llama.cpp/src/llama-quant.cpp

2202 lines
94 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include "llama-quant.h"
#include "llama-impl.h"
#include "llama-model.h"
#include "llama-model-loader.h"
#include <algorithm>
#include <atomic>
#include <cmath>
#include <cstring>
#include <cinttypes>
#include <csignal>
#include <fstream>
#include <mutex>
#include <random>
#include <regex>
#include <thread>
#include <unordered_map>
// Quantization types. Changes to this struct must be replicated in quantize.cpp
struct tensor_quantization {
std::string name;
ggml_type quant = GGML_TYPE_COUNT;
};
static bool is_quantizable(const std::string & name, const llm_arch arch, const llama_model_quantize_params * params) {
if (params->only_copy) { return false; }
const auto tn = LLM_TN(arch);
// This used to be a regex, but <regex> has an extreme cost to compile times.
bool q = name.size() >= 6 && name.rfind("weight") == name.size() - 6; // ends with 'weight'?
// Do not quantize norm tensors
q &= name.find("_norm.weight") == std::string::npos;
// Do not quantize expert gating tensors
// NOTE: can't use LLM_TN here because the layer number is not known
q &= name.find("ffn_gate_inp.weight") == std::string::npos;
// These are very small (e.g. 4x4)
q &= name.find("altup") == std::string::npos;
q &= name.find("laurel") == std::string::npos;
// These are not too big so keep them as it is
q &= name.find("per_layer_model_proj") == std::string::npos;
// Do not quantize positional embeddings and token types (BERT)
q &= name != tn(LLM_TENSOR_POS_EMBD, "weight");
q &= name != tn(LLM_TENSOR_TOKEN_TYPES, "weight");
// Do not quantize Jamba, Mamba, LFM2's small yet 2D weights
// NOTE: can't use LLM_TN here because the layer number is not known
q &= name.find("ssm_conv1d.weight") == std::string::npos;
q &= name.find("shortconv.conv.weight") == std::string::npos;
// Do not quantize ARWKV, RWKV's small yet 2D weights
q &= name.find("time_mix_first.weight") == std::string::npos;
q &= name.find("time_mix_w0.weight") == std::string::npos;
q &= name.find("time_mix_w1.weight") == std::string::npos;
q &= name.find("time_mix_w2.weight") == std::string::npos;
q &= name.find("time_mix_v0.weight") == std::string::npos;
q &= name.find("time_mix_v1.weight") == std::string::npos;
q &= name.find("time_mix_v2.weight") == std::string::npos;
q &= name.find("time_mix_a0.weight") == std::string::npos;
q &= name.find("time_mix_a1.weight") == std::string::npos;
q &= name.find("time_mix_a2.weight") == std::string::npos;
q &= name.find("time_mix_g1.weight") == std::string::npos;
q &= name.find("time_mix_g2.weight") == std::string::npos;
q &= name.find("time_mix_decay_w1.weight") == std::string::npos;
q &= name.find("time_mix_decay_w2.weight") == std::string::npos;
q &= name.find("time_mix_lerp_fused.weight") == std::string::npos;
// Do not quantize relative position bias (T5)
q &= name.find("attn_rel_b.weight") == std::string::npos;
return q;
}
static enum ggml_type fallback_type(const enum ggml_type new_type) {
switch (new_type) {
case GGML_TYPE_TQ1_0:
case GGML_TYPE_TQ2_0:
return GGML_TYPE_Q4_0; // symmetric-ish fallback
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_IQ4_XS:
return GGML_TYPE_IQ4_NL;
case GGML_TYPE_Q4_K:
return GGML_TYPE_Q5_0;
case GGML_TYPE_Q5_K:
return GGML_TYPE_Q5_1;
case GGML_TYPE_Q6_K:
return GGML_TYPE_Q8_0;
default:
return new_type;
}
}
static void zeros(std::ofstream & file, size_t n) {
char zero = 0;
for (size_t i = 0; i < n; ++i) {
file.write(&zero, 1);
}
}
static std::string remap_layer(const std::string & orig_name, const std::vector<int> & prune, std::map<int, std::string> & mapped, int & next_id) {
if (prune.empty()) {
return orig_name;
}
static const std::regex pattern(R"(blk\.(\d+)\.)");
if (std::smatch match; std::regex_search(orig_name, match, pattern)) {
const int blk = std::stoi(match[1]);
std::string new_name = orig_name;
if (mapped.count(blk)) {
// Already mapped, do nothing
} else if (std::find(prune.begin(), prune.end(), blk) != prune.end()) {
mapped[blk] = "";
} else if (blk < prune.front()) {
mapped[blk] = std::to_string(blk);
next_id = blk + 1;
} else {
mapped[blk] = std::to_string(next_id);
++next_id;
}
return mapped[blk].empty() ? mapped[blk] : new_name.replace(match.position(1), match.length(1), mapped[blk]);
}
return orig_name;
}
static std::string remap_imatrix (const std::string & orig_name, const std::map<int, std::string> & mapped) {
if (mapped.empty()) {
return orig_name;
}
static const std::regex pattern(R"(blk\.(\d+)\.)");
if (std::smatch match; std::regex_search(orig_name, match, pattern)) {
const std::string blk(match[1]);
std::string new_name = orig_name;
for (const auto & p : mapped) {
if (p.second == blk) {
return new_name.replace(match.position(1), match.length(1), std::to_string(p.first));
}
}
GGML_ABORT("\n%s: imatrix mapping error for %s\n", __func__, orig_name.c_str());
}
return orig_name;
}
struct quantize_state_impl {
const llama_model & model;
const llama_model_quantize_params * params;
int n_attention_wv = 0;
int n_ffn_down = 0;
int n_ffn_gate = 0;
int n_ffn_up = 0;
int i_attention_wv = 0;
int i_ffn_down = 0;
int i_ffn_gate = 0;
int i_ffn_up = 0;
int n_k_quantized = 0;
int n_fallback = 0;
bool has_imatrix = false;
bool has_activations = false;
// used to figure out if a model shares tok_embd with the output weight
bool has_output = false;
quantize_state_impl(const llama_model & model, const llama_model_quantize_params * params)
: model(model)
, params(params)
{}
};
static void llama_tensor_dequantize_impl(
ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
const size_t nelements, const int nthread
) {
if (output.size() < nelements) {
output.resize(nelements);
}
float * f32_output = (float *) output.data();
const ggml_type_traits * qtype = ggml_get_type_traits(tensor->type);
if (ggml_is_quantized(tensor->type)) {
if (qtype->to_float == NULL) {
throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
}
} else if (tensor->type != GGML_TYPE_F16 &&
tensor->type != GGML_TYPE_BF16) {
throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
}
if (nthread < 2) {
if (tensor->type == GGML_TYPE_F16) {
ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
} else if (tensor->type == GGML_TYPE_BF16) {
ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
} else if (ggml_is_quantized(tensor->type)) {
qtype->to_float(tensor->data, f32_output, nelements);
} else {
GGML_ABORT("fatal error"); // unreachable
}
return;
}
size_t block_size;
if (tensor->type == GGML_TYPE_F16 ||
tensor->type == GGML_TYPE_BF16) {
block_size = 1;
} else {
block_size = (size_t)ggml_blck_size(tensor->type);
}
size_t block_size_bytes = ggml_type_size(tensor->type);
GGML_ASSERT(nelements % block_size == 0);
size_t nblocks = nelements / block_size;
size_t blocks_per_thread = nblocks / nthread;
size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
size_t in_buff_offs = 0;
size_t out_buff_offs = 0;
for (int tnum = 0; tnum < nthread; tnum++) {
size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
if (typ == GGML_TYPE_F16) {
ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
} else if (typ == GGML_TYPE_BF16) {
ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
} else {
qtype->to_float(inbuf, outbuf, nels);
}
};
workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
in_buff_offs += thr_block_bytes;
out_buff_offs += thr_elems;
}
for (auto & w : workers) { w.join(); }
workers.clear();
}
static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
const std::string name = ggml_get_name(tensor);
// TODO: avoid hardcoded tensor names - use the TN_* constants
const llm_arch arch = qs.model.arch;
const auto tn = LLM_TN(arch);
auto use_more_bits = [](int i_layer, int n_layers) -> bool {
return i_layer < n_layers/8 || i_layer >= 7*n_layers/8 || (i_layer - n_layers/8)%3 == 2;
};
const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
if (n_expert > 1) {
// Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but occasionally randomly
// sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
// for getting the current layer as I initially thought, and we need to resort to parsing the
// tensor name.
