute = */ ggml_backend_qnn_graph_compute,
/* .supports_op = */ ggml_backend_qnn_supports_op,
/* .offload_op = */ ggml_backend_qnn_offload_op,
/* .event_new = */ nullptr,
/* .event_free = */ nullptr,
/* .event_record = */ nullptr,
/* .event_wait = */ nullptr,
/* .event_synchronize = */ nullptr,
};
static ggml_guid_t ggml_backend_qnn_guid() {
static ggml_guid guid = {
0x1a, 0x2b, 0x3c, 0x4d, 0x5e, 0x6f, 0x70, 0x81,
0x92, 0xa3, 0xb4, 0xc5, 0xd6, 0xe7, 0xf8, 0x09
};
return &guid;
}
static ggml_backend_t ggml_backend_qnn_reg_init(const char * params, void * user_data) {
if (nullptr == params) {
// QNN library path
// can be hardcoded to "/data/local/tmp/" for Android command line application
// or specified in JNI layer for Android APK
params = "/data/local/tmp/";
}
ggml_backend_t qnn_backend = ggml_backend_qnn_init((int) (intptr_t) user_data, params);
return qnn_backend;
}
bool ggml_backend_is_qnn(ggml_backend_t backend) {
return backend != nullptr && ggml_guid_matches(backend->guid, ggml_backend_qnn_guid());
}
void ggml_backend_qnn_set_n_threads(ggml_backend_t backend, int n_threads) {
GGML_ASSERT(ggml_backend_is_qnn(backend));
auto * ctx = (ggml_backend_qnn_context *) backend->context;
ctx->threads = n_threads;
}
const char * ggml_backend_qnn_get_name(ggml_backend_t backend) {
return backend->iface.get_name(backend);
}
int ggml_backend_qnn_get_device_count() {
return GGML_QNN_MAX_DEVICES;
}
void ggml_backend_qnn_get_device_description(size_t dev_num, char * description, size_t description_size) {
if (nullptr == description || 0 == description_size) {
QNN_LOG_WARN("invalid param");
return;
}
if (dev_num >= GGML_QNN_MAX_DEVICES) {
QNN_LOG_WARN("invalid param");
return;
}
snprintf(description, description_size, "%s", g_qnn_mgr[dev_num].name);
}
ggml_backend_buffer_type_t ggml_backend_qnn_buffer_type(size_t device) {
if (device >= GGML_QNN_MAX_DEVICES) {
QNN_LOG_DEBUG("ggml_backend_qnn_buffer_type error: device_index:%d is "
"out of range [0, %d]\n",
device, GGML_QNN_MAX_DEVICES - 1);
return nullptr;
}
static ggml_backend_qnn_buffer_type_context ggml_backend_qnn_buffer_type_contexts[GGML_QNN_MAX_DEVICES];
static ggml_backend_buffer_type ggml_backend_qnn_buffer_types[GGML_QNN_MAX_DEVICES];
static bool ggml_backend_qnn_buffer_type_initialized = false;
if (!ggml_backend_qnn_buffer_type_initialized) {
for (size_t i = 0; i < GGML_QNN_MAX_DEVICES; i++) {
auto & context = ggml_backend_qnn_buffer_type_contexts[i];
context = { i, std::string(QNN_BACKEND_NAME) + std::to_string(i) };
ggml_backend_qnn_buffer_types[i] = {
/* .iface = */ {
/* .get_name = */ ggml_backend_qnn_buffer_type_name,
/* .alloc_buffer = */ ggml_backend_qnn_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_qnn_buffer_type_get_alignment,
/* .get_max_size = */ ggml_backend_qnn_buffer_type_get_max_size,
/* .get_alloc_size = */ nullptr, // defaults to ggml_nbytes
/* .supports_backend = */ ggml_backend_qnn_buffer_type_supports_backend,
/* .is_host = */ ggml_backend_qnn_buffer_is_host
