llama.cpp/src/llama-sampling.cpp

3476 lines
117 KiB
C++

#include "llama-sampling.h"
#include "llama-impl.h"
#include "llama-vocab.h"
#include "llama-grammar.h"
#include "ggml-cpp.h"
#include <array>
#include <algorithm>
#include <cassert>
#include <cfloat>
#include <chrono>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <numeric>
#include <random>
#include <unordered_map>
#include <stdexcept>
// the ring buffer works similarly to std::deque, but with a fixed capacity
template<typename T>
struct ring_buffer {
ring_buffer(size_t cap) : capacity(cap), data(cap) {}
T & front() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[first];
}
const T & front() const {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[first];
}
T & back() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[pos];
}
const T & back() const {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
return data[pos];
}
void push_back(const T & value) {
if (capacity == 0) {
throw std::runtime_error("ring buffer: capacity is zero");
}
if (sz == capacity) {
// advance the start when buffer is full
first = (first + 1) % capacity;
} else {
sz++;
}
data[pos] = value;
pos = (pos + 1) % capacity;
}
T pop_front() {
if (sz == 0) {
throw std::runtime_error("ring buffer is empty");
}
T value = data[first];
first = (first + 1) % capacity;
sz--;
return value;
}
//T & operator[](size_t i) {
// if (i >= sz) {
// throw std::runtime_error("ring buffer: index out of bounds");
// }
// return data[(first + i) % capacity];
//}
//const T & at(size_t i) const {
// if (i >= sz) {
// throw std::runtime_error("ring buffer: index out of bounds");
// }
// return data[(first + i) % capacity];
//}
const T & rat(size_t i) const {
if (i >= sz) {
throw std::runtime_error("ring buffer: index out of bounds");
}
return data[(first + sz - i - 1) % capacity];
}
std::vector<T> to_vector() const {
std::vector<T> result;
result.reserve(sz);
for (size_t i = 0; i < sz; i++) {
result.push_back(data[(first + i) % capacity]);
}
return result;
}
void clear() {
// here only reset the status of the buffer
sz = 0;
first = 0;
pos = 0;
}
bool empty() const {
return sz == 0;
}
size_t size() const {
return sz;
}
size_t capacity = 0;
size_t sz = 0;
size_t first = 0;
size_t pos = 0;
std::vector<T> data;
};
// writes result in res, does not mutate cur
static void llama_token_data_array_partial_sort(const llama_token_data_array & cur, int npartial, std::vector<llama_token_data> & res) {
static const auto comp = [](const llama_token_data & a, const llama_token_data & b) {
return a.logit > b.logit;
};
constexpr int nbuckets = 128;
constexpr float bucket_low = -10.0f;
constexpr float bucket_high = 10.0f;
constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
constexpr float bucket_inter = -bucket_low * bucket_scale;
std::vector<int> bucket_idx;
std::vector<int> histo(nbuckets, 0);
std::vector<llama_token_data*> bucket_ptrs;
bucket_idx.reserve(cur.size);
for (int i = 0; i < (int)cur.size; ++i) {
const float val = cur.data[i].logit;
int ib = int(bucket_scale * val + bucket_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
ib = std::max(0, std::min(nbuckets - 1, ib));
bucket_idx.push_back(ib);
++histo[ib];
}
int nhave = 0;
int ib = nbuckets - 1;
for ( ; ib >= 0; --ib) {
nhave += histo[ib];
if (nhave >= npartial) {
break;
}
}
res.resize(nhave);
auto * ptr = res.data();
bucket_ptrs.reserve(nbuckets - ib);
for (int j = nbuckets - 1; j >= ib; --j) {
bucket_ptrs.push_back(ptr);
ptr += histo[j];
}
for (int i = 0; i < (int)cur.size; ++i) {
int j = bucket_idx[i];
if (j >= ib) {
*bucket_ptrs[nbuckets - 1 - j]++ = cur.data[i];
}
}
ptr = res.data();
int ndone = 0;
for (int j = nbuckets - 1; j > ib; --j) {
std::sort(ptr, ptr + histo[j], comp);
ptr += histo[j];
ndone += histo[j];
}
std::partial_sort(ptr, ptr + npartial - ndone, ptr + histo[ib], comp);
}
// reduces the size of cur_p to npartial, keeping only the top npartial elements
static void llama_token_data_array_partial_sort_inplace(llama_token_data_array * cur_p, int npartial) {
static const auto comp = [](const llama_token_data & a, const llama_token_data & b) {
return a.logit > b.logit;
};
if (npartial <= 128) {
std::partial_sort(cur_p->data, cur_p->data + npartial, cur_p->data + cur_p->size, comp);
cur_p->size = npartial;
cur_p->sorted = true;
return;
}
std::vector<llama_token_data> tmp;
llama_token_data_array_partial_sort(*cur_p, npartial, tmp);
std::copy(tmp.data(), tmp.data() + npartial, cur_p->data);
cur_p->size = npartial;
cur_p->sorted = true;
}
static int llama_sample_dist(llama_token_data_array * cur_p, std::mt19937 & rng) {
// iterator for the probabilities
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-local-typedefs"
#endif
struct probs_iterator {
typedef std::input_iterator_tag iterator_category;
typedef float value_type;
typedef float * pointer;
typedef float & reference;
typedef ptrdiff_t difference_type;
const llama_token_data * data;
bool operator==(const probs_iterator & other) const { return data == other.data; }
bool operator!=(const probs_iterator & other) const { return data != other.data; }
const float & operator*() const { return data->p; }
probs_iterator & operator++() { ++data; return *this; }
probs_iterator operator++(int) { probs_iterator tmp = *this; ++data; return tmp; }
};
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
std::discrete_distribution<int> dist(probs_iterator{cur_p->data}, probs_iterator{cur_p->data + cur_p->size});
return dist(rng);
}
/*
static void llama_log_softmax(float * array, size_t size) {
float max_l = *std::max_element(array, array + size);
float sum = 0.f;
for (size_t i = 0; i < size; ++i) {
float p = expf(array[i] - max_l);
sum += p;
array[i] = p;
}
for (size_t i = 0; i < size; ++i) {
array[i] = logf(array[i] / sum);
}
}
*/
static void llama_sampler_temp_impl(llama_token_data_array * cur_p, float temp) {
if (temp <= 0.0f) {
// find the token with the highest logit and set the rest to -inf
size_t max_i = 0;
float max_l = cur_p->data[0].logit;
for (size_t i = 1; i < cur_p->size; ++i) {
if (cur_p->data[i ].logit > max_l) {
cur_p->data[max_i].logit = -INFINITY;
max_i = i;
max_l = cur_p->data[i].logit;
} else {
cur_p->data[i].logit = -INFINITY;
}
}
return;
}
for (size_t i = 0; i < cur_p->size; ++i) {
cur_p->data[i].logit /= temp;
}
}
static void llama_sampler_softmax_impl(llama_token_data_array * cur_p, bool do_sort) {
GGML_ASSERT(cur_p->size > 0);
// Sort the logits in descending order if requested
if (do_sort && !cur_p->sorted) {
llama_token_data_array_partial_sort_inplace(cur_p, cur_p->size);
}
float max_l = cur_p->data[0].logit;
if (!cur_p->sorted) {
for (size_t i = 1; i < cur_p->size; ++i) {
max_l = std::max(max_l, cur_p->data[i].logit);
}
}
float cum_sum = 0.0f;
for (size_t i = 0; i < cur_p->size; ++i) {
float p = expf(cur_p->data[i].logit - max_l);
cur_p->data[i].p = p;
cum_sum += p;
}
for (size_t i = 0; i < cur_p->size; ++i) {
cur_p->data[i].p /= cum_sum;
}
}
static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k) {
// if (k >= (int32_t)cur_p->size) {
// return;
// }
if (k <= 0) {
return;
}
k = std::min(k, (int) cur_p->size);
// Sort scores in descending order
if (!cur_p->sorted) {
llama_token_data_array_partial_sort_inplace(cur_p, k);
}
cur_p->size = k;
}
static uint32_t get_rng_seed(uint32_t seed) {
if (seed == LLAMA_DEFAULT_SEED) {
// use system clock if std::random_device is not a true RNG
static bool is_rd_prng = std::random_device().entropy() == 0;
if (is_rd_prng) {
return (uint32_t) std::chrono::system_clock::now().time_since_epoch().count();
}
std::random_device rd;
return rd();
}
return seed;
}
// llama_sampler API
struct llama_sampler * llama_sampler_init(
struct llama_sampler_i * iface,
llama_sampler_context_t ctx) {
return new llama_sampler {
/* .iface = */ iface,
/* .ctx = */ ctx,
};
}
const char * llama_sampler_name(const struct llama_sampler * smpl) {
if (!smpl->iface) {
return "(null)";
}
return smpl->iface->name(smpl);
}
void llama_sampler_accept(struct llama_sampler * smpl, llama_token token) {
if (smpl->iface->accept) {
smpl->iface->accept(smpl, token);
}
}
void llama_sampler_apply(struct llama_sampler * smpl, struct llama_token_data_array * cur_p) {
GGML_ASSERT(smpl->iface->apply);
smpl->iface->apply(smpl, cur_p);
}
void llama_sampler_reset(struct llama_sampler * smpl) {
if (smpl->iface->reset) {
smpl->iface->reset(smpl);
}
}
struct llama_sampler * llama_sampler_clone(const struct llama_sampler * smpl) {
if (smpl->iface->clone) {
return smpl->iface->clone(smpl);
}
if (smpl->ctx == nullptr) {
return llama_sampler_init(
/* .iface = */ smpl->iface,
/* .ctx = */ nullptr
);
}
GGML_ABORT("the sampler does not support cloning");
}
void llama_sampler_free(struct llama_sampler * smpl) {
if (smpl == nullptr) {
return;
}
if (smpl->iface->free) {
smpl->iface->free(smpl);
}
delete smpl;
}
llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx) {
const llama_token sampled_token = llama_get_sampled_token_ith (ctx, idx);
const float * sampled_probs = llama_get_sampled_probs_ith (ctx, idx);
const float * sampled_logits = llama_get_sampled_logits_ith (ctx, idx);
const llama_token * sampled_ids = llama_get_sampled_candidates_ith(ctx, idx);
// If a backend sampler has already sampled a token, return it.