if (sscanf(name, "blk.%d.", &i_layer) != 1) {
throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
}
if (i_layer < 0 || i_layer >= n_layer) {
throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
}
}
return std::make_pair(i_layer, n_layer);
};
// for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
// with the quantization of the output tensor
if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
new_type = qs.params->output_tensor_type;
} else {
const int64_t nx = tensor->ne[0];
const int64_t qk_k = ggml_blck_size(new_type);
if (ftype == LLAMA_FTYPE_MOSTLY_MXFP4_MOE) {
new_type = GGML_TYPE_Q8_0;
}
else if (arch == LLM_ARCH_FALCON || nx % qk_k != 0) {
new_type = GGML_TYPE_Q8_0;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
new_type = GGML_TYPE_Q5_K;
}
else if (new_type != GGML_TYPE_Q8_0) {
new_type = GGML_TYPE_Q6_K;
}
}
} else if (ftype == LLAMA_FTYPE_MOSTLY_MXFP4_MOE) {
// MoE tensors -> MXFP4
// other tensors -> Q8_0
if (tensor->ne[2] > 1) {
new_type = GGML_TYPE_MXFP4;
} else {
new_type = GGML_TYPE_Q8_0;
}
} else if (name == "token_embd.weight" || name == "per_layer_token_embd.weight") {
if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
new_type = qs.params->token_embedding_type;
} else {
if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
new_type = GGML_TYPE_Q2_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
new_type = GGML_TYPE_IQ3_S;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
new_type = GGML_TYPE_IQ3_S;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_TQ1_0 || ftype == LLAMA_FTYPE_MOSTLY_TQ2_0) {
new_type = GGML_TYPE_Q4_K;
}
}
} else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
if (name.find("attn_v.weight") != std::string::npos) {
if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
++qs.i_attention_wv;
}
else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
new_type = GGML_TYPE_Q4_K;
}
else if (name.find("ffn_down") != std::string::npos) {
if (qs.i_ffn_down < qs.n_ffn_down/8) {
new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
}
++qs.i_ffn_down;
}
else if (name.find("attn_output.weight") != std::string::npos) {
if (qs.model.hparams.n_expert == 8) {
new_type = GGML_TYPE_Q5_K;
} else {
if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
}
}
} else if (name.find("attn_v.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
new_type = GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
}
else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
new_type = GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
new_type = GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
new_type = GGML_TYPE_Q5_K;
}
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
if (qs.model.type == LLM_TYPE_70B) {
// In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
// 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
// nearly negligible increase in model size by quantizing this tensor with more bits:
if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
}
if (qs.model.hparams.n_expert == 8) {
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
// TODO: explore better strategies
new_type = GGML_TYPE_Q8_0;
}
++qs.i_attention_wv;
} else if (name.find("attn_k.weight") != std::string::npos) {
if (qs.model.hparams.n_expert == 8) {
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
// TODO: explore better strategies
new_type = GGML_TYPE_Q8_0;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
new_type = GGML_TYPE_IQ3_XXS;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
new_type = GGML_TYPE_IQ2_S;
}
} else if (name.find("attn_q.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
new_type = GGML_TYPE_IQ3_XXS;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
new_type = GGML_TYPE_IQ2_S;
}
} else if (name.find("ffn_down") != std::string::npos) {
auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
int i_layer = info.first, n_layer = info.second;
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
: arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
: GGML_TYPE_Q3_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
(qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
new_type = GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
if (arch == LLM_ARCH_FALCON) {
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
} else {
if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
}
}
else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
new_type = GGML_TYPE_Q5_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
new_type = GGML_TYPE_Q5_K;
}
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
&& qs.has_imatrix && i_layer < n_layer/8) {
// Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
// We only do it when an imatrix is provided because a) we want to make sure that one can always get the
// same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
}
++qs.i_ffn_down;
} else if (name.find("attn_output.weight") != std::string::npos) {
if (arch != LLM_ARCH_FALCON) {
if (qs.model.hparams.n_expert == 8) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
new_type = GGML_TYPE_Q5_K;
}
} else {
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
}
} else {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
}
}
else if (name.find("attn_qkv.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
new_type = GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
}
else if (name.find("ffn_gate") != std::string::npos) {
auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
int i_layer = info.first, n_layer = info.second;
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
new_type = GGML_TYPE_IQ3_XXS;
}
++qs.i_ffn_gate;
}
else if (name.find("ffn_up") != std::string::npos) {
auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
int i_layer = info.first, n_layer = info.second;
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
new_type = GGML_TYPE_IQ3_XXS;
}
++qs.i_ffn_up;
}
// if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
//}
// IK: let's remove this, else Q2_K is almost the same as Q3_K_S
//else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
// if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
//}
// This can be used to reduce the size of the Q5_K_S model.
// The associated PPL increase is fully in line with the size reduction
//else {
// if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
//}
bool convert_incompatible_tensor = false;
{
const int64_t nx = tensor->ne[0];
const int64_t ny = tensor->ne[1];
const int64_t qk_k = ggml_blck_size(new_type);
if (nx % qk_k != 0) {
LLAMA_LOG_WARN("\n\n%s : tensor cols %" PRId64 " x %" PRId64 " are not divisible by %" PRId64 ", required for %s", __func__, nx, ny, qk_k, ggml_type_name(new_type));
convert_incompatible_tensor = true;
} else {
++qs.n_k_quantized;
}
}
if (convert_incompatible_tensor) {
switch (new_type) {
case GGML_TYPE_TQ1_0:
case GGML_TYPE_TQ2_0: new_type = GGML_TYPE_Q4_0; break; // TODO: use a symmetric type instead
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
}
if (tensor->ne[0] % ggml_blck_size(new_type) != 0) {
new_type = GGML_TYPE_F16;
}
LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
++qs.n_fallback;
}
return new_type;
}
static size_t llama_tensor_quantize_impl(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
if (nthread < 2) {
// single-thread
size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
if (!ggml_validate_row_data(new_type, new_data, new_size)) {
throw std::runtime_error("quantized data validation failed");
}
return new_size;
}
std::mutex mutex;
int64_t counter = 0;
size_t new_size = 0;
bool valid = true;
auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
nrows, n_per_row, imatrix]() {
const int64_t nrows_per_chunk = chunk_size / n_per_row;
size_t local_size = 0;
while (true) {
std::unique_lock<std::mutex> lock(mutex);
int64_t first_row = counter; counter += nrows_per_chunk;
if (first_row >= nrows) {
if (local_size > 0) {
new_size += local_size;
}
break;
}
lock.unlock();
const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
local_size += this_size;
// validate the quantized data
const size_t row_size = ggml_row_size(new_type, n_per_row);
void * this_data = (char *) new_data + first_row * row_size;
if (!ggml_validate_row_data(new_type, this_data, this_size)) {
std::unique_lock<std::mutex> lock(mutex);
valid = false;
break;
