llama.cpp/examples/model-conversion/scripts/embedding/run-original-model.py

253 lines
9.1 KiB
Python
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
import argparse
import os
import sys
import numpy as np
import importlib
from pathlib import Path
from transformers import AutoTokenizer, AutoConfig, AutoModel
import torch
def parse_arguments():
parser = argparse.ArgumentParser(description='Run original embedding model')
parser.add_argument(
'--model-path',
'-m',
help='Path to the model'
)
parser.add_argument(
'--prompts-file',
'-p',
help='Path to file containing prompts (one per line)'
)
parser.add_argument(
'--use-sentence-transformers',
action='store_true',
help=('Use SentenceTransformer to apply all numbered layers '
'(01_Pooling, 02_Dense, 03_Dense, 04_Normalize)')
)
parser.add_argument(
'--device',
'-d',
help='Device to use (cpu, cuda, mps, auto)',
default='auto'
)
return parser.parse_args()
def load_model_and_tokenizer(model_path, use_sentence_transformers=False, device="auto"):
if device == "cpu":
device_map = {"": "cpu"}
print("Forcing CPU usage")
elif device == "auto":
# On Mac, "auto" device_map can cause issues with accelerate
# So we detect the best device manually
if torch.cuda.is_available():
device_map = {"": "cuda"}
print("Using CUDA")
elif torch.backends.mps.is_available():
device_map = {"": "mps"}
print("Using MPS (Apple Metal)")
else:
device_map = {"": "cpu"}
print("Using CPU")
else:
device_map = {"": device}
if use_sentence_transformers:
from sentence_transformers import SentenceTransformer
print("Using SentenceTransformer to apply all numbered layers")
model = SentenceTransformer(model_path)
tokenizer = model.tokenizer
config = model[0].auto_model.config # type: ignore
else:
tokenizer = AutoTokenizer.from_pretrained(model_path)
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
# This can be used to override the sliding window size for manual testing. This
# can be useful to verify the sliding window attention mask in the original model
# and compare it with the converted .gguf model.
if hasattr(config, 'sliding_window'):
original_sliding_window = config.sliding_window
print(f"Modified sliding window: {original_sliding_window} -> {config.sliding_window}")
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
print(f"Using unreleased model: {unreleased_model_name}")
if unreleased_model_name:
model_name_lower = unreleased_model_name.lower()
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
class_name = f"{unreleased_model_name}Model"
print(f"Importing unreleased model module: {unreleased_module_path}")
try:
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
model = model_class.from_pretrained(
model_path,
device_map=device_map,
offload_folder="offload",
trust_remote_code=True,
config=config
)
except (ImportError, AttributeError) as e:
print(f"Failed to import or load model: {e}")
sys.exit(1)
else:
model = AutoModel.from_pretrained(
model_path,
device_map=device_map,
offload_folder="offload",
trust_remote_code=True,
config=config
)
print(f"Model class: {type(model)}")
print(f"Model file: {type(model).__module__}")
# Verify the model is using the correct sliding window
if hasattr(model.config, 'sliding_window'): # type: ignore
print(f"Model's sliding_window: {model.config.sliding_window}") # type: ignore
else:
print("Model config does not have sliding_window attribute")
return model, tokenizer, config
def get_prompt(args):
if args.prompts_file:
try:
with open(args.prompts_file, 'r', encoding='utf-8') as f:
return f.read().strip()
except FileNotFoundError:
print(f"Error: Prompts file '{args.prompts_file}' not found")
sys.exit(1)
except Exception as e:
print(f"Error reading prompts file: {e}")
sys.exit(1)
else:
return "Hello world today"
def main():
args = parse_arguments()
model_path = os.environ.get('EMBEDDING_MODEL_PATH', args.model_path)
if model_path is None:
print("Error: Model path must be specified either via --model-path argument "
"or EMBEDDING_MODEL_PATH environment variable")
sys.exit(1)
# Determine if we should use SentenceTransformer
use_st = (
args.use_sentence_transformers or os.environ.get('USE_SENTENCE_TRANSFORMERS', '').lower() in ('1', 'true', 'yes')
)
model, tokenizer, config = load_model_and_tokenizer(model_path, use_st, args.device)
# Get the device the model is on
if not use_st:
device = next(model.parameters()).device
else:
# For SentenceTransformer, get device from the underlying model
device = next(model[0].auto_model.parameters()).device # type: ignore
model_name = os.path.basename(model_path)
prompt_text = get_prompt(args)
texts = [prompt_text]
with torch.no_grad():
if use_st:
embeddings = model.encode(texts, convert_to_numpy=True)
all_embeddings = embeddings # Shape: [batch_size, hidden_size]
encoded = tokenizer(
texts,
padding=True,
truncation=True,
return_tensors="pt"
)
tokens = encoded['input_ids'][0]
token_strings = tokenizer.convert_ids_to_tokens(tokens)
for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
print(f"{token_id:6d} -> '{token_str}'")
print(f"Embeddings shape (after all SentenceTransformer layers): {all_embeddings.shape}")
print(f"Embedding dimension: {all_embeddings.shape[1] if len(all_embeddings.shape) > 1 else all_embeddings.shape[0]}") # type: ignore
else:
# Standard approach: use base model output only
encoded = tokenizer(
texts,
padding=True,
truncation=True,
return_tensors="pt"
)
tokens = encoded['input_ids'][0]
token_strings = tokenizer.convert_ids_to_tokens(tokens)
for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
print(f"{token_id:6d} -> '{token_str}'")
# Move inputs to the same device as the model
encoded = {k: v.to(device) for k, v in encoded.items()}
outputs = model(**encoded)
hidden_states = outputs.last_hidden_state # Shape: [batch_size, seq_len, hidden_size]
all_embeddings = hidden_states[0].float().cpu().numpy() # Shape: [seq_len, hidden_size]
print(f"Hidden states shape: {hidden_states.shape}")
print(f"All embeddings shape: {all_embeddings.shape}")
print(f"Embedding dimension: {all_embeddings.shape[1]}")
if len(all_embeddings.shape) == 1:
n_embd = all_embeddings.shape[0] # type: ignore
n_embd_count = 1
all_embeddings = all_embeddings.reshape(1, -1)
else:
n_embd = all_embeddings.shape[1] # type: ignore
n_embd_count = all_embeddings.shape[0] # type: ignore
print()
for j in range(n_embd_count):
embedding = all_embeddings[j]
print(f"embedding {j}: ", end="")
# Print first 3 values
for i in range(min(3, n_embd)):
print(f"{embedding[i]:9.6f} ", end="")
print(" ... ", end="")
# Print last 3 values
for i in range(n_embd - 3, n_embd):
print(f"{embedding[i]:9.6f} ", end="")
print() # New line
print()
data_dir = Path("data")
data_dir.mkdir(exist_ok=True)
bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"
flattened_embeddings = all_embeddings.flatten()
flattened_embeddings.astype(np.float32).tofile(bin_filename)
with open(txt_filename, "w") as f:
idx = 0
for j in range(n_embd_count):
for value in all_embeddings[j]:
f.write(f"{idx}: {value:.6f}\n")
idx += 1
print(f"Total values: {len(flattened_embeddings)} ({n_embd_count} embeddings × {n_embd} dimensions)")
print("")
print(f"Saved bin embeddings to: {bin_filename}")
print(f"Saved txt embeddings to: {txt_filename}")
if __name__ == "__main__":
main()