llama.cpp/ggml/src/ggml-vulkan/vulkan-shaders/upscale.comp

179 lines
5.9 KiB
Plaintext

#version 450
layout (push_constant) uniform parameter
{
uint ne; uint a_offset; uint d_offset;
uint ne00; uint ne01;
uint nb00; uint nb01; uint nb02; uint nb03;
uint ne10; uint ne11; uint ne12; uint ne13;
float sf0; float sf1; float sf2; float sf3;
float pixel_offset;
} p;
#include "types.glsl"
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
// from ggml.h: enum ggml_scale_mode, enum ggml_scale_flag
#define NEAREST 0
#define BILINEAR 1
#define BICUBIC 2
#define BILINEAR_ANTIALIAS 513
layout (constant_id = 0) const uint scale_mode = 0;
float fetch_nearest(uint i10, uint i11, uint i12, uint i13) {
const uint i00 = uint(i10 / p.sf0);
const uint i01 = uint(i11 / p.sf1);
const uint i02 = uint(i12 / p.sf2);
const uint i03 = uint(i13 / p.sf3);
return data_a[p.a_offset + i03 * p.nb03 + i02 * p.nb02 + i01 * p.nb01 + i00 * p.nb00];
}
float fetch_bilinear(ivec2 c0, ivec2 c1, vec2 d, uint i12, uint i13) {
const uint i02 = uint(i12 / p.sf2);
const uint i03 = uint(i13 / p.sf3);
const uint base = p.a_offset + i03 * p.nb03 + i02 * p.nb02;
const float v00 = data_a[base + c0.y * p.nb01 + c0.x * p.nb00];
const float v01 = data_a[base + c0.y * p.nb01 + c1.x * p.nb00];
const float v10 = data_a[base + c1.y * p.nb01 + c0.x * p.nb00];
const float v11 = data_a[base + c1.y * p.nb01 + c1.x * p.nb00];
return
v00 * (1.0-d.x) * (1.0-d.y) +
v01 * d.x * (1.0-d.y) +
v10 * (1.0-d.x) * d.y +
v11 * d.x * d.y;
}
float interpolate_bilinear(uint i10, uint i11, uint i12, uint i13) {
const ivec2 ne0 = ivec2(p.ne00, p.ne01);
const vec2 c = (vec2(i10, i11) + p.pixel_offset) / vec2(p.sf0, p.sf1) - p.pixel_offset;
const vec2 c0f = floor(c);
const vec2 d = c - c0f;
const ivec2 c0 = max(ivec2(c0f), 0);
const ivec2 c1 = min(ivec2(c0f + 1), ne0 - 1);
return fetch_bilinear(c0, c1, d, i12, i13);
}
float triangle_filter(float x) {
return max(1.0f - abs(x), 0.0f);
}
float interpolate_bilinear_antialias(uint i10, uint i11, uint i12, uint i13) {
const float support1 = max(1.0f, 1.0f / p.sf1);
const float invscale1 = 1.0f / support1;
const float support0 = max(1.0f, 1.0f / p.sf0);
const float invscale0 = 1.0f / support0;
const uint i02 = uint(i12 / p.sf2);
const uint i03 = uint(i13 / p.sf3);
const float y = (float(i11) + p.pixel_offset) / p.sf1;
const float x = (float(i10) + p.pixel_offset) / p.sf0;
// the range of source pixels that contribute
const int x_min = max(int(x - support0 + p.pixel_offset), 0);
const int x_max = min(int(x + support0 + p.pixel_offset), int(p.ne00));
const int y_min = max(int(y - support1 + p.pixel_offset), 0);
const int y_max = min(int(y + support1 + p.pixel_offset), int(p.ne01));
// bilinear filter with antialiasing
float val = 0.0f;
float total_weight = 0.0f;
for (int sy = y_min; sy < y_max; sy++) {
const float weight_y = triangle_filter((sy - y + p.pixel_offset) * invscale1);
for (int sx = x_min; sx < x_max; sx++) {
const float weight_x = triangle_filter((sx - x + p.pixel_offset) * invscale0);
const float weight = weight_x * weight_y;
if (weight <= 0.0f) {
continue;
}
const float pixel = data_a[p.a_offset + i03 * p.nb03 + i02 * p.nb02 + sy * p.nb01 + sx * p.nb00];
val += pixel * weight;
total_weight += weight;
}
}
if (total_weight > 0.0f) {
val /= total_weight;
}
return val;
}
// Bicubic interpolation with alpha = -0.75
// https://en.wikipedia.org/wiki/Bicubic_interpolation#Bicubic_convolution_algorithm
const vec4 bcoeffs1 = vec4( 1.25, -2.25, 0.0, 1.0);
const vec4 bcoeffs2 = vec4(-0.75, 3.75, -6.0, 3.0);
vec4 powers(float x) { return vec4(x*x*x, x*x, x, 1); }
float bicubic(float p0, float p1, float p2, float p3, float x) {
return p0 * dot(bcoeffs2, powers(x + 1)) +
p1 * dot(bcoeffs1, powers(x )) +
p2 * dot(bcoeffs1, powers(1 - x)) +
p3 * dot(bcoeffs2, powers(2 - x));
}
#define FETCH(a,b) data_a[base + clamp(i.x+(a), 0, res.x) * p.nb00 + clamp(i.y+(b), 0, res.y) * p.nb01]
float interpolate_bicubic(uint i10, uint i11, uint i12, uint i13) {
const ivec2 res = ivec2(p.ne00 - 1, p.ne01 - 1);
const vec2 coord = (vec2(i10, i11) + p.pixel_offset) / vec2(p.sf0, p.sf1) - p.pixel_offset;
const vec2 d = fract(coord);
const ivec2 i = ivec2(floor(coord));
const uint i02 = uint(i12 / p.sf2);
const uint i03 = uint(i13 / p.sf3);
const uint base = p.a_offset + i03 * p.nb03 + i02 * p.nb02;
return bicubic(
bicubic(FETCH(-1,-1), FETCH(0,-1), FETCH(1,-1), FETCH(2,-1), d.x),
bicubic(FETCH(-1, 0), FETCH(0, 0), FETCH(1, 0), FETCH(2, 0), d.x),
bicubic(FETCH(-1, 1), FETCH(0, 1), FETCH(1, 1), FETCH(2, 1), d.x),
bicubic(FETCH(-1, 2), FETCH(0, 2), FETCH(1, 2), FETCH(2, 2), d.x), d.y);
}
void main() {
const uint idx = gl_GlobalInvocationID.z * 262144 + gl_GlobalInvocationID.y * 512 + gl_GlobalInvocationID.x;
if (idx >= p.ne) {
return;
}
const uint i10 = idx % p.ne10;
const uint i11 = (idx / p.ne10) % p.ne11;
const uint i12 = (idx / (p.ne10 * p.ne11)) % p.ne12;
const uint i13 = (idx / (p.ne10 * p.ne11 * p.ne12)) % p.ne13;
float result;
switch (scale_mode) {
case NEAREST:
result = fetch_nearest(i10, i11, i12, i13);
break;
case BILINEAR:
result = interpolate_bilinear(i10, i11, i12, i13);
break;
case BICUBIC:
result = interpolate_bicubic(i10, i11, i12, i13);
break;
case BILINEAR_ANTIALIAS:
result = interpolate_bilinear_antialias(i10, i11, i12, i13);
break;
}
data_d[p.d_offset + idx] = D_TYPE(result);
}