}
}
};
for (int it = 0; it < nthread - 1; ++it) {
workers.emplace_back(compute);
}
compute();
for (auto & w : workers) { w.join(); }
workers.clear();
if (!valid) {
throw std::runtime_error("quantized data validation failed");
}
return new_size;
}
static std::atomic<bool> bpw_stop{ false };
static void signal_handler(int) {
bpw_stop.store(true, std::memory_order_relaxed);
}
// Returns tensor type overrides to meet a global bpw target
static std::unordered_map<std::string, ggml_type> target_bpw_type(
llama_model_loader & ml,
std::vector<no_init<uint8_t>> & buffer,
const llama_model & model,
const std::vector<const llama_model_loader::llama_tensor_weight *> & tensors,
const std::map<int, std::string> & mapped,
const std::unordered_map<std::string, std::vector<float>> * values_data,
const std::unordered_map<std::string, std::vector<float>> * activations_data,
const llama_model_quantize_params * params,
int nthread
) {
struct candidate_types {
ggml_type type;
float bpw;
size_t bytes;
double error;
};
struct tensor_info {
const llama_model_loader::llama_tensor_weight * w = nullptr;
std::vector<candidate_types> candidate;
int choice = -1;
float min_bpw = 0.0;
float max_bpw = 0.0;
size_t n_elements = 0;
};
// subset of quantization types with the best accuracy/size tradeoff
constexpr ggml_type quant_types[] = {
GGML_TYPE_IQ1_S,
GGML_TYPE_IQ1_M,
GGML_TYPE_IQ2_XXS,
GGML_TYPE_Q2_K,
GGML_TYPE_IQ3_XXS,
GGML_TYPE_Q3_K,
GGML_TYPE_IQ4_XS,
GGML_TYPE_Q4_K,
GGML_TYPE_Q5_K,
GGML_TYPE_Q6_K,
GGML_TYPE_Q8_0
};
const char * important_tensors[] = {
".output.weight",
".attn_output.weight",
".ffn_down.weight",
".ffn_down_shexp.weight"
};
constexpr double epsilon = 1e-12;
constexpr double infinity = std::numeric_limits<double>::infinity();
constexpr uint32_t file_magic = 0x42505731; // BPW1
const char * func = __func__;
auto tensor_bytes = [](const ggml_tensor * t, const ggml_type typ) -> size_t {
const int64_t n_per_row = t->ne[0];
const size_t row_sz = ggml_row_size(typ, n_per_row);
return (size_t)ggml_nrows(t) * row_sz;
};
auto tensor_bpw = [&](const ggml_tensor * t, const ggml_type typ) -> double {
const size_t bytes = tensor_bytes(t, typ);
return (double)bytes * 8.0 / (double)ggml_nelements(t);
};
auto is_compatible = [](const ggml_tensor * t, const ggml_type typ) -> bool {
const int64_t blck = ggml_blck_size(typ);
return blck <= 1 || (t->ne[0] % blck) == 0;
};
auto is_iq = [](const enum ggml_type t) {
switch (t) {
case GGML_TYPE_IQ1_S:
case GGML_TYPE_IQ1_M:
case GGML_TYPE_IQ2_XXS:
case GGML_TYPE_IQ2_XS:
case GGML_TYPE_IQ2_S:
case GGML_TYPE_IQ3_XXS:
case GGML_TYPE_IQ3_S:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_IQ4_XS:
return true;
default:
return false;
}
};
auto make_compatible = [&](const ggml_tensor * t, const ggml_type typ) -> ggml_type {
if (is_compatible(t, typ)) { return typ; }
ggml_type fb = fallback_type(typ);
return is_compatible(t, fb) ? fb : GGML_TYPE_F16;
};
auto can_quantize = [&](const ggml_tensor * t) -> bool {
if (ggml_n_dims(t) < 2) { return false; } // skip 1D tensors
return is_quantizable(ggml_get_name(t), model.arch, params);
};
auto install_signal_handlers = [] {
static std::once_flag once;
std::call_once(once, [] {
std::signal(SIGINT, signal_handler);
std::signal(SIGTERM, signal_handler);
});
};
auto uninstall_signal_handlers = [] {
static std::once_flag once;
std::call_once(once, [] {
std::signal(SIGINT, SIG_DFL);
std::signal(SIGTERM, SIG_DFL);
});
};
// Saved state per tensor
struct saved_info {
std::vector<candidate_types> candidate;
int choice = -1;
float min_bpw = 0.0f;
float max_bpw = 0.0f;
size_t n_elements = 0;
};
auto djb2_hash = [](const uint8_t * data, size_t n) -> uint64_t {
uint64_t h = 5381;
for (size_t i = 0; i < n; ++i) {
h = (h << 5) + h + data[i];
}
return h ? h : 0xeabada55cafed00d;
};
auto metadata_id = [&](const gguf_context * ctx) -> uint64_t {
const size_t sz = gguf_get_meta_size(ctx);
std::vector<uint8_t> buf(sz);
gguf_get_meta_data(ctx, buf.data());
return djb2_hash(buf.data(), buf.size());
};
char hex[17];
const uint64_t model_id = metadata_id(ml.meta.get());
std::snprintf(hex, sizeof(hex), "%016" PRIx64, (uint64_t)model_id);
const std::string checkpoint_file = ml.arch_name + "-" + std::string(hex) + ".bpw_state";
auto save_bpw_state = [&](const std::vector<tensor_info> & all_vec) {
const std::string tmp = checkpoint_file + ".tmp";
std::ofstream ofs(tmp, std::ios::binary | std::ios::trunc);
if (!ofs) { return; } // best-effort
const float target_bpw = params->target_bpw;
ofs.write((const char *)&file_magic, sizeof(file_magic));
ofs.write((const char *)&model_id, sizeof(model_id));
ofs.write((const char *)&target_bpw, sizeof(target_bpw));
const uint64_t n = all_vec.size();
ofs.write((const char *)&n, sizeof(n));
for (const auto & ti : all_vec) {
const std::string name = ggml_get_name(ti.w->tensor);
const uint32_t len = (uint32_t)name.size();
ofs.write((const char *)&len, sizeof(len));
ofs.write(name.data(), len);
const uint64_t cn = ti.candidate.size();
ofs.write((const char *)&cn, sizeof(cn));
ofs.write((const char *)&ti.choice, sizeof(ti.choice));
ofs.write((const char *)&ti.min_bpw, sizeof(ti.min_bpw));
ofs.write((const char *)&ti.max_bpw, sizeof(ti.max_bpw));
const uint64_t ne = ti.n_elements;
ofs.write((const char *)&ne, sizeof(ne));
for (const auto & c : ti.candidate) {
const int32_t t = c.type;
const uint64_t b = c.bytes;
ofs.write((const char *)&t, sizeof(t));
ofs.write((const char *)&c.bpw, sizeof(c.bpw));
ofs.write((const char *)&b, sizeof(b));
ofs.write((const char *)&c.error, sizeof(c.error));
}
}
ofs.close();
std::remove(checkpoint_file.c_str());
std::rename(tmp.c_str(), checkpoint_file.c_str());
LLAMA_LOG_INFO("%s: saved progress for %lu tensors to %s\n", func, all_vec.size(), checkpoint_file.c_str());
};
auto load_bpw_state = [&]() -> std::unordered_map<std::string, saved_info> {
std::unordered_map<std::string, saved_info> out;
std::ifstream ifs(checkpoint_file, std::ios::binary);
if (!ifs) { return out; }
uint32_t magic = 0;
uint64_t id = 0;
float bpw = 0.0f;
ifs.read((char *)&magic, sizeof(magic));
ifs.read((char *)&id, sizeof(id));
ifs.read((char *)&bpw, sizeof(bpw));
if (magic != file_magic) {
LLAMA_LOG_WARN("%s: invalid resume file, ignoring: %s\n", func, checkpoint_file.c_str());
return out;
} else if (id != model_id) {
LLAMA_LOG_WARN("%s: model ID mismatch, ignoring: %s\n", func, checkpoint_file.c_str());
return out;
} else if (bpw != params->target_bpw) {
LLAMA_LOG_WARN("%s: target bpw of %f does not match %f, ignoring: %s\n", func, params->target_bpw, bpw, checkpoint_file.c_str());
return out;
} else {
LLAMA_LOG_INFO("%s: resuming tensor quantization\n", func);
}
uint64_t n = 0;
ifs.read((char *)&n, sizeof(n));
for (uint64_t i = 0; i < n; ++i) {
uint32_t len = 0;
ifs.read((char *)&len, sizeof(len));
std::string name(len, '\0');
ifs.read(name.data(), len);
uint64_t cn = 0;
ifs.read((char *)&cn, sizeof(cn));
saved_info si;
ifs.read((char *)&si.choice, sizeof(si.choice));
ifs.read((char *)&si.min_bpw, sizeof(si.min_bpw));
ifs.read((char *)&si.max_bpw, sizeof(si.max_bpw));
uint64_t ne = 0;
ifs.read((char *)&ne, sizeof(ne));
si.n_elements = (size_t)ne;
si.candidate.resize(cn);
for (size_t j = 0; j < si.candidate.size(); ++j) {
int32_t t = 0;
uint64_t b = 0;
ifs.read((char *)&t, sizeof(t));
si.candidate[j].type = (ggml_type)t;
ifs.read((char *)&si.candidate[j].bpw, sizeof(si.candidate[j].bpw));
ifs.read((char *)&b, sizeof(b));
si.candidate[j].bytes = (size_t)b;
ifs.read((char *)&si.candidate[j].error, sizeof(si.candidate[j].error));
}
out.emplace(std::move(name), std::move(si));
}
LLAMA_LOG_INFO("%s: loaded bpw state for %lu tensors from %s\n", func, out.size(), checkpoint_file.c_str());
return out;
};
auto delete_bpw_state = [&] {
std::ifstream ifs(checkpoint_file);
if (ifs.good()) {
LLAMA_LOG_INFO("%s: deleting %s\n", func, checkpoint_file.c_str());
std::remove(checkpoint_file.c_str());
}
};
auto check_signal_handler = [&](const std::vector<tensor_info> & all_vec) {
if (bpw_stop.load(std::memory_order_relaxed)) {
LLAMA_LOG_INFO("\n%s: saving progress for %lu tensors to %s\n", func, all_vec.size(), checkpoint_file.c_str());
save_bpw_state(all_vec);
throw std::runtime_error("user interrupted the process");
}
};
// Estimate error for a given type using a sampled subset of rows