if (sampled_token != LLAMA_TOKEN_NULL) {
LLAMA_LOG_DEBUG("%s: Backend sampler selected token for idx %d. Skipping CPU samplers\n", __func__, idx);
return sampled_token;
}
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
const int n_vocab = llama_vocab_n_tokens(vocab);
// TODO: do not allocate each time
std::vector<llama_token_data> cur;
if (sampled_probs) {
const uint32_t sampled_probs_count = llama_get_sampled_probs_count_ith(ctx, idx);
cur.resize(sampled_probs_count);
for (uint32_t i = 0; i < sampled_probs_count; ++i) {
cur[i] = llama_token_data{sampled_ids[i], sampled_logits[i], sampled_probs[i]};
}
} else if (sampled_logits) {
const uint32_t sampled_logits_count = llama_get_sampled_logits_count_ith(ctx, idx);
cur.resize(sampled_logits_count);
for (llama_token i = 0; i < (int)sampled_logits_count; i++) {
cur[i] = llama_token_data{sampled_ids[i], sampled_logits[i], 0.0f};
}
} else {
const auto * logits = llama_get_logits_ith(ctx, idx);
GGML_ASSERT(logits != nullptr);
cur.resize(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
}
}
llama_token_data_array cur_p = {
/* .data = */ cur.data(),
/* .size = */ cur.size(),
/* .selected = */ -1,
/* .sorted = */ false,
};
llama_sampler_apply(smpl, &cur_p);
GGML_ASSERT(cur_p.selected >= 0 && cur_p.selected < (int32_t) cur_p.size);
auto token = cur_p.data[cur_p.selected].id;
llama_sampler_accept(smpl, token);
return token;
}
// empty sampler
struct llama_sampler_empty {
const char * name;
};
static struct llama_sampler * llama_sampler_init_empty(const char * name);
static const char * llama_sampler_empty_name(const struct llama_sampler * smpl) {
auto * ctx = (llama_sampler_empty *) smpl->ctx;
return ctx->name;
}
static void llama_sampler_empty_accept(struct llama_sampler * smpl, llama_token token) {
GGML_UNUSED(smpl);
GGML_UNUSED(token);
}
static void llama_sampler_empty_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
GGML_UNUSED(smpl);
GGML_UNUSED(cur_p);
}
static void llama_sampler_empty_reset(struct llama_sampler * smpl) {
GGML_UNUSED(smpl);
}
static struct llama_sampler * llama_sampler_empty_clone(const struct llama_sampler * smpl) {
auto * ctx = (llama_sampler_empty *) smpl->ctx;
return llama_sampler_init_empty(ctx->name);
}
static void llama_sampler_empty_free(struct llama_sampler * smpl) {
delete (llama_sampler_empty *) smpl->ctx;
}
static void llama_sampler_empty_backend_init(
struct llama_sampler * smpl,
ggml_backend_buffer_type_t buft) {
GGML_UNUSED(smpl);
GGML_UNUSED(buft);
}
static void llama_sampler_empty_backend_accept(
struct llama_sampler * smpl,
ggml_context * ctx,
ggml_cgraph * gf,
struct ggml_tensor * selected_token) {
GGML_UNUSED(smpl);
GGML_UNUSED(ctx);
GGML_UNUSED(gf);
GGML_UNUSED(selected_token);
}
static void llama_sampler_empty_backend_apply(
struct llama_sampler * smpl,
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct llama_sampler_data * data) {
GGML_UNUSED(smpl);
GGML_UNUSED(ctx);
GGML_UNUSED(gf);
GGML_UNUSED(data);
}
static void llama_sampler_empty_backend_set_input(struct llama_sampler * smpl) {
GGML_UNUSED(smpl);
}
static struct llama_sampler_i llama_sampler_empty_i = {
/* .name = */ llama_sampler_empty_name,
/* .accept = */ llama_sampler_empty_accept,
/* .apply = */ llama_sampler_empty_apply,
/* .reset = */ llama_sampler_empty_reset,
/* .clone = */ llama_sampler_empty_clone,
/* .free = */ llama_sampler_empty_free,
/* .backend_init = */ llama_sampler_empty_backend_init,
/* .backend_accept = */ llama_sampler_empty_backend_accept,
/* .backend_apply = */ llama_sampler_empty_backend_apply,
/* .backend_set_input = */ llama_sampler_empty_backend_set_input,
};
struct llama_sampler * llama_sampler_init_empty(const char * name) {
return llama_sampler_init(
/* .iface = */ &llama_sampler_empty_i,
/* .ctx = */ new llama_sampler_empty {
/* .name = */ name,
}
);
}
// sampler chain
static const char * llama_sampler_chain_name(const struct llama_sampler * /*smpl*/) {
return "chain";
}
static void llama_sampler_chain_accept(struct llama_sampler * smpl, llama_token token) {
auto * chain = (llama_sampler_chain *) smpl->ctx;
time_meas tm(chain->t_sample_us, chain->params.no_perf);
for (auto * smpl : chain->samplers) {
llama_sampler_accept(smpl, token);
}
chain->n_sample++;
}
static void llama_sampler_chain_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * chain = (llama_sampler_chain *) smpl->ctx;
time_meas tm(chain->t_sample_us, chain->params.no_perf);
for (auto * smpl : chain->samplers) {
if (smpl->iface->apply == nullptr) {
continue;
}
llama_sampler_apply(smpl, cur_p);
}
}
static void llama_sampler_chain_reset(struct llama_sampler * smpl) {
auto * chain = (llama_sampler_chain *) smpl->ctx;
for (auto * smpl : chain->samplers) {
llama_sampler_reset(smpl);
}
}
static struct llama_sampler * llama_sampler_chain_clone(const struct llama_sampler * smpl) {
const auto * chain_src = (const llama_sampler_chain *) smpl->ctx;
auto * result = llama_sampler_chain_init(chain_src->params);
for (auto * smpl : chain_src->samplers) {
llama_sampler_chain_add(result, llama_sampler_clone(smpl));
}
return result;
}
static void llama_sampler_chain_free(struct llama_sampler * smpl) {
auto * chain = (llama_sampler_chain *) smpl->ctx;
for (auto * smpl : chain->samplers) {
llama_sampler_free(smpl);
}
delete chain;
}
static void llama_sampler_chain_backend_init(
struct llama_sampler * smpl,
ggml_backend_buffer_type_t buft) {
auto * chain = (llama_sampler_chain *) smpl->ctx;
for (auto * smpl : chain->samplers) {
if (smpl->iface->backend_init) {
smpl->iface->backend_init(smpl,buft);
}
}
}
static void llama_sampler_chain_backend_accept(
struct llama_sampler * smpl,
ggml_context * ctx,
ggml_cgraph * gf,
struct ggml_tensor * selected_token) {
auto * chain = (llama_sampler_chain *) smpl->ctx;
for (auto * smpl : chain->samplers) {
if (smpl->iface->backend_accept) {
smpl->iface->backend_accept(smpl, ctx, gf, selected_token);
}
}
}
static void llama_sampler_chain_backend_apply(
struct llama_sampler * smpl,
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct llama_sampler_data * data) {
auto * chain = (llama_sampler_chain *) smpl->ctx;
for (auto * smpl : chain->samplers) {
if (smpl->iface->backend_apply) {
smpl->iface->backend_apply(smpl, ctx, gf, data);
}
}
}
static void llama_sampler_chain_backend_set_input(struct llama_sampler * smpl) {
auto * chain = (llama_sampler_chain *) smpl->ctx;
for (auto * smpl : chain->samplers) {
if (smpl->iface->backend_set_input) {
smpl->iface->backend_set_input(smpl);
}
}
}
static struct llama_sampler_i llama_sampler_chain_i = {
/* .name = */ llama_sampler_chain_name,
