llama.cpp/tools/fit-params/fit-params.cpp

63 lines
1.8 KiB
C++

#include "llama.h"
#include "arg.h"
#include "common.h"
#include "log.h"
#include <iostream>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
int main(int argc, char ** argv) {
common_params params;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
return 1;
}
common_init();
llama_backend_init();
llama_numa_init(params.numa);
auto mparams = common_model_params_to_llama(params);
auto cparams = common_context_params_to_llama(params);
llama_params_fit(params.model.path.c_str(), &mparams, &cparams,
params.tensor_split, params.tensor_buft_overrides.data(), params.fit_params_target, params.fit_params_min_ctx,
params.verbosity >= 4 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_ERROR);
LOG_INF("Printing fitted CLI arguments to stdout...\n");
std::cout << "-c " << cparams.n_ctx;
std::cout << " -ngl " << mparams.n_gpu_layers;
size_t nd = llama_max_devices();
while (nd > 1 && mparams.tensor_split[nd - 1] == 0.0f) {
nd--;
}
if (nd > 1) {
for (size_t id = 0; id < nd; id++) {
if (id == 0) {
std::cout << " -ts ";
}
if (id > 0) {
std::cout << ",";
}
std::cout << mparams.tensor_split[id];
}
}
const size_t ntbo = llama_max_tensor_buft_overrides();
for (size_t itbo = 0; itbo < ntbo && mparams.tensor_buft_overrides[itbo].pattern != nullptr; itbo++) {
if (itbo == 0) {
std::cout << " -ot ";
}
if (itbo > 0) {
std::cout << ",";
}
std::cout << mparams.tensor_buft_overrides[itbo].pattern << "=" << ggml_backend_buft_name(mparams.tensor_buft_overrides[itbo].buft);
}
std::cout << "\n";
return 0;
}