auto estimate_error = [&](const ggml_tensor * t,
const ggml_type quant_type,
const std::vector<float> & f32_sample,
const std::vector<int64_t> & rows_sample,
const float * values_sample,
const float * activations_sample,
std::vector<uint8_t> & quantized_buffer,
std::vector<float> & dequantized_buffer,
float tensor_bias_lambda,
const float * slice_bias_lambda,
double * out_mse = nullptr,
double * out_proj = nullptr) -> double
{
const int64_t n_per_row = t->ne[0];
const int64_t nrows = t->ne[1];
const int64_t ne2 = t->ne[2] > 0 ? t->ne[2] : 1;
const size_t sample_elems = f32_sample.size();
const size_t sample_rows = n_per_row > 0 ? sample_elems / (size_t)n_per_row : 0;
if (sample_rows == 0) {
if (out_mse) { *out_mse = 0.0; }
if (out_proj) { *out_proj = 0.0; }
return 0.0;
}
size_t expected_rows = 0;
for (int64_t s = 0; s < ne2; ++s) {
expected_rows += (size_t)rows_sample[s];
}
if (expected_rows != sample_rows) {
if (out_mse) { *out_mse = infinity; }
if (out_proj) { *out_proj = 0.0; }
return infinity;
}
const size_t row_sz = ggml_row_size(quant_type, n_per_row);
const size_t buf_sz = row_sz * sample_rows;
if (quantized_buffer.size() < buf_sz) { quantized_buffer.resize(buf_sz); }
if (dequantized_buffer.size() < sample_elems) { dequantized_buffer.resize(sample_elems); }
const bool has_values = values_sample != nullptr;
const bool has_activations = activations_sample != nullptr;
// Bias denominators per slice
std::vector<double> bias_denom(ne2, 0.0);
if (has_activations) {
for (int64_t s = 0; s < ne2; ++s) {
const float * v = has_values ? values_sample + s * n_per_row : nullptr;
const float * a = activations_sample + s * n_per_row;
double denom = 0.0;
for (int64_t j = 0; j < n_per_row; ++j) {
const double w = v ? std::max(0.0f, v[j]) : 1.0;
const double aj = a[j];
denom += w * aj * aj;
}
bias_denom[s] = denom;
}
}
// Row squared norms (weighted if values present)
std::vector<double> row_sq_norm(sample_rows, 0.0);
{
size_t off = 0;
size_t ridx = 0;
for (int64_t s = 0; s < ne2; ++s) {
const int64_t rs = rows_sample[s];
if (rs == 0) { continue; }
const float * v = has_values ? values_sample + s * n_per_row : nullptr;
for (int64_t r = 0; r < rs; ++r, ++ridx) {
const float * x = f32_sample.data() + off;
double sum = 0.0;
if (v) {
for (int64_t j = 0; j < n_per_row; ++j) {
const double w = std::max(0.0f, v[j]);
const double xx = x[j];
sum += w * xx * xx;
}
} else {
for (int64_t j = 0; j < n_per_row; ++j) {
const double xx = x[j];
sum += xx * xx;
}
}
row_sq_norm[ridx] = sum;
off += (size_t)n_per_row;
}
}
}
// Quantize per slice into quantized_buffer
{
size_t qoff = 0;
size_t foff = 0;
for (int64_t s = 0; s < ne2; ++s) {
const int64_t rs = rows_sample[s];
if (rs == 0) { continue; }
const float * v = has_values ? values_sample + s * n_per_row : nullptr;
(void)ggml_quantize_chunk(quant_type, f32_sample.data() + foff, quantized_buffer.data() + qoff, 0, rs, n_per_row, v);
qoff += row_sz * (size_t)rs;
foff += (size_t)rs * (size_t)n_per_row;
}
}
// Dequantize into dequantized_buffer
{
const ggml_type_traits * traits = ggml_get_type_traits(quant_type);
if (!traits || !traits->to_float) {
if (out_mse) { *out_mse = infinity; }
if (out_proj) { *out_proj = 0.0; }
return infinity;
}
for (size_t r = 0; r < sample_rows; ++r) {
const uint8_t * src = quantized_buffer.data() + r * row_sz;
float * dst = dequantized_buffer.data() + r * (size_t)n_per_row;
traits->to_float(src, dst, (int)n_per_row);
}
}
// Compute error per slice with trimmed aggregation
auto trimmed_mean = [](std::vector<double> & v) -> double {
const int64_t n = (int64_t)v.size();
if (n == 0) { return 0.0; }
double sum = std::accumulate(v.begin(), v.end(), 0.0);
if (n < 50) { return sum / (double)n; } // too few elements to trim
int64_t k = (int64_t) std::floor(0.025 * (double)n); // trim 5% (2.5% each side)
std::sort(v.begin(), v.end());
const auto num = (double)(n - 2 * k);
sum = std::accumulate(v.begin() + k, v.begin() + (n - k), 0.0);
return sum / std::max(1.0, num);
};
size_t off = 0;
size_t ridx = 0;
double total_mse = 0.0;
double total_proj = 0.0;
double total_bias = 0.0;
for (int64_t s = 0; s < ne2; ++s) {
const int64_t rs = rows_sample[s];
if (rs == 0) { continue; }
const float * v = has_values ? values_sample + s * n_per_row : nullptr;
const float * a = has_activations ? activations_sample + s * n_per_row : nullptr;
const double denom_bias = has_activations ? bias_denom[s] : 0.0;
std::vector<double> row_mse_norm;
row_mse_norm.reserve(rs);
std::vector<double> row_proj_norm;
if (a) { row_proj_norm.reserve(rs); }
for (int64_t r = 0; r < rs; ++r, ++ridx) {
const float * x = f32_sample.data() + off;
const float * y = dequantized_buffer.data() + off;
double w_mse = 0.0;
double bias_num = 0.0;
for (int64_t j = 0; j < n_per_row; ++j) {
const double wj = v ? std::max(0.0f, v[j]) : 1.0;
const double e = y[j] - x[j];
w_mse += wj * e * e;
if (a) { bias_num += wj * e * a[j]; }
}
const double denom_x = row_sq_norm[ridx];
const double m_norm = w_mse / (denom_x + epsilon);
row_mse_norm.push_back(std::isfinite(m_norm) ? m_norm : infinity);
if (a) {
double p_norm = 0.0;
if (denom_bias > 0.0) {
const double proj = bias_num * bias_num / (denom_bias + epsilon);
p_norm = std::isfinite(proj) ? proj : 0.0;
}
row_proj_norm.push_back(p_norm);
}
off += (size_t)n_per_row;
}
const double slice_mse = trimmed_mean(row_mse_norm) * (double)nrows;
const double slice_proj = a ? trimmed_mean(row_proj_norm) * (double)nrows : 0.0;
total_mse += slice_mse;
total_proj += slice_proj;
const double bl = slice_bias_lambda ? (double)std::max(0.0f, slice_bias_lambda[s]) : (double)tensor_bias_lambda;
total_bias += bl * slice_proj;
if (!std::isfinite(total_mse) || !std::isfinite(total_proj) || !std::isfinite(total_bias)) {
if (out_mse) { *out_mse = infinity; }
if (out_proj) { *out_proj = 0.0; }
return infinity;
}
}
if (out_mse) { *out_mse = total_mse; }
if (out_proj) { *out_proj = total_proj; }
const double total_err = total_mse + total_bias;
return std::isfinite(total_err) ? total_err : infinity;
};
// Returns lambda per slice or 0.0 if no activations
auto estimate_lambda = [](const float * values, const float * activations, const int64_t n_per_row, const int64_t ne2) -> std::vector<float> {
const int64_t ns = std::max<int64_t>(1, ne2);
std::vector<float> lambdas(ns, 0.0f);
if (!activations) { return lambdas; }
for (int64_t s = 0; s < ns; ++s) {
const float * v = values ? values + s * n_per_row : nullptr;
const float * a = activations + s * n_per_row;
double s1 = 0.0;
double s2 = 0.0;
for (int64_t j = 0; j < n_per_row; ++j) {
const double w = v ? std::max(0.0f, v[j]) : 1.0;
const double aw = std::sqrt(w) * a[j];
const double z = aw * aw;
s1 += z;
s2 += z * z;
}
float l = 0.0f;
if (s1 > 0.0) {
const auto n = (double)n_per_row;
const double c = std::max(0.0, s2 / (s1 * s1 + epsilon) - 1.0 / n);
l = (float)std::clamp(12.0 * (c / (c + 1.0)), 0.0, 16.0);
}
lambdas[(size_t)s] = l;
}
return lambdas;
};
install_signal_handlers();
auto bpw_data = load_bpw_state();
std::vector<tensor_info> all;
all.reserve(tensors.size());
for (const auto * tw : tensors) {
ggml_tensor * tensor = tw->tensor;
const std::string name = ggml_get_name(tensor);
if (!can_quantize(tensor)) { continue; }
check_signal_handler(all);
// If we already have fully evaluatedd this tensor then reuse it
if (auto it_saved = bpw_data.find(name); it_saved != bpw_data.end()) {
tensor_info info;
info.w = tw;
info.candidate = it_saved->second.candidate;
info.choice = it_saved->second.choice;
info.min_bpw = it_saved->second.min_bpw;
info.max_bpw = it_saved->second.max_bpw;
info.n_elements = it_saved->second.n_elements ? it_saved->second.n_elements : (size_t)ggml_nelements(tensor);
all.push_back(std::move(info));
continue;
}
LLAMA_LOG_INFO("\t%s: - processing tensor %45s \t(%12" PRId64 " elements)\n", __func__, name.c_str(), ggml_nelements(tensor));
if (!ml.use_mmap) {
if (buffer.size() < ggml_nbytes(tensor)) { buffer.resize(ggml_nbytes(tensor)); }
tensor->data = buffer.data();
}
ml.load_data_for(tensor);
// Dequantize sampled rows into f32_sample
const int64_t n_per_row = tensor->ne[0];
const int64_t nrows_total = tensor->ne[1];
const int64_t ne2 = tensor->ne[2] > 0 ? tensor->ne[2] : 1;
// Compute rows based on tensor shape and slice count
auto sample_rows = [](const int64_t n, const int64_t rows, const int64_t n2, const bool has_acts) -> int64_t {