/* .accept = */ llama_sampler_chain_accept,
/* .apply = */ llama_sampler_chain_apply,
/* .reset = */ llama_sampler_chain_reset,
/* .clone = */ llama_sampler_chain_clone,
/* .free = */ llama_sampler_chain_free,
/* .backend_init = */ llama_sampler_chain_backend_init,
/* .backend_accept = */ llama_sampler_chain_backend_accept,
/* .backend_apply = */ llama_sampler_chain_backend_apply,
/* .backend_set_input = */ llama_sampler_chain_backend_set_input,
};
struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params) {
return llama_sampler_init(
/* .iface = */ &llama_sampler_chain_i,
/* .ctx = */ new llama_sampler_chain {
/* .params = */ params,
/* .samplers = */ {},
/* .t_sample_us = */ 0,
/* .n_sample = */ 0,
}
);
}
void llama_sampler_chain_add(struct llama_sampler * chain, struct llama_sampler * smpl) {
auto * p = (llama_sampler_chain *) chain->ctx;
p->samplers.push_back(smpl);
}
struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i) {
const auto * p = (const llama_sampler_chain *) chain->ctx;
if (i < 0 || (size_t) i >= p->samplers.size()) {
return nullptr;
}
return p->samplers[i];
}
struct llama_sampler * llama_sampler_chain_remove(struct llama_sampler * chain, int32_t i) {
auto * p = (llama_sampler_chain *) chain->ctx;
if (i < 0 || (size_t) i >= p->samplers.size()) {
return nullptr;
}
auto * result = p->samplers[i];
p->samplers.erase(p->samplers.begin() + i);
return result;
}
int llama_sampler_chain_n(const struct llama_sampler * chain) {
const auto * p = (const llama_sampler_chain *) chain->ctx;
return p->samplers.size();
}
//
// samplers
//
// greedy
static const char * llama_sampler_greedy_name(const struct llama_sampler * /*smpl*/) {
return "greedy";
}
static void llama_sampler_greedy_apply(struct llama_sampler * /*smpl*/, llama_token_data_array * cur_p) {
cur_p->selected = 0;
for (size_t i = 1; i < cur_p->size; ++i) {
if (cur_p->data[i].logit > cur_p->data[cur_p->selected].logit) {
cur_p->selected = i;
}
}
}
static void llama_sampler_greedy_backend_apply(
struct llama_sampler * smpl,
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct llama_sampler_data * data) {
GGML_UNUSED(gf);
GGML_UNUSED(smpl);
struct ggml_tensor * argmax_result = ggml_argmax(ctx, data->logits);
ggml_set_name(argmax_result, "argmax_result");
data->sampled = argmax_result;
}
static struct llama_sampler_i llama_sampler_greedy_i = {
/* .name = */ llama_sampler_greedy_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_greedy_apply,
/* .reset = */ nullptr,
/* .clone = */ nullptr,
/* .free = */ nullptr,
/* .backend_init = */ nullptr,
/* .backend_accept = */ nullptr,
/* .backend_apply = */ llama_sampler_greedy_backend_apply,
/* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_greedy() {
return llama_sampler_init(
/* .iface = */ &llama_sampler_greedy_i,
/* .ctx = */ nullptr
);
}
// dist
struct llama_sampler_dist {
const uint32_t seed;
uint32_t seed_cur;
std::mt19937 rng;
// Only required for checking operation support and can be removed later.
ggml_backend_dev_t device;
struct ggml_tensor * inp_uniform;
ggml_context_ptr inp_ctx;
ggml_backend_buffer_ptr inp_buf;
};
static const char * llama_sampler_dist_name(const struct llama_sampler * /*smpl*/) {
return "dist";
}
static void llama_sampler_dist_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_dist *) smpl->ctx;
// edge cases
if (cur_p->size == 0) {
cur_p->selected = -1;
return;
}
cur_p->selected = 0;
if (cur_p->size == 1) {
cur_p->data[0].p = 1.0f;
return;
}
// max logit for numerical stability
float max_l = cur_p->data[0].logit;
if (!cur_p->sorted) {
for (size_t i = 1; i < cur_p->size; ++i) {
max_l = std::max(max_l, cur_p->data[i].logit);
}
}
// apply softmax to obtain the probabilities
double sum_cum = 0.0f;
for (size_t i = 0; i < cur_p->size; ++i) {
float p = expf(cur_p->data[i].logit - max_l);
cur_p->data[i].p = p;
sum_cum += p;
}
#if 1
// sample from the obtained probabilities and normalize the probs in a single pass
// this is ~3x faster on Mac with full gpt-oss vocab than the version below
//
std::uniform_real_distribution<double> dist(0.0f, 1.0f);
const double rnd = dist(ctx->rng);
double sum_run = 0.0f;
const double sum_tgt = sum_cum*rnd;
bool found = false;
for (size_t i = 0; i < cur_p->size; ++i) {
if (!found) {
// accumulate probs until we reach the target sum
sum_run += cur_p->data[i].p;
if (sum_run >= sum_tgt) {
cur_p->selected = i;
found = true;
}
}
// normalize probs
cur_p->data[i].p /= sum_cum;
}
// fallback to the last token (don't think this can happen)
assert(found);
if (!found) {
cur_p->selected = cur_p->size - 1;
}
#else
// for clarity, this is the same as above but does one pass for normalization and one extra pass for sampling
for (size_t i = 0; i < cur_p->size; ++i) {
cur_p->data[i].p /= sum_cum;
}
cur_p->selected = llama_sample_dist(cur_p, ctx->rng);
#endif
}
static struct llama_sampler * llama_sampler_dist_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_dist *) smpl->ctx;
auto * result = llama_sampler_init_dist(ctx->seed);
// copy the state
{
auto * result_ctx = (llama_sampler_dist *) result->ctx;
result_ctx->rng = ctx->rng;
}
return result;
}
static void llama_sampler_dist_reset(struct llama_sampler * smpl) {
auto * ctx = (llama_sampler_dist *) smpl->ctx;
ctx->seed_cur = get_rng_seed(ctx->seed);
ctx->rng.seed(ctx->seed_cur);
}
static void llama_sampler_dist_free(struct llama_sampler * smpl) {
delete (llama_sampler_dist *) smpl->ctx;
}
static void llama_sampler_dist_backend_set_input(struct llama_sampler * smpl) {
auto * sctx = (llama_sampler_dist *) smpl->ctx;
GGML_ASSERT(sctx->inp_uniform != nullptr);
std::uniform_real_distribution<float> dist(0.0f, 1.0f);
const float rnd = dist(sctx->rng);
ggml_backend_tensor_set(sctx->inp_uniform, &rnd, 0, sizeof(float));
}
static void llama_sampler_dist_backend_apply(
struct llama_sampler * smpl,
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct llama_sampler_data * data) {
GGML_UNUSED(gf);
auto * sctx = (llama_sampler_dist *) smpl->ctx;
struct ggml_tensor * probs = ggml_soft_max(ctx, data->logits);
ggml_set_name(probs, "dist_probs");
struct ggml_tensor * cumsum = ggml_cumsum(ctx, probs);
if (sctx->device && !ggml_backend_dev_supports_op(sctx->device, cumsum)) {
fprintf(stderr, "Warning: backend does not support cumsum operation required for dist sampling\n");
fprintf(stderr, "CPU backend will be used instead which defeats the purpose of having backend samplers\n");
}
ggml_set_name(cumsum, "cumsum");
// The uniform tensor has a random value and we subtract this tensor with
// the cumsum tensor (the uniform tensor will be broadcasted by ggml_sub).