},
/* .context = */ & context,
};
}
ggml_backend_qnn_buffer_type_initialized = true;
}
return &ggml_backend_qnn_buffer_types[device];
}
/**
*
* @param device 0: QNN_BACKEND_CPU 1: QNN_BACKEND_GPU 2: QNN_BACKEND_NPU
* @param qnn_lib_path qnn library path, such as "/data/local/tmp/" on Android or specified in JNI layer
* @return
*/
ggml_backend_t ggml_backend_qnn_init(size_t device, const char * qnn_lib_path) {
int result = 0;
if (nullptr == qnn_lib_path) {
QNN_LOG_ERROR("invalid qnn lib path\n");
return nullptr;
}
QNN_LOG_DEBUG("device %d", device);
QNN_LOG_DEBUG("qnn_lib_path %s", qnn_lib_path);
if (device >= GGML_QNN_MAX_DEVICES) {
QNN_LOG_ERROR("invalid device %d", device);
return nullptr;
}
std::string path = qnn_lib_path;
if (QNN_BACKEND_NPU == device) {
if (0 == setenv("LD_LIBRARY_PATH",
(path + ":/vendor/dsp/cdsp:/vendor/lib64:/vendor/dsp/"
"dsp:/vendor/dsp/images")
.c_str(),
1)) {
QNN_LOG_INFO("QNN NPU backend setenv successfully");
} else {
QNN_LOG_ERROR("QNN NPU backend setenv failure");
}
if (0 == setenv("ADSP_LIBRARY_PATH",
(path +
";/vendor/dsp/cdsp;/vendor/lib/rfsa/adsp;/system/lib/"
"rfsa/adsp;/vendor/dsp/dsp;/vendor/dsp/images;/dsp")
.c_str(),
1)) {
QNN_LOG_INFO("QNN NPU backend setenv successfully");
} else {
QNN_LOG_ERROR("QNN NPU backend setenv failure");
}
} else {
if (0 == setenv("LD_LIBRARY_PATH", path.c_str(), 1)) {
QNN_LOG_INFO("%s backend setenv successfully\n",
qnn::get_backend_name(device));
} else {
QNN_LOG_ERROR("%s backend setenv failure\n",
qnn::get_backend_name(device));
}
}
auto *instance = new qnn::qnn_instance(qnn_lib_path, g_qnn_mgr[device].lib, "");
result = instance->qnn_init(nullptr);
if (0 != result) {
QNN_LOG_WARN(
"init qnn subsystem failed with qnn backend %s, pls check why\n",
qnn::get_backend_name(device));
delete instance;
return nullptr;
}
auto qnn_interface = instance->get_qnn_interface();
if (!qnn_interface.is_loaded()) {
QNN_LOG_WARN("qnn subsystem failure\n");
delete instance;
return nullptr;
}
std::string device_name = qnn::get_backend_name(device);
QNN_LOG_INFO("qnn device name %s", device_name.c_str());
g_qnn_mgr[device].instance = instance;
g_qnn_mgr[device].raw_interface = instance->get_qnn_raw_interface();
g_qnn_mgr[device].raw_system_interface = instance->get_qnn_raw_system_interface();
g_qnn_mgr[device].socinfo = instance->get_soc_info();
ggml_backend_t qnn_backend =
new ggml_backend{/* .guid = */ ggml_backend_qnn_guid(),
/* .iface = */ ggml_backend_qnn_interface,
/* .context = */ &g_qnn_mgr[device]};
g_qnn_mgr[device].backend = qnn_backend;
return qnn_backend;
}
extern "C" GGML_CALL int ggml_backend_qnn_reg_devices(void);
GGML_CALL int ggml_backend_qnn_reg_devices() {
for (size_t idx = 0; idx < GGML_QNN_MAX_DEVICES; idx++) {
char name[GGML_MAX_NAME];
ggml_backend_qnn_get_device_description(idx, name, GGML_MAX_NAME);
ggml_backend_register(name, ggml_backend_qnn_reg_init,
ggml_backend_qnn_buffer_type(idx),
(void *) (intptr_t) idx);
}
return GGML_QNN_MAX_DEVICES;
}