const double tensor_budget = has_acts ? 1 * 1024 * 1024 : 0.5 * 1024 * 1024;
const double scale_rows = std::clamp(std::sqrt(std::max(1.0, (double)rows) / 4096.0), 0.5, 2.0); // favour more rows for large nrt
const double slice_budget = tensor_budget * scale_rows / std::max<int64_t>(1, n2);
const int64_t min_rows = has_acts ? 128 : 64;
const int64_t max_rows = 4096;
int64_t total_rows = std::llround(slice_budget / std::max<int64_t>(1, n));
total_rows = std::max<int64_t>(min_rows, std::min<int64_t>(total_rows, std::min<int64_t>(rows, max_rows)));
if (rows <= min_rows * 2) { total_rows = rows; } // use all rows for small tensors
return total_rows;
};
const int64_t rows_sample_per_expert = sample_rows(n_per_row, nrows_total, ne2, activations_data != nullptr);
std::vector<float> f32_sample;
f32_sample.reserve((size_t)ne2 * (size_t)std::min<int64_t>(nrows_total, rows_sample_per_expert) * (size_t)n_per_row);
std::vector<int64_t> rows_sample(ne2, 0);
const ggml_type src_type = tensor->type;
const ggml_type_traits * src_traits = ggml_get_type_traits(src_type);
const bool src_is_quant = ggml_is_quantized(src_type);
const size_t src_row_sz = ggml_row_size(src_type, n_per_row);
// Convert a single row to fp32
auto row_to_fp32 = [&](const uint8_t * src, float * dst) {
const ggml_type t = src_type;
if (t == GGML_TYPE_F32) {
std::memcpy(dst, src, sizeof(float) * (size_t)n_per_row);
return;
}
if (t == GGML_TYPE_F16) {
ggml_fp16_to_fp32_row((const ggml_fp16_t *) src, dst, (int)n_per_row);
return;
}
if (t == GGML_TYPE_BF16) {
ggml_bf16_to_fp32_row((const ggml_bf16_t *) src, dst, (int)n_per_row);
return;
}
if (src_is_quant) {
GGML_ASSERT(src_traits && src_traits->to_float);
src_traits->to_float(src, dst, (int) n_per_row);
return;
}
throw std::runtime_error(format("unsupported src type %s for sampling", ggml_type_name(t)));
};
// Sample rows randomly per slice
{
f32_sample.clear();
std::vector<float> row_buffer(n_per_row);
for (int64_t slice = 0; slice < ne2; ++slice) {
std::mt19937 rng(std::hash<std::string>{}(name) ^ 0xeabada55cafed00d ^ slice);
const int64_t rows_sample_max = std::max<int64_t>(1, std::min<int64_t>(nrows_total, rows_sample_per_expert));
const int64_t stride = std::max<int64_t>(1, nrows_total / rows_sample_max);
int64_t offset = 0;
if (stride > 1) {
std::uniform_int_distribution<int64_t> dist(0, stride - 1);
offset = dist(rng);
}
int64_t current = 0;
for (int64_t r = offset; r < nrows_total && current < rows_sample_max; r += stride) {
const uint8_t * src_row = (const uint8_t *)tensor->data + slice * (src_row_sz * nrows_total) + r * src_row_sz;
if (src_type == GGML_TYPE_F32) {
const auto *src_f32 = (const float *)src_row;
f32_sample.insert(f32_sample.end(), src_f32, src_f32 + n_per_row);
} else {
row_to_fp32(src_row, row_buffer.data());
f32_sample.insert(f32_sample.end(), row_buffer.begin(), row_buffer.end());
}
++current;
}
rows_sample[slice] = current;
}
}
auto side_data = [&](const std::unordered_map<std::string, std::vector<float>> * m, const std::string & tensor_name) {
if (!m) { return std::pair<const float*, size_t>{nullptr, 0}; }
const std::string key = remap_imatrix(tensor_name, mapped);
const auto it = m->find(key);
return it == m->end() ? std::pair<const float*, size_t>{nullptr, 0} : std::pair<const float*, size_t>{ it->second.data(), it->second.size() };
};
// Copy this row's side data (values and activations), or broadcasts to all slices
auto copy_or_broadcast = [&](const float * src, size_t src_sz, std::vector<float> & dst) {
dst.clear();
if (!src || src_sz == 0) { return; }
const size_t want = (size_t)ne2 * (size_t)n_per_row;
if (src_sz == want) {
dst.assign(src, src + want);
return;
}
if (src_sz == (size_t)n_per_row) {
dst.resize(want);
for (int64_t s = 0; s < ne2; ++s) {
std::memcpy(dst.data() + s * n_per_row, src, n_per_row * sizeof(float));
}
return;
}
LLAMA_LOG_WARN("%s: side data size mismatch for %s: got %zu, expected %zu or %zu; ignoring\n", func, name.c_str(), src_sz, (size_t)n_per_row, want);
};
const auto [values_all, values_sz] = side_data(values_data, name);
const auto [activations_all, activations_sz] = side_data(activations_data, name);
std::vector<float> values_sample;
std::vector<float> activations_sample;
if (values_all) { copy_or_broadcast(values_all, values_sz, values_sample); }
if (activations_all) { copy_or_broadcast(activations_all, activations_sz, activations_sample); }
const int64_t nelem = ggml_nelements(tensor);
tensor_info info;
info.w = tw;
info.n_elements = nelem;
// Prepare scratch buffers sized for the largest candidate row size
size_t total_sampled_rows = f32_sample.size() / n_per_row;
// Build list of candidate types first (compatible ones)
const bool has_valid_imatrix = !values_sample.empty() && values_sample.size() == (size_t)ne2 * (size_t)n_per_row;
size_t max_row_sz = 0;
const ggml_type * base_arr = quant_types;
const size_t base_sz = std::size(quant_types);
std::vector<ggml_type> compatible_candidates;
compatible_candidates.reserve(base_sz);
for (size_t i = 0; i < base_sz; ++i) {
ggml_type ts_type = base_arr[i];
if (is_iq(ts_type) && !has_valid_imatrix) {
LLAMA_LOG_WARN("%s: skipping %s for %s, no or mismatched imatrix\n", __func__, ggml_type_name(ts_type), name.c_str());
continue;
}
ggml_type tt = make_compatible(tensor, ts_type);
if (!is_compatible(tensor, tt)) { continue; }
compatible_candidates.push_back(tt);
max_row_sz = std::max(max_row_sz, ggml_row_size(tt, n_per_row));
}
std::sort(compatible_candidates.begin(), compatible_candidates.end());
compatible_candidates.erase(std::unique(compatible_candidates.begin(), compatible_candidates.end()), compatible_candidates.end());
// Adjusts the trade-off between systematic bias (introduced by blockwise scaling) and MSE.
// Larger values favours quantisation types that produce smaller bias even if the MSE is slightly bigger
float tensor_lambda = 0.0f;
std::vector<float> lambdas;
const float * values = values_sample.empty() ? nullptr : values_sample.data();
const float * activations = activations_sample.empty() ? nullptr : activations_sample.data();
double acc = 0.0;
int ns = 0;
lambdas = estimate_lambda(values, activations, n_per_row, ne2);
for (float l : lambdas) { acc += l; ++ns; }
tensor_lambda = ns ? (float)(acc / ns) : 0.0f;
// Evaluate candidates
std::vector<candidate_types> eval_candidates(compatible_candidates.size());
std::vector<uint8_t> quantized_buffer(max_row_sz * total_sampled_rows);
std::vector<float> dequantized_buffer(f32_sample.size());
const float * slice_lambda = lambdas.empty() ? nullptr : lambdas.data();
int n_eval_threads = std::max(1, std::min<int>(nthread, (int)compatible_candidates.size()));
std::atomic<size_t> cidx{0};
std::vector<std::thread> eval_workers;
eval_workers.reserve(n_eval_threads);
for (int ti = 0; ti < n_eval_threads; ++ti) {
eval_workers.emplace_back([&] {
// thread-local scratch
std::vector<uint8_t> tl_quantized_buffer(quantized_buffer.size());
std::vector<float> tl_dequantized_buffer(dequantized_buffer.size());
for (;;) {
if (bpw_stop.load(std::memory_order_relaxed)) { break; } // stop if a signal arrived
const size_t i = cidx.fetch_add(1, std::memory_order_acq_rel);
if (i >= compatible_candidates.size()) { break; }
const ggml_type tensor_types = compatible_candidates[i];
const auto bpw = (float)tensor_bpw(tensor, tensor_types);
const size_t bytes = tensor_bytes(tensor, tensor_types);
const auto err = estimate_error(tensor, tensor_types, f32_sample, rows_sample, values, activations,
tl_quantized_buffer, tl_dequantized_buffer, tensor_lambda, slice_lambda);
eval_candidates[i] = candidate_types{ tensor_types, bpw, bytes, err };
}
});
}
for (auto &th : eval_workers) { th.join(); }
// If interruption happened mid-evaluation, exit without adding a half-baked tensor entry
if (bpw_stop.load(std::memory_order_relaxed) && cidx.load(std::memory_order_relaxed) < compatible_candidates.size()) {
check_signal_handler(all);
}
for (auto &c : eval_candidates) {
if (c.bytes > 0) { info.candidate.push_back(c); }
}
if (info.candidate.empty()) {
// As a last resort, keep original type
float bpw = ggml_nbytes(tensor) * 8.0f / nelem;
info.candidate.push_back(candidate_types{ tensor->type, bpw, ggml_nbytes(tensor), 0.0 });
}
// Keep only the paretooptimal candidates and enforce convexity in (bytes, error) curve