// Recall that each entry in cumsum is the cumulative probability up to that
// index so values stay negative while the cumulative total is below the
// random value, and become zero/positive once the threshold is crossed.
struct ggml_tensor * diff = ggml_sub(ctx, cumsum, sctx->inp_uniform);
ggml_set_name(diff, "dist_cumsum");
// The ggml_step function produces a tensor where entries are 1 if the
// corresponding entry in diff is > 0, and 0 otherwise. So all values up to
// the index where the cumulative probability exceeds the random value are 0,
// and all entries after that are 1.
struct ggml_tensor * mask = ggml_step(ctx, diff);
ggml_set_name(mask, "dist_mask");
// Taking the sum of the mask gives us the sum of elements after the threshold
// we are interested in.
struct ggml_tensor * idxf = ggml_sum(ctx, mask);
ggml_set_name(idxf, "dist_index_f32");
// Use ggml_scale_bias to scale the index value by -1 and then add the size
// of the mask to that value so we get the correct index ((-1 * idxf) + n).
struct ggml_tensor * idx = ggml_cast(ctx, ggml_scale_bias(ctx, idxf, -1.0f, mask->ne[0]), GGML_TYPE_I32);
ggml_set_name(idx, "dist_index_i32");
// Map back to original vocab ids if a candidates tensor is available.
struct ggml_tensor * sampled_token = idx;
if (data->candidates != nullptr) {
struct ggml_tensor * candidates = data->candidates;
struct ggml_tensor * candidates_reshaped = ggml_view_2d(ctx, candidates, 1, ggml_nelements(candidates),
ggml_type_size(candidates->type), 0);
sampled_token = ggml_get_rows(ctx, candidates_reshaped, idx);
ggml_set_name(sampled_token, "dist_sampled_token");
}
ggml_set_output(sampled_token);
data->sampled = sampled_token;
}
static void llama_sampler_dist_backend_init(
struct llama_sampler * smpl,
ggml_backend_buffer_type_t buft) {
auto * sctx = (llama_sampler_dist *) smpl->ctx;
sctx->device = ggml_backend_buft_get_device(buft);
ggml_init_params params = {
/*.mem_size =*/ ggml_tensor_overhead(),
/*.mem_buffer =*/ nullptr,
/*.no_alloc =*/ true,
};
sctx->inp_ctx.reset(ggml_init(params));
// Create the uniform random scalar input tensor. This will be set by
// llama_sampler_dist_backend_set_input after this graph is built.
sctx->inp_uniform = ggml_new_tensor_1d(sctx->inp_ctx.get(), GGML_TYPE_F32, 1);
ggml_set_name(sctx->inp_uniform, "uniform");
ggml_set_input(sctx->inp_uniform);
// Allocate all tensors from our context to the backend
sctx->inp_buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(sctx->inp_ctx.get(), buft));
}
static struct llama_sampler_i llama_sampler_dist_i = {
/* .name = */ llama_sampler_dist_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_dist_apply,
/* .reset = */ llama_sampler_dist_reset,
/* .clone = */ llama_sampler_dist_clone,
/* .free = */ llama_sampler_dist_free,
/* .backend_init = */ llama_sampler_dist_backend_init,
/* .backend_accept = */ nullptr,
/* .backend_apply = */ llama_sampler_dist_backend_apply,
/* .backend_set_input = */ llama_sampler_dist_backend_set_input,
};
struct llama_sampler * llama_sampler_init_dist(uint32_t seed) {
auto seed_cur = get_rng_seed(seed);
return llama_sampler_init(
/* .iface = */ &llama_sampler_dist_i,
/* .ctx = */ new llama_sampler_dist {
/* .seed = */ seed,
/* .seed_cur = */ seed_cur,
/* .rng = */ std::mt19937(seed_cur),
/* .device = */ nullptr,
/* .inp_uniform = */ nullptr,
/* .inp_ctx = */ nullptr,
/* .inp_buf = */ nullptr,
}
);
}
// top-k
struct llama_sampler_top_k {
const int32_t k;
// Only required for checking operation support and can be removed later.
ggml_backend_dev_t device;
};
static const char * llama_sampler_top_k_name(const struct llama_sampler * /*smpl*/) {
return "top-k";
}
static void llama_sampler_top_k_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_top_k *) smpl->ctx;
llama_sampler_top_k_impl(cur_p, ctx->k);
}
static struct llama_sampler * llama_sampler_top_k_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_top_k *) smpl->ctx;
return llama_sampler_init_top_k(ctx->k);
}
static void llama_sampler_top_k_free(struct llama_sampler * smpl) {
delete (llama_sampler_top_k *) smpl->ctx;
}
static void llama_sampler_top_k_backend_init(
struct llama_sampler * smpl,
ggml_backend_buffer_type_t buft) {
auto * ctx_data = (llama_sampler_top_k *) smpl->ctx;
ctx_data->device = ggml_backend_buft_get_device(buft);
}
static void llama_sampler_top_k_backend_apply(
struct llama_sampler * smpl,
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct llama_sampler_data * data) {
auto * ctx_data = (llama_sampler_top_k *) smpl->ctx;
struct ggml_tensor * top_k = ggml_top_k(ctx, data->logits, ctx_data->k);
ggml_set_name(top_k, "top_k");
// top_k is a view of argsort - check if backend supports the underlying argsort operation
// by checking the source tensor (which is the argsort result)
if (ctx_data->device && top_k->src[0] && !ggml_backend_dev_supports_op(ctx_data->device, top_k->src[0])) {
fprintf(stderr, "Warning: backend does not support argsort operation required for top-k sampling\n");
fprintf(stderr, "CPU backend will be used instead which defeats the purpose of having backend samplers\n");
}
data->candidates = top_k;
struct ggml_tensor * logits_rows = ggml_reshape_2d(ctx, data->logits, 1, data->logits->ne[0]);
struct ggml_tensor * top_k_rows = ggml_get_rows(ctx, logits_rows, top_k);
ggml_set_name(top_k_rows, "top_k_rows");
data->logits = ggml_reshape_1d(ctx, top_k_rows, ctx_data->k);
ggml_build_forward_expand(gf, data->logits);
}
static struct llama_sampler_i llama_sampler_top_k_i = {