auto pareto_convex = [](std::vector<candidate_types> & candidates) {
if (candidates.empty()) { return; }
std::sort(candidates.begin(), candidates.end(), [](const candidate_types & a, const candidate_types & b) {
if (a.bytes != b.bytes) { return a.bytes < b.bytes; }
return a.error < b.error;
});
const auto last = std::unique(candidates.begin(), candidates.end(), [](const candidate_types & a, const candidate_types & b) {
return a.bytes == b.bytes;
});
candidates.erase(last, candidates.end());
// Pareto by bytes -> error
std::vector<candidate_types> pareto;
pareto.reserve(candidates.size());
double best_err = infinity;
size_t last_b = std::numeric_limits<size_t>::max();
for (const auto & c : candidates) {
if (c.bytes != last_b) {
last_b = c.bytes;
if (c.error < best_err) {
best_err = c.error;
pareto.push_back(c);
}
}
}
candidates.swap(pareto);
if (candidates.size() < 3) { return; } // need at least 3 points to do convex hull
// Convex hull (lower envelope)
std::vector<candidate_types> hull; hull.reserve(candidates.size());
for (const auto & c : candidates) {
auto cross_product = [](const candidate_types & h0, const candidate_types & h1, const candidate_types & p) -> double {
const double dx1 = (double)h1.bytes - (double)h0.bytes;
const double dy1 = h1.error - h0.error;
const double dx2 = (double)p.bytes - (double)h0.bytes;
const double dy2 = p.error - h0.error;
return dx1 * dy2 - dx2 * dy1;
};
while (hull.size() >= 2) {
if (cross_product(hull[hull.size() - 2], hull[hull.size() - 1], c) <= -1 * epsilon) { // very small negative tolerance
hull.pop_back();
} else {
break;
}
}
hull.push_back(c);
}
candidates.swap(hull);
};
pareto_convex(info.candidate);
// Initialize choice at the smallest bpw candidate
info.choice = 0;
info.min_bpw = info.candidate.front().bpw;
info.max_bpw = info.candidate.back().bpw;
all.push_back(std::move(info));
check_signal_handler(all); // save after each tensor
}
if (all.empty()) { return {}; }
// Compute total elements across all tensors and bytes for non-quantizable tensors
size_t nq_elements = 0;
size_t nq_bytes = 0;
for (const auto & it : ml.weights_map) {
const ggml_tensor * tensor = it.second.tensor;
const std::string name = it.first;
nq_elements += (size_t)ggml_nelements(tensor);
if (!is_quantizable(name, model.arch, params)) {
nq_bytes += ggml_nbytes(tensor);
}
}
auto total_bytes = [&]() -> size_t {
size_t tb = 0;
for (const auto & ti : all) {
tb += ti.candidate[ti.choice].bytes;
}
return tb;
};
size_t q_elements = 0;
size_t min_bytes = 0;
size_t max_bytes = 0;
for (const auto & ti : all) {
q_elements += (size_t)ti.n_elements;
min_bytes += ti.candidate.front().bytes; // smallest candidate per tensor
max_bytes += ti.candidate.back().bytes; // largest candidate per tensor
}
if (q_elements == 0) { return {}; }
const double target_bpw = params->target_bpw;
size_t target_total_bytes = std::llround(target_bpw * (double)nq_elements / 8.0);
size_t budget_bytes = target_total_bytes >= nq_bytes ? target_total_bytes - nq_bytes : min_bytes;
auto emit_overrides = [&]() -> std::unordered_map<std::string, ggml_type> {
std::unordered_map<std::string, ggml_type> overrides;
LLAMA_LOG_INFO("%s: - estimated tensor quantization mix:\n", func);
for (const auto & ti : all) {
LLAMA_LOG_INFO("\t%s: %45s - \t%8s, \t%1.4f bpw,\terror: %.4f\n",
func, ggml_get_name(ti.w->tensor), ggml_type_name(ti.candidate[ti.choice].type), ti.candidate[ti.choice].bpw, ti.candidate[ti.choice].error);
overrides[ggml_get_name(ti.w->tensor)] = ti.candidate[ti.choice].type;
}
return overrides;
};
if (budget_bytes <= min_bytes) {
for (auto & ti : all) { ti.choice = 0; }
return emit_overrides();
}
if (budget_bytes >= max_bytes) {
for (auto & ti : all) { ti.choice = (int)ti.candidate.size() - 1; }
return emit_overrides();
}
auto is_important = [&](const std::string & tensor_name) -> bool {
return std::any_of(std::begin(important_tensors), std::end(important_tensors), [&](const char* imp) {
return tensor_name.find(imp) != std::string::npos;
}
);
};
// Lagrangian relaxation to minimise error subject to a bpw target constraint
auto lagrange_penalty = [&](const double mu, std::vector<int> & choice, size_t & bytes, double & err) {
choice.resize(all.size());
bytes = 0;
err = 0.0;
for (size_t i = 0; i < all.size(); ++i) {
const auto & candidate = all[i].candidate;
const std::string tensor_name = ggml_get_name(all[i].w->tensor);
double effective_mu = mu;
if (is_important(tensor_name)) { effective_mu *= 0.1; } // important tensors get 10x lower penalty
int best_j = 0;
double best_val = infinity;
for (int j = 0; j < (int)candidate.size(); ++j) {
const double bits = (double)candidate[j].bytes * 8.0;
const double val = candidate[j].error + effective_mu * bits;
if (val < best_val - epsilon || (std::abs(val - best_val) <= epsilon && candidate[j].bytes < candidate[best_j].bytes)) {
best_val = val;
best_j = j;
}
}
choice[i] = best_j;
bytes += candidate[best_j].bytes;
err += candidate[best_j].error;
}
};
size_t bytes_lo = 0;
size_t bytes_hi = 0;
size_t bytes_mid = 0;
double mu_lo = 0.0;
double mu_hi = 1.0;
double err_lo = 0.0;
double err_hi = 0.0;
double err_mid = 0.0;
std::vector<int> choice_lo;
std::vector<int> choice_hi;
std::vector<int> choice_mid;
std::vector<int> best_under_choice;
std::vector<int> best_over_choice;
lagrange_penalty(mu_lo, choice_lo, bytes_lo, err_lo);
// increase mu until we get under budget or hit a safety cap
{
int expand = 0;
size_t prev_bytes_hi = std::numeric_limits<size_t>::max();
while (true) {
lagrange_penalty(mu_hi, choice_hi, bytes_hi, err_hi);
if (bytes_hi <= budget_bytes) { break; }
if (bytes_hi >= prev_bytes_hi) { break; }
prev_bytes_hi = bytes_hi;
mu_hi *= 2.0; // double the penalty multiplier to reduce tensor sizes
if (++expand > 60) { break; } // safety cap to prevent an infinite loop
}
}
double best_under_gap = infinity;
double best_over_gap = infinity;
double best_under_err = infinity;
double best_over_err = infinity;
for (int it = 0; it < 40; ++it) { // binary search iterations for optimal Lagrange multiplier (40 ≈ 1e-12 precision)
double mu = 0.5 * (mu_lo + mu_hi); // midpoint of current bounds
lagrange_penalty(mu, choice_mid, bytes_mid, err_mid);
const double gap = std::abs((double)bytes_mid - (double)budget_bytes);
if (bytes_mid > budget_bytes) {
// Too big, need stronger penalty
mu_lo = mu;
if (gap < best_over_gap - epsilon || (std::abs(gap - best_over_gap) <= epsilon && err_mid < best_over_err)) {
best_over_gap = gap;
best_over_err = err_mid;
best_over_choice = choice_mid;
}
} else {
// Under budget, good candidate
mu_hi = mu;
if (gap < best_under_gap - epsilon || (std::abs(gap - best_under_gap) <= epsilon && err_mid < best_under_err)) {
best_under_gap = gap;
best_under_err = err_mid;
best_under_choice = choice_mid;
}
}
}
if (!best_under_choice.empty()) {
for (size_t i = 0; i < all.size(); ++i) {
all[i].choice = best_under_choice[i];
}
} else if (!best_over_choice.empty()) {
for (size_t i = 0; i < all.size(); ++i) {
all[i].choice = best_over_choice[i];
}
} else {
// Pick whichever side we already have, or keep minimal
if (bytes_hi <= budget_bytes && !choice_hi.empty()) {
for (size_t i = 0; i < all.size(); ++i) {
all[i].choice = choice_hi[i];
}
} else {
for (auto & ti : all) {
ti.choice = 0;
}
}
}
// Spend any remaining budget with best upgrades that still fit (one pass)
{
auto cur_bytes = total_bytes();
while (true) {
int best_i = -1;
int best_j = -1;
double best_ratio = -1.0;
double best_gain = -1.0;
for (int i = 0; i < (int)all.size(); ++i) {
const auto & ti = all[i];
const std::string tensor_name = ggml_get_name(ti.w->tensor);
int j = ti.choice + 1;
while (j < (int)ti.candidate.size() && ti.candidate[j].bytes == ti.candidate[ti.choice].bytes) { ++j; }
if (j >= (int)ti.candidate.size()) { continue; } // no upgrade available
size_t delta_bytes = ti.candidate[j].bytes - ti.candidate[ti.choice].bytes;
if (cur_bytes + delta_bytes > budget_bytes) { continue; } // won't fit in budget
double err_gain = std::max(0.0, ti.candidate[ti.choice].error - ti.candidate[j].error);
if (err_gain < epsilon) { continue; } // no error improvement
double ratio = err_gain / (double)delta_bytes; // error reduction per byte
if (is_important(tensor_name)) { ratio *= 2.0; } // important tensors get 2x boost
// For tie-breaking, prioritize the largest absolute error improvement.
if (ratio > best_ratio + epsilon || (std::abs(ratio - best_ratio) <= epsilon && err_gain > best_gain)) {
best_ratio = ratio;
best_gain = err_gain;
best_i = i;
best_j = j;
}
}
if (best_i < 0) { break; } // no more upgrades within budget found
size_t upgrade_cost = all[best_i].candidate[best_j].bytes - all[best_i].candidate[all[best_i].choice].bytes;
all[best_i].choice = best_j;
cur_bytes += upgrade_cost;
}
}
delete_bpw_state(); // we're done, clear any checkpoint
uninstall_signal_handlers();
return emit_overrides();
}
static void llama_model_quantize_impl(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
ggml_type default_type;
llama_ftype ftype = params->ftype;
switch (params->ftype) {
case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
case LLAMA_FTYPE_MOSTLY_MXFP4_MOE: default_type = GGML_TYPE_MXFP4; break;
// K-quants
case LLAMA_FTYPE_MOSTLY_Q2_K_S:
case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
case LLAMA_FTYPE_MOSTLY_Q3_K_S:
case LLAMA_FTYPE_MOSTLY_Q3_K_M:
case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
case LLAMA_FTYPE_MOSTLY_Q4_K_S:
case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
case LLAMA_FTYPE_MOSTLY_Q5_K_S:
case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
case LLAMA_FTYPE_MOSTLY_TQ1_0: default_type = GGML_TYPE_TQ1_0; break;
case LLAMA_FTYPE_MOSTLY_TQ2_0: default_type = GGML_TYPE_TQ2_0; break;
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
}
int nthread = params->nthread;
if (nthread <= 0) {
nthread = std::thread::hardware_concurrency();
}
// mmap consistently increases speed on Linux, and also increases speed on Windows with
// hot cache. It may cause a slowdown on macOS, possibly related to free memory.
#if defined(__linux__) || defined(_WIN32)
constexpr bool use_mmap = true;
#else
constexpr bool use_mmap = false;
#endif
llama_model_kv_override * kv_overrides = nullptr;
if (params->kv_overrides) {
auto * v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
kv_overrides = v->data();
}
std::vector<std::string> splits = {};
llama_model_loader ml(fname_inp, splits, use_mmap, /*check_tensors*/ true, kv_overrides, nullptr);
ml.init_mappings(false); // no prefetching
llama_model model(llama_model_default_params());
model.load_arch (ml);
model.load_hparams(ml);
model.load_stats (ml);
quantize_state_impl qs(model, params);
if (params->only_copy) {
ftype = ml.ftype;
}
const std::unordered_map<std::string, std::vector<float>> * values_data = nullptr;
const std::unordered_map<std::string, std::vector<float>> * activations_data = nullptr;
if (params->imatrix) {
values_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
if (values_data) {
LLAMA_LOG_INFO("================================ Have weights data with %d entries",int(values_data->size()));
qs.has_imatrix = true;
// check imatrix for nans or infs
for (const auto & kv : *values_data) {
for (float f : kv.second) {
if (!std::isfinite(f)) {
throw std::runtime_error(format("imatrix contains non-finite value %f\n", f));
}
}
}
}
}
if (params->activations) {
activations_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->activations);
if (activations_data) {
LLAMA_LOG_INFO(" and %d activations",int(activations_data->size()));
qs.has_activations = true;
// check activations for nans or infs
for (const auto & kv : *activations_data) {
for (float f : kv.second) {
if (!std::isfinite(f)) {
throw std::runtime_error(format("activations contain non-finite value %f\n", f));
}
}
}
}
}
LLAMA_LOG_INFO("\n");
gguf_context_ptr ctx_out { gguf_init_empty() };
std::vector<int> prune_list = {};
if (params->prune_layers) {
prune_list = *static_cast<const std::vector<int> *>(params->prune_layers);
}
// copy the KV pairs from the input file
gguf_set_kv (ctx_out.get(), ml.meta.get());
gguf_set_val_u32(ctx_out.get(), "general.quantization_version", GGML_QNT_VERSION); // TODO: use LLM_KV
gguf_set_val_u32(ctx_out.get(), "general.file_type", ftype); // TODO: use LLM_KV
// Remove split metadata
gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
if (params->kv_overrides) {
const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
for (const auto & o : overrides) {
if (o.key[0] == 0) break;
if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
gguf_set_val_f32(ctx_out.get(), o.key, o.val_f64);
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
// Setting type to UINT32. See https://github.com/ggml-org/llama.cpp/pull/14182 for context
gguf_set_val_u32(ctx_out.get(), o.key, (uint32_t)abs(o.val_i64));
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
gguf_set_val_bool(ctx_out.get(), o.key, o.val_bool);
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
gguf_set_val_str(ctx_out.get(), o.key, o.val_str);
} else {
LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
}
}
}
std::map<int, std::string> mapped;
int blk_id = 0;
int pruned_attention_w = 0;
// make a list of weights
std::vector<const llama_model_loader::llama_tensor_weight *> tensors;
tensors.reserve(ml.weights_map.size());
for (const auto & it : ml.weights_map) {
const std::string remapped_name(remap_layer(it.first, prune_list, mapped, blk_id));
if (remapped_name.empty()) {
if (it.first.find("attn_v.weight") != std::string::npos ||
it.first.find("attn_qkv.weight") != std::string::npos ||
it.first.find("attn_kv_b.weight") != std::string::npos) {
pruned_attention_w++;
}
LLAMA_LOG_DEBUG("%s: pruning tensor %s\n", __func__, it.first.c_str());
continue;
} else if (remapped_name != it.first) {
ggml_set_name(it.second.tensor, remapped_name.c_str());
LLAMA_LOG_DEBUG("%s: tensor %s remapped to %s\n", __func__, it.first.c_str(), ggml_get_name(it.second.tensor));
}
tensors.push_back(&it.second);
}
if (!prune_list.empty()) {
gguf_set_val_u32(ctx_out.get(), ml.llm_kv(LLM_KV_BLOCK_COUNT).c_str(), blk_id);
}
// keep_split requires that the weights are sorted by split index
if (params->keep_split) {
std::sort(tensors.begin(), tensors.end(), [](const llama_model_loader::llama_tensor_weight * a, const llama_model_loader::llama_tensor_weight * b) {
if (a->idx == b->idx) {
return a->offs < b->offs;
}
return a->idx < b->idx;
});
}
for (const auto * it : tensors) {
const struct ggml_tensor * tensor = it->tensor;
const std::string name = ggml_get_name(tensor);
// TODO: avoid hardcoded tensor names - use the TN_* constants
if (name.find("attn_v.weight") != std::string::npos ||
name.find("attn_qkv.weight") != std::string::npos ||
name.find("attn_kv_b.weight")!= std::string::npos) {
++qs.n_attention_wv;
} else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
qs.has_output = true;
}
}
qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
// sanity checks for models that have attention layers
if (qs.n_attention_wv != 0)
{
const auto & n_head_kv_iter = model.hparams.n_head_kv_arr.begin();
// attention layers have a non-zero number of kv heads
int32_t n_attn_layer = model.hparams.n_layer - std::count(n_head_kv_iter, n_head_kv_iter + model.hparams.n_layer, 0);
if (llama_model_has_encoder(&model)) {
// now n_attn_layer is the number of attention layers in the encoder
// for each decoder block, there are 2 attention layers
n_attn_layer += 2 * model.hparams.dec_n_layer;
}
GGML_ASSERT((qs.n_attention_wv == n_attn_layer - pruned_attention_w) && "n_attention_wv is unexpected");
}
size_t total_size_org = 0;
size_t total_size_new = 0;
std::vector<std::thread> workers;
workers.reserve(nthread);
int idx = 0;
std::vector<no_init<uint8_t>> read_data;
std::vector<no_init<uint8_t>> work;
std::vector<no_init<float>> f32_conv_buf;
uint16_t n_split = 1;
// Assume split index is continuous
if (params->keep_split) {
for (const auto * it : tensors) {
n_split = std::max(uint16_t(it->idx + 1), n_split);
}
}
std::vector<gguf_context_ptr> ctx_outs(n_split);
ctx_outs[0] = std::move(ctx_out);
// populate the original tensors so we get an initial meta data
for (const auto * it : tensors) {
uint16_t i_split = params->keep_split ? it->idx : 0;
ggml_tensor * tensor = it->tensor;
if (!ctx_outs[i_split]) {
ctx_outs[i_split].reset(gguf_init_empty());
}
gguf_add_tensor(ctx_outs[i_split].get(), tensor);
}
// Set split info if needed
if (n_split > 1) {
for (size_t i = 0; i < ctx_outs.size(); ++i) {
gguf_set_val_u16(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
gguf_set_val_u16(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
gguf_set_val_i32(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), (int32_t)tensors.size());
}
}
std::unordered_map<std::string, ggml_type> bpw_overrides = {};
if (params->target_bpw != -1.0f && !params->only_copy) {
if (params->imatrix) {
if (params->activations) {
LLAMA_LOG_INFO("%s: imatrix with activations provided, target bpw quantization will be more accurate\n",__func__);
} else {
LLAMA_LOG_WARN("%s: imatrix without activations provided, target bpw quantization will be less accurate\n", __func__);
}
LLAMA_LOG_INFO("%s: computing tensor quantization mix to achieve %.4f bpw\n", __func__, params->target_bpw);
bpw_overrides = target_bpw_type(ml, read_data, model, tensors, mapped, values_data, activations_data, params, nthread);
} else {
LLAMA_LOG_WARN("%s: no imatrix provided, target bpw will not apply\n", __func__);
}
}
int cur_split = -1;
std::ofstream fout;
auto close_ofstream = [&]() {
// Write metadata and close file handler
if (fout.is_open()) {
fout.seekp(0);
std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split].get()));
gguf_get_meta_data(ctx_outs[cur_split].get(), data.data());
fout.write((const char *) data.data(), data.size());
fout.close();
}
};
auto new_ofstream = [&](int index) {
cur_split = index;
GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
std::string fname = fname_out;
if (params->keep_split) {
std::vector<char> split_path(llama_path_max(), 0);
llama_split_path(split_path.data(), split_path.size(), fname_out.c_str(), cur_split, n_split);
fname = std::string(split_path.data());
}
fout = std::ofstream(fname, std::ios::binary);
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split].get());
// placeholder for the meta data
::zeros(fout, meta_size);
};
const auto tn = LLM_TN(model.arch);
new_ofstream(0);
for (const auto * it : tensors) {
const size_t align = GGUF_DEFAULT_ALIGNMENT;
const auto & weight = *it;
ggml_tensor * tensor = weight.tensor;
if (weight.idx != cur_split && params->keep_split) {
close_ofstream();
new_ofstream(weight.idx);
}
const std::string name = ggml_get_name(tensor);
if (!ml.use_mmap) {
if (read_data.size() < ggml_nbytes(tensor)) {
read_data.resize(ggml_nbytes(tensor));
}
tensor->data = read_data.data();
}
ml.load_data_for(tensor);
LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
++idx, ml.n_tensors, ggml_get_name(tensor), llama_format_tensor_shape(tensor).c_str(), ggml_type_name(tensor->type));
bool quantize = ggml_n_dims(tensor) >= 2 && is_quantizable(name, model.arch, params);
quantize &= params->quantize_output_tensor || name != "output.weight";
ggml_type new_type;
void * new_data;
size_t new_size;
if (quantize) {
new_type = default_type;
// get more optimal quantization type based on the tensor shape, layer, etc.