/* .name = */ llama_sampler_top_k_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_top_k_apply,
/* .reset = */ nullptr,
/* .clone = */ llama_sampler_top_k_clone,
/* .free = */ llama_sampler_top_k_free,
/* .backend_init = */ llama_sampler_top_k_backend_init,
/* .backend_accept = */ nullptr,
/* .backend_apply = */ llama_sampler_top_k_backend_apply,
/* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_top_k(int32_t k) {
const bool is_empty = (k <= 0);
if (is_empty) {
return llama_sampler_init_empty("top-k?");
}
return llama_sampler_init(
/* .iface = */ &llama_sampler_top_k_i,
/* .ctx = */ new llama_sampler_top_k {
/* .k = */ k,
/* .device = */ nullptr,
}
);
}
// top-p
struct llama_sampler_top_p {
const float p;
const size_t min_keep;
std::vector<llama_token_data> buf_sort;
};
static const char * llama_sampler_top_p_name(const struct llama_sampler * /*smpl*/) {
return "top-p";
}
static void llama_sampler_top_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_top_p *) smpl->ctx;
if (ctx->p >= 1.0f) {
return;
}
llama_sampler_softmax_impl(cur_p, false);
size_t k = cur_p->size;
auto * pdata = cur_p->data;
auto & buf_sort = ctx->buf_sort;
// if not sorted, try adaptive top-k sorting
if (!cur_p->sorted && cur_p->size > 1024) {
k = std::min<size_t>(256, cur_p->size);
llama_token_data_array_partial_sort(*cur_p, k, buf_sort);
pdata = buf_sort.data();
} else if (!cur_p->sorted) {
// small candidates -> sort inplace
llama_token_data_array_partial_sort_inplace(cur_p, k);
}
// Compute the cumulative probabilities
float cum_sum = 0.0f;
size_t last_idx = cur_p->size;
for (size_t i = 0; i < cur_p->size; ++i) {
cum_sum += pdata[i].p;
// Check if the running sum is at least p or if we have kept at least min_keep tokens
// we set the last index to i+1 to indicate that the current iterate should be included in the set
if (cum_sum >= ctx->p && i + 1 >= ctx->min_keep) {
last_idx = i + 1;
break;
}
// we exceeded the current top-k heuristic -> increase k and continue
if (!cur_p->sorted && i == k - 1) {
k = cur_p->size;
llama_token_data_array_partial_sort(*cur_p, k, buf_sort);
pdata = buf_sort.data();
}
}
// Resize the output vector to keep only the top-p tokens
if (!cur_p->sorted) {
std::copy(buf_sort.data(), buf_sort.data() + last_idx, cur_p->data);
cur_p->sorted = true;
}
cur_p->size = last_idx;
}
static struct llama_sampler * llama_sampler_top_p_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_top_p *) smpl->ctx;
return llama_sampler_init_top_p(ctx->p, ctx->min_keep);
}
static void llama_sampler_top_p_free(struct llama_sampler * smpl) {
delete (llama_sampler_top_p *) smpl->ctx;
}
static void llama_sampler_top_p_backend_init(
struct llama_sampler * smpl,
ggml_backend_buffer_type_t buft) {
GGML_UNUSED(smpl);
GGML_UNUSED(buft);
}
static void llama_sampler_top_p_backend_apply(
struct llama_sampler * smpl,
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct llama_sampler_data * data) {
auto * sctx = (llama_sampler_top_p *) smpl->ctx;
auto ggml_sort = [& ctx](struct ggml_tensor * a, struct ggml_tensor * b) {
GGML_ASSERT(ggml_nrows(a) == 1);
struct ggml_tensor * a_reshaped = ggml_reshape_2d(ctx, a, 1, a->ne[0]);
struct ggml_tensor * a_sorted = ggml_get_rows(ctx, a_reshaped, b);
return ggml_reshape_1d(ctx, a_sorted, a->ne[0]);
};
// Get the sorted logits in descending order.
struct ggml_tensor * sorted_idx = ggml_argsort(ctx, data->logits, GGML_SORT_ORDER_DESC);
ggml_set_name(sorted_idx, "top_p_sorted_idx");
// Do the sorting via reshape + get_rows
struct ggml_tensor * sorted_logits = ggml_sort(data->logits, sorted_idx);
ggml_set_name(sorted_logits, "top_p_sorted_logits");
struct ggml_tensor * softmax = ggml_soft_max(ctx, sorted_logits);
ggml_set_name(softmax, "top_p_softmax");
// If candidates are provided, sort them as well. Otherwise, set sorted indices as candidates.
if (data->candidates != nullptr) {
data->candidates = ggml_sort(data->candidates, sorted_idx);
ggml_set_name(data->candidates, "top_p_candidates");
} else {
data->candidates = sorted_idx;
ggml_set_name(data->candidates, "top_p_candidates");
}
// Compute Cumulative Distribution Function (CDF) by means of GGML_OP_CUMSUM.
struct ggml_tensor * cdf = ggml_cumsum(ctx, softmax);
ggml_set_name(cdf, "top_p_cdf");
// Invert CDF and add top-p value so that ggml_step yields 1 for values we want to keep
struct ggml_tensor * cdf_scaled = ggml_scale_bias(ctx, cdf, -1.0f, sctx->p);
ggml_set_name(cdf_scaled, "top_p_cdf_scaled");
struct ggml_tensor * mask = ggml_step(ctx, cdf_scaled);
ggml_set_name(mask, "top_p_mask");
// Taking the sum of the mask gives us the sum of elements after the threshold
// we are interested in.
struct ggml_tensor * idxf = ggml_sum(ctx, mask);
ggml_set_name(idxf, "dist_index_f32");
// Make top-p inclusive (i.e. return all values such that cum_sum/cdf >= p)
struct ggml_tensor * mask_reshaped = ggml_reshape_2d(ctx, mask, 1, mask->ne[0]);
// construct ones tensor to set the value in the mask
struct ggml_tensor * ones = ggml_dup_tensor(ctx, mask_reshaped);
ones = ggml_clamp(ctx, ones, 1.0f, 1.0f);
mask_reshaped = ggml_set_rows(ctx, mask_reshaped, ones, ggml_cast(ctx, ggml_repeat(ctx, idxf, mask), GGML_TYPE_I32));
mask = ggml_reshape_1d(ctx, mask_reshaped, mask->ne[0]);
// Use ggml_scale_bias (output = (a * s) + b) which in this case becomes:
// top_p_bias = (mask * 1e9f) - 1e9f.
// So entries in the mask that we want to discard will become -1e9f, and
// others will be 0 (meaning that will not effect the logits).
const float large_val = 1e9f;
struct ggml_tensor * top_p_bias = ggml_scale_bias(ctx, mask, large_val, -large_val);
ggml_set_name(top_p_bias, "top_p_bias");
data->logits = ggml_add(ctx, sorted_logits, top_p_bias);
ggml_set_name(data->logits, "top_p_logits");
ggml_set_output(data->candidates);
ggml_build_forward_expand(gf, data->candidates);
ggml_set_output(data->logits);
ggml_build_forward_expand(gf, data->logits);
}
static struct llama_sampler_i llama_sampler_top_p_i = {
/* .name = */ llama_sampler_top_p_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_top_p_apply,
/* .reset = */ nullptr,
/* .clone = */ llama_sampler_top_p_clone,
/* .free = */ llama_sampler_top_p_free,
/* .backend_init = */ llama_sampler_top_p_backend_init,
/* .backend_accept = */ nullptr,
/* .backend_apply = */ llama_sampler_top_p_backend_apply,
/* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_top_p(float p, size_t min_keep) {
const bool is_empty = p >= 1.0f;
if (is_empty) {
return llama_sampler_init_empty("top-p?");
}
return llama_sampler_init(
/* .iface = */ &llama_sampler_top_p_i,
/* .ctx = */ new llama_sampler_top_p {
/* .p = */ p,
/* .min_keep = */ min_keep,
/* .buf_sort = */ {},
}
);
}
// min-p
struct llama_sampler_min_p {
const float p;
const size_t min_keep;
};
static const char * llama_sampler_min_p_name(const struct llama_sampler * /*smpl*/) {
return "min-p";
}
static void llama_sampler_min_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_min_p *) smpl->ctx;
if (ctx->p <= 0.0f || !cur_p->size) {
return;
}
bool min_p_applied = false;
// if the cur_p aren't sorted, try the unsorted implementation first
if (!cur_p->sorted) {
std::vector<llama_token_data> filtered_tokens;
float max_logit = -FLT_MAX;
for (size_t i = 0; i < cur_p->size; ++i) {
max_logit = std::max(max_logit, cur_p->data[i].logit);
}
const float min_logit = max_logit + logf(ctx->p); // min logit for p_i >= p * p_max
for (size_t i = 0; i < cur_p->size; ++i) {
if (cur_p->data[i].logit >= min_logit) {
filtered_tokens.push_back(cur_p->data[i]);
}
}
// if we have enough values the operation was a success
if (!filtered_tokens.empty() && filtered_tokens.size() >= ctx->min_keep) {
std::copy(filtered_tokens.begin(), filtered_tokens.end(), cur_p->data);
cur_p->size = filtered_tokens.size();
min_p_applied = true;
}
}
// if the cur_p are sorted or the unsorted implementation failed, use this implementation
if (!min_p_applied) {
// Sort the logits in descending order
if (!cur_p->sorted) {
llama_token_data_array_partial_sort_inplace(cur_p, cur_p->size);
}
const float min_logit = cur_p->data[0].logit + logf(ctx->p); // min logit for p_i >= p * p_max
size_t i = 1; // first token always matches
for (; i < cur_p->size; ++i) {
if (cur_p->data[i].logit < min_logit && i >= ctx->min_keep) {
break; // prob too small
}
}
// Resize the output vector to keep only the matching tokens
cur_p->size = i;
}
}
static struct llama_sampler * llama_sampler_min_p_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_min_p *) smpl->ctx;
return llama_sampler_init_min_p(ctx->p, ctx->min_keep);
}
static void llama_sampler_min_p_free(struct llama_sampler * smpl) {
delete (llama_sampler_min_p *) smpl->ctx;
}
static void llama_sampler_min_p_backend_init(
struct llama_sampler * smpl,
ggml_backend_buffer_type_t buft) {
GGML_UNUSED(smpl);
GGML_UNUSED(buft);
}
static void llama_sampler_min_p_backend_apply(
struct llama_sampler * smpl,
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct llama_sampler_data * data) {
auto * sctx = (llama_sampler_min_p *) smpl->ctx;
struct ggml_tensor * max_idx = ggml_argmax(ctx, data->logits);
ggml_set_name(max_idx, "max_idx");
struct ggml_tensor * logits_rows = ggml_reshape_2d(ctx, data->logits, 1, data->logits->ne[0]);
ggml_set_name(logits_rows, "logits_rows");
struct ggml_tensor * max_logit = ggml_get_rows(ctx, logits_rows, max_idx);
ggml_set_name(max_logit, "max_logit");
// Calculate the threshold value.
struct ggml_tensor * threshold = ggml_scale_bias(ctx, max_logit, 1.0f, logf(sctx->p));
ggml_set_name(threshold, "min_p_threshold");
// Subtract the threshold from logits.
struct ggml_tensor * sub = ggml_sub(ctx, data->logits, threshold);
// Create a mask where logits below the threshold are 0 (discard),
// and others are 1 (keep).
struct ggml_tensor * mask = ggml_step(ctx, sub);
ggml_set_name(mask, "min_p_mask");
// Use ggml_scale_bias (output = (a * s) + b) which in this case becomes:
// min_p_bias = (mask * 1e9f) - 1e9f.
// So entries in the mask that we want to discard will become -1e9f, and
// others will be 0 (meaning that will not effect the logits).
const float large_val = 1e9f;
struct ggml_tensor * min_p_bias = ggml_scale_bias(ctx, mask, large_val, -large_val);
ggml_set_name(min_p_bias, "min_p_bias");
// Add the min_p bias to the logits.
data->logits = ggml_add(ctx, data->logits, min_p_bias);
ggml_set_name(data->logits, "min_p_logits");
ggml_build_forward_expand(gf, data->logits);
}
static struct llama_sampler_i llama_sampler_min_p_i = {
/* .name = */ llama_sampler_min_p_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_min_p_apply,
/* .reset = */ nullptr,
/* .clone = */ llama_sampler_min_p_clone,
/* .free = */ llama_sampler_min_p_free,
/* .backend_init = */ llama_sampler_min_p_backend_init,
/* .backend_accept = */ nullptr,
/* .backend_apply = */ llama_sampler_min_p_backend_apply,
/* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_min_p(float p, size_t min_keep) {
const bool is_empty = (p <= 0.0f);
if (is_empty) {
return llama_sampler_init_empty("min-p?");
}
return llama_sampler_init(
/* .iface = */ &llama_sampler_min_p_i,
/* .ctx = */ new llama_sampler_min_p {
/* .p = */ p,
/* .min_keep = */ min_keep,
}
);
}
// typical
struct llama_sampler_typical {
const float p;
const size_t min_keep;
};
static const char * llama_sampler_typical_name(const struct llama_sampler * /*smpl*/) {
return "typical";
}
static void llama_sampler_typical_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_typical *) smpl->ctx;
// Reference implementation:
// https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
if (ctx->p >= 1.0f) {
return;
}
// Compute the softmax of logits and calculate entropy
llama_sampler_softmax_impl(cur_p, true);
float entropy = 0.0f;
for (size_t i = 0; i < cur_p->size; ++i) {
entropy += -cur_p->data[i].p * logf(cur_p->data[i].p);
}
// Compute the absolute difference between negative log probability and entropy for each candidate
std::vector<float> shifted_scores;
for (size_t i = 0; i < cur_p->size; ++i) {
float shifted_score = fabsf(-logf(cur_p->data[i].p) - entropy);
shifted_scores.push_back(shifted_score);
}
// Sort tokens based on the shifted_scores and their corresponding indices
std::vector<size_t> indices(cur_p->size);
std::iota(indices.begin(), indices.end(), 0);
std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
return shifted_scores[a] < shifted_scores[b];
});
// Compute the cumulative probabilities
float cum_sum = 0.0f;
size_t last_idx = indices.size();
for (size_t i = 0; i < indices.size(); ++i) {
size_t idx = indices[i];
cum_sum += cur_p->data[idx].p;
// Check if the running sum is greater than typical or if we have kept at least min_keep tokens
if (cum_sum > ctx->p && (ctx->min_keep == 0 || i >= ctx->min_keep - 1)) {
last_idx = i + 1;
break;
}
}
// Resize the output vector to keep only the locally typical tokens
std::vector<llama_token_data> cur_p_new;
for (size_t i = 0; i < last_idx; ++i) {
size_t idx = indices[i];
cur_p_new.push_back(cur_p->data[idx]);
}
// Replace the data in cur_p with the cur_p_new data
std::copy(cur_p_new.begin(), cur_p_new.end(), cur_p->data);
cur_p->size = cur_p_new.size();
cur_p->sorted = false;
}
static struct llama_sampler * llama_sampler_typical_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_typical *) smpl->ctx;
return llama_sampler_init_typical(ctx->p, ctx->min_keep);
}
static void llama_sampler_typical_free(struct llama_sampler * smpl) {
delete (llama_sampler_typical *) smpl->ctx;
}
static struct llama_sampler_i llama_sampler_typical_i = {
/* .name = */ llama_sampler_typical_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_typical_apply,
/* .reset = */ nullptr,
/* .clone = */ llama_sampler_typical_clone,
/* .free = */ llama_sampler_typical_free,
/* .backend_init = */ nullptr,
/* .backend_accept = */ nullptr,
/* .backend_apply = */ nullptr,
/* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_typical(float p, size_t min_keep) {
const bool is_empty = (p >= 1.0f);
if (is_empty) {
return llama_sampler_init_empty("typical?");
}
return llama_sampler_init(
/* .iface = */ &llama_sampler_typical_i,
/* .ctx = */ new llama_sampler_typical {
/* .p = */ p,
/* .min_keep = */ min_keep,
}
);
}
// temp
struct llama_sampler_temp {
const float temp;
};
static const char * llama_sampler_temp_name(const struct llama_sampler * /*smpl*/) {
return "temp";
}
static void llama_sampler_temp_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
const auto * ctx = (llama_sampler_temp *) smpl->ctx;
llama_sampler_temp_impl(cur_p, ctx->temp);
}
static struct llama_sampler * llama_sampler_temp_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_temp *) smpl->ctx;
return llama_sampler_init_temp(ctx->temp);
}
static void llama_sampler_temp_free(struct llama_sampler * smpl) {
delete (llama_sampler_temp *) smpl->ctx;
}
static void llama_sampler_backend_temp_sampling(
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct llama_sampler_data * data,
float temp) {
if (temp <= 0.0f) {
// Find the most probable token index.
struct ggml_tensor * max_idx = ggml_argmax(ctx, data->logits);
ggml_set_name(max_idx, "temp_max_idx");
// Reshape to 2D and so we can use get_rows.
struct ggml_tensor * logits_2d = ggml_reshape_2d(ctx, data->logits, 1, data->logits->ne[0]);
ggml_set_name(logits_2d, "temp_logits_2d");
struct ggml_tensor * max_logit = ggml_get_rows(ctx, logits_2d, max_idx);
ggml_set_name(max_logit, "temp_max_logit");
// Subtract the max_logit from all logits.
struct ggml_tensor * diff = ggml_sub(ctx, data->logits, max_logit);
ggml_set_name(diff, "temp_diff");
// Add small epsilon to make max position strictly positive.
struct ggml_tensor * diff_eps = ggml_scale_bias(ctx, diff, 1.0f, 1e-6f);
ggml_set_name(diff_eps, "temp_diff_eps");
// Create the mask for the max logit.
struct ggml_tensor * mask = ggml_step(ctx, diff_eps);
ggml_set_name(mask, "temp_mask");
// Create the bias.
const float large_val = 1e9f;
struct ggml_tensor * bias = ggml_scale_bias(ctx, mask, large_val, -large_val);
ggml_set_name(bias, "temp_bias");
// Add the bias to the logits.
data->logits = ggml_add(ctx, data->logits, bias);
ggml_build_forward_expand(gf, data->logits);
return;
}
struct ggml_tensor * scaled = ggml_scale(ctx, data->logits, 1.0f / temp);
ggml_set_name(scaled, "temp_scaled");
// Make sure the scaled tensor is contiguous for subsequent operations
data->logits = ggml_cont(ctx, scaled);
ggml_set_name(data->logits, "temp_scaled_logits");
ggml_build_forward_expand(gf, data->logits);
}
static void llama_sampler_temp_backend_apply(
struct llama_sampler * smpl,
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct llama_sampler_data * data) {
auto * ctx_data = (llama_sampler_temp *) smpl->ctx;
llama_sampler_backend_temp_sampling(ctx, gf, data, ctx_data->temp);
}
static struct llama_sampler_i llama_sampler_temp_i = {
/* .name = */ llama_sampler_temp_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_temp_apply,
/* .reset = */ nullptr,
/* .clone = */ llama_sampler_temp_clone,
/* .free = */ llama_sampler_temp_free,
/* .backend_init = */ nullptr,
/* .backend_accept = */ nullptr,
/* .backend_apply = */ llama_sampler_temp_backend_apply,
/* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_temp(float temp) {
const bool is_empty = temp == 1.0f;
if (is_empty) {
return llama_sampler_init_empty("temp?");
}
return llama_sampler_init(
/* .iface = */ &llama_sampler_temp_i,
/* .ctx = */ new llama_sampler_temp {
/*.temp = */ temp,
}
);
}
// temp-ext
struct llama_sampler_temp_ext {
const float temp;
const float delta;
const float exponent;
};
static const char * llama_sampler_temp_ext_name(const struct llama_sampler * /*smpl*/) {
return "temp-ext";
}
static void llama_sampler_temp_ext_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_temp_ext *) smpl->ctx;
if (ctx->delta > 0) {
const float min_temp = std::max(0.0f, ctx->temp - ctx->delta);
const float max_temp = ctx->temp + ctx->delta;
float exponent_val = ctx->exponent;
// no need to do anything if there is only one (or zero) candidates
if (cur_p->size <= 1) {
return;
}
// Calculate maximum possible entropy
float max_entropy = -logf(1.0f / cur_p->size);
llama_sampler_softmax_impl(cur_p, true);
// Calculate entropy of the softmax probabilities
float entropy = 0.0f;
for (size_t i = 0; i < cur_p->size; ++i) {
float prob = cur_p->data[i].p;
if (prob > 0.0f) { // Ensure no log(0)
entropy -= prob * logf(prob);
}
}
// Normalize the entropy (max_entropy cannot be 0 here because we checked cur_p->size != 1 above)
float normalized_entropy = entropy / max_entropy;
// Map the normalized entropy to the desired temperature range using the power function
float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
#ifdef DEBUG
LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
LLAMA_LOG_INFO("Entropy: %f\n", entropy);
LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
#endif
// Apply the dynamically calculated temperature scaling
llama_sampler_temp_impl(cur_p, dyn_temp);
// Re-compute softmax probabilities after scaling logits with dynamic temperature
const double max_l_double = cur_p->data[0].logit;
double cum_sum_double = 0.0;
for (size_t i = 0; i < cur_p->size; ++i) {
double p = exp(cur_p->data[i].logit - max_l_double);
cur_p->data[i].p = p; // Store the scaled probability
cum_sum_double += p;
}
for (size_t i = 0; i < cur_p->size; ++i) {
cur_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
}
#ifdef DEBUG
// Print the updated top 25 probabilities after temperature scaling
LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
for (size_t i = 0; i < 25 && i < cur_p->size; ++i) {
LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, cur_p->data[i].p * 100.0f);
}
#endif
} else {
llama_sampler_temp_impl(cur_p, ctx->temp);
}
}
static struct llama_sampler * llama_sampler_temp_ext_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_temp_ext *) smpl->ctx;
return llama_sampler_init_temp_ext(ctx->temp, ctx->delta, ctx->exponent);
}
static void llama_sampler_temp_ext_free(struct llama_sampler * smpl) {
delete (llama_sampler_temp_ext *) smpl->ctx;
}
static void llama_sampler_temp_ext_backend_apply(
struct llama_sampler * smpl,
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct llama_sampler_data * data) {
auto * ctx_data = (llama_sampler_temp_ext *) smpl->ctx;
// Revert to standard temperature scaling if delta or temp are non-positive.
if (ctx_data->delta <= 0.0f || ctx_data->temp <= 0.0f) {
llama_sampler_backend_temp_sampling(ctx, gf, data, ctx_data->temp);
return;
}
// Calculate min_temp, max_temp, and max_entropy.
const float min_temp = std::max(0.0f, ctx_data->temp - ctx_data->delta);
const float max_temp = ctx_data->temp + ctx_data->delta;
const float max_entropy = logf(data->logits->ne[0]);
// Calculate the probabilities.
struct ggml_tensor * probs = ggml_soft_max(ctx, data->logits);
ggml_set_name(probs, "temp_ext_softmax_probs");
// Clamp probabilities to avoid log(0) which would give -inf
struct ggml_tensor * probs_clamped = ggml_clamp(ctx, probs, 1e-10f, 1.0f);
ggml_set_name(probs_clamped, "temp_ext_probs_clamped");
// Calculate the entropy, entropy = -Σ(p * log(p)).
struct ggml_tensor * log_probs = ggml_log(ctx, probs_clamped);
struct ggml_tensor * p_log_p = ggml_mul(ctx, probs_clamped, log_probs);
struct ggml_tensor * sum_p_log_p = ggml_sum(ctx, p_log_p);
struct ggml_tensor * entropy = ggml_scale(ctx, sum_p_log_p, -1.0f);
ggml_set_name(log_probs, "temp_ext_log_probs");
ggml_set_name(p_log_p, "temp_ext_p_log_p");
ggml_set_name(sum_p_log_p, "temp_ext_sum_p_log_p");
ggml_set_name(entropy, "temp_ext_entropy");
// Normalize the entropy, norm_entropy = entropy / max_entropy
struct ggml_tensor * norm_entropy = ggml_scale(ctx, entropy, 1.0f / max_entropy);
ggml_set_name(norm_entropy, "temp_ext_norm_entropy");
// Calculate the dynamic temperature:
// dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent);
//
// Calculate powf(normalized_entropy, exponent) as
// norm_entropy^exponent = exp(exponent * log(norm_entropy))
struct ggml_tensor * log_norm_entropy = ggml_log(ctx, norm_entropy);
struct ggml_tensor * scaled_log = ggml_scale(ctx, log_norm_entropy, ctx_data->exponent);
struct ggml_tensor * pow_entropy = ggml_exp(ctx, scaled_log);
// With pow_entropy computed we can now compute dyn_temp, scaling by
// (max_temp - min_temp) and then adding min_temp.
struct ggml_tensor * dyn_temp = ggml_scale_bias(ctx, pow_entropy, max_temp - min_temp, min_temp);
ggml_set_name(log_norm_entropy, "temp_ext_log_norm_entropy");
ggml_set_name(scaled_log, "temp_ext_scaled_log");
ggml_set_name(pow_entropy, "temp_ext_pow_entropy");
ggml_set_name(dyn_temp, "temp_ext_dyn_temp");
// Scale the logits by the dynamic temperature
struct ggml_tensor * scaled_logits = ggml_div(ctx, data->logits, dyn_temp);
ggml_set_name(scaled_logits, "temp_ext_scaled_logits");
data->logits = scaled_logits;
ggml_build_forward_expand(gf, data->logits);
}
static struct llama_sampler_i llama_sampler_temp_ext_i = {
/* .name = */ llama_sampler_temp_ext_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_temp_ext_apply,
/* .reset = */ nullptr,
/* .clone = */ llama_sampler_temp_ext_clone,
/* .free = */ llama_sampler_temp_ext_free,
/* .backend_init = */ nullptr,
/* .backend_accept = */ nullptr,
/* .backend_apply = */ llama_sampler_temp_ext_backend_apply,
/* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_temp_ext(float temp, float delta, float exponent) {
const bool is_empty = temp == 1.0f && delta <= 0.0f;
if (is_empty) {
return llama_sampler_init_empty("temp-ext?");
}
auto * res = llama_sampler_init(
/* .iface = */ &llama_sampler_temp_ext_i,
/* .ctx = */ new llama_sampler_temp_ext {
/* .temp = */ temp,
/* .delta = */ delta,
/* .exponent = */ exponent,
}
);
return res;
}
// xtc
struct llama_sampler_xtc {
const float probability;
const float threshold;
const size_t min_keep;
const uint32_t seed;
uint32_t seed_cur;
std::mt19937 rng;
};
static const char * llama_sampler_xtc_name(const struct llama_sampler * /*smpl*/) {
return "xtc";
}
static void llama_sample_xtc_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_xtc *) smpl->ctx;
if (ctx->probability <= 0.0f
|| ctx->threshold > 0.5f
|| cur_p->size < 2) {
return;
}
std::uniform_real_distribution<float> distribution(0.0f, 1.0f);
float chance = distribution(ctx->rng);
if (chance > ctx->probability) {
return;
}
llama_sampler_softmax_impl(cur_p, true);
int pos_last = 0;
for (size_t i = 0; i < cur_p->size; ++i) {
if (cur_p->data[i].p >= ctx->threshold) {
pos_last = i;
} else {
break;
}
}
if (cur_p->size - pos_last >= ctx->min_keep && pos_last > 0) {
cur_p->data += pos_last;
cur_p->size -= pos_last;
}
}
static struct llama_sampler * llama_sampler_xtc_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_xtc *) smpl->ctx;
auto * result = llama_sampler_init_xtc(ctx->probability, ctx->threshold, ctx->min_keep, ctx->seed);
// copy the state
{
auto * result_ctx = (llama_sampler_xtc *) result->ctx;
result_ctx->rng = ctx->rng;
}
return result;
}
static void llama_sampler_xtc_free(struct llama_sampler * smpl) {
delete (llama_sampler_xtc *) smpl->ctx;
}
static void llama_sampler_xtc_reset(struct llama_sampler * smpl) {
auto * ctx = (llama_sampler_xtc *) smpl->ctx;
ctx->seed_cur = get_rng_seed(ctx->seed);
ctx->rng.seed(ctx->seed_cur);
}
static struct llama_sampler_i llama_sampler_xtc_i = {
/* .name = */ llama_sampler_xtc_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sample_xtc_apply,
/* .reset = */ llama_sampler_xtc_reset,
/* .clone = */ llama_sampler_xtc_clone,
/* .free = */ llama_sampler_xtc_free,
/* .backend_init = */ nullptr,
/* .backend_accept = */ nullptr,
/* .backend_apply = */ nullptr,
/* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_xtc(float p, float t, size_t min_keep, uint32_t seed) {
const bool is_empty = (p <= 0.0f || t > 0.5f);
if (is_empty) {
return llama_sampler_init_empty("xtc?");
}
const auto seed_cur = get_rng_seed(seed);
return llama_sampler_init(
/* .iface = */ &llama_sampler_xtc_i,
/* .ctx = */ new llama_sampler_xtc {
/* .probability = */ p,
/* .threshold = */ t,
/* .min_keep = */ min_keep,
/* .seed = */ seed,
/* .seed_cur = */ seed_cur,
/* .rng = */ std::mt19937(seed_cur),
}
);
}
// mirostat
struct llama_sampler_mirostat {
const int32_t n_vocab;
const uint32_t seed;
uint32_t seed_cur;
const float tau;
const float eta;
const int32_t m;
float mu;
std::mt19937 rng;
};
static const char * llama_sampler_mirostat_name(const struct llama_sampler * /*smpl*/) {
return "mirostat";
}
static void llama_sampler_mirostat_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_mirostat *) smpl->ctx;
llama_sampler_softmax_impl(cur_p, true);
// Estimate s_hat using the most probable m tokens
float s_hat = 0.0;
float sum_ti_bi = 0.0;
float sum_ti_sq = 0.0;
for (size_t i = 0; i < size_t(ctx->m - 1) && i < cur_p->size - 1; ++i) {
float t_i = logf(float(i + 2) / float(i + 1));
float b_i = logf(cur_p->data[i].p / cur_p->data[i + 1].p);
sum_ti_bi += t_i * b_i;
sum_ti_sq += t_i * t_i;
}
s_hat = sum_ti_bi / sum_ti_sq;
// Compute k from the estimated s_hat and target surprise value
float epsilon_hat = s_hat - 1;
float k = powf((epsilon_hat * powf(2, ctx->mu)) / (1 - powf(ctx->n_vocab, -epsilon_hat)), 1 / s_hat);
llama_sampler_top_k_impl(cur_p, std::max(int(k), 1));
llama_sampler_softmax_impl(cur_p, true);
const int idx = llama_sample_dist(cur_p, ctx->rng);
cur_p->selected = idx;
float observed_surprise = -log2f(cur_p->data[idx].p);
float e = observed_surprise - ctx->tau;
// Update mu using the learning rate and error
ctx->mu = ctx->mu - ctx->eta * e;
}
static struct llama_sampler * llama_sampler_mirostat_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_mirostat *) smpl->ctx;
auto * result = llama_sampler_init_mirostat(ctx->n_vocab, ctx->seed, ctx->tau, ctx->eta, ctx->m);
// copy the state
{
auto * result_ctx = (llama_sampler_mirostat *) smpl->ctx;
result_ctx->mu = ctx->mu;
result_ctx->rng = ctx->rng;
}
return result;
}
static void llama_sampler_mirostat_reset(struct llama_sampler * smpl) {
auto * ctx = (llama_sampler_mirostat *) smpl->ctx;
ctx->mu = 2.0f*ctx->tau;
ctx->seed_cur = get_rng_seed(ctx->seed);
ctx->rng.seed(ctx->seed_cur);
}
static void llama_sampler_mirostat_free(struct llama_sampler * smpl) {
delete (llama_sampler_mirostat *) smpl->ctx;
}
static struct llama_sampler_i llama_sampler_mirostat_i = {
/* .name = */ llama_sampler_mirostat_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_mirostat_apply,
/* .reset = */ llama_sampler_mirostat_reset,
/