if (!params->pure && ggml_is_quantized(default_type)) {
int fallback = qs.n_fallback;
new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
// get quantization type overrides targeting a given bits per weight budget
if (params->target_bpw != -1.0f && !bpw_overrides.empty()) {
const auto override = bpw_overrides.find(name);
if (override != bpw_overrides.end() && override->second != new_type) {
LLAMA_LOG_DEBUG("(bpw override %s) ", ggml_type_name(new_type));
new_type = override->second;
}
}
// unless the user specifies a type, and the tensor shape will not require fallback quantisation
if (params->tensor_types && qs.n_fallback - fallback == 0) {
const std::vector<tensor_quantization> & tensor_types = *static_cast<const std::vector<tensor_quantization> *>(params->tensor_types);
const std::string tensor_name(tensor->name);
for (const auto & [tname, qtype] : tensor_types) {
if (std::regex pattern(tname); std::regex_search(tensor_name, pattern)) {
if (qtype != new_type) {
LLAMA_LOG_DEBUG("(type override %s) ", ggml_type_name(new_type));
new_type = qtype; // if two or more types are specified for the same tensor, the last match wins
}
}
}
}
}
if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
new_type = params->token_embedding_type;
}
if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
new_type = params->output_tensor_type;
}
// If we've decided to quantize to the same type the tensor is already
// in then there's nothing to do.
quantize = tensor->type != new_type;
}
if (!quantize) {
new_type = tensor->type;
new_data = tensor->data;
new_size = ggml_nbytes(tensor);
LLAMA_LOG_INFO("size = %8.3f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0);
} else {
const int64_t nelements = ggml_nelements(tensor);
const float * imatrix = nullptr;
if (values_data) {
auto it = values_data->find(remap_imatrix(tensor->name, mapped));
if (it == values_data->end()) {
LLAMA_LOG_INFO("\n====== %s: did not find weights for %s, ", __func__, tensor->name);
} else {
if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
imatrix = it->second.data();
} else {
LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
// this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
// this is a significant error and it may be good idea to abort the process if this happens,
// since many people will miss the error and not realize that most of the model is being quantized without an imatrix
// tok_embd should be ignored in this case, since it always causes this warning
if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
}
}
}
}
if ((new_type == GGML_TYPE_IQ2_XXS ||
new_type == GGML_TYPE_IQ2_XS ||
new_type == GGML_TYPE_IQ2_S ||
new_type == GGML_TYPE_IQ1_S ||
(new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
(new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
LLAMA_LOG_ERROR("\n\n============================================================\n");
LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
LLAMA_LOG_ERROR("============================================================\n\n");
throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
}
float * f32_data;
if (tensor->type == GGML_TYPE_F32) {
f32_data = (float *) tensor->data;
} else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
} else {
llama_tensor_dequantize_impl(tensor, f32_conv_buf, workers, nelements, nthread);
f32_data = (float *) f32_conv_buf.data();
}
LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
fflush(stdout);
if (work.size() < (size_t)nelements * 4) {
work.resize(nelements * 4); // upper bound on size
}
new_data = work.data();
const int64_t n_per_row = tensor->ne[0];
const int64_t nrows = tensor->ne[1];
static const int64_t min_chunk_size = 32 * 512;
const int64_t chunk_size = (n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row));
const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
// quantize each expert separately since they have different importance matrices
new_size = 0;
for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
const float * f32_data_03 = f32_data + i03 * nelements_matrix;
void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
new_size += llama_tensor_quantize_impl(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
// TODO: temporary sanity check that the F16 -> MXFP4 is lossless
#if 0
if (new_type == GGML_TYPE_MXFP4) {
auto * x = f32_data_03;
//LLAMA_LOG_INFO("nrows = %d, n_per_row = %d\n", nrows, n_per_row);
std::vector<float> deq(nrows*n_per_row);
const ggml_type_traits * qtype = ggml_get_type_traits(new_type);
qtype->to_float(new_data_03, deq.data(), deq.size());
double err = 0.0f;
for (int i = 0; i < (int) deq.size(); ++i) {
err += fabsf(deq[i] - x[i]);
//if (fabsf(deq[i] - x[i]) > 0.00001 && i < 256) {
if (deq[i] != x[i]) {
LLAMA_LOG_INFO("deq[%d] = %f, x[%d] = %f\n", i, deq[i], i, x[i]);
}
}
//LLAMA_LOG_INFO("err = %f\n", err);
GGML_ASSERT(err == 0.00000);
}
#endif
}
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
}
total_size_org += ggml_nbytes(tensor);
total_size_new += new_size;
// update the gguf meta data as we go
gguf_set_tensor_type(ctx_outs[cur_split].get(), name.c_str(), new_type);
GGML_ASSERT(gguf_get_tensor_size(ctx_outs[cur_split].get(), gguf_find_tensor(ctx_outs[cur_split].get(), name.c_str())) == new_size);
gguf_set_tensor_data(ctx_outs[cur_split].get(), name.c_str(), new_data);
// write tensor data + padding
fout.write((const char *) new_data, new_size);
zeros(fout, GGML_PAD(new_size, align) - new_size);
}
close_ofstream();
LLAMA_LOG_INFO("%s: model size = %8.2f MiB\n", __func__, total_size_org/1024.0/1024.0);
LLAMA_LOG_INFO("%s: quant size = %8.2f MiB\n", __func__, total_size_new/1024.0/1024.0);
if (qs.n_fallback > 0) {
LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
__func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
}
}
//
// interface implementation
//
llama_model_quantize_params llama_model_quantize_default_params() {
llama_model_quantize_params result = {
/*.nthread =*/ 0,
/*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
/*.output_tensor_type =*/ GGML_TYPE_COUNT,
/*.token_embedding_type =*/ GGML_TYPE_COUNT,
/*.allow_requantize =*/ false,
/*.quantize_output_tensor =*/ true,
/*.only_copy =*/ false,
/*.pure =*/ false,
/*.keep_split =*/ false,
/*.imatrix =*/ nullptr,
/*.activations =*/ nullptr,
/*.kv_overrides =*/ nullptr,
/*.tensor_type =*/ nullptr,
/*.prune_layers =*/ nullptr,
/*.target_bpw =*/ -1.0f
};
return result;
}
uint32_t llama_model_quantize(
const char * fname_inp,
const char * fname_out,
const llama_model_quantize_params * params) {
try {
llama_model_quantize_impl(fname_inp, fname_out, params);
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
return 1;
}
return 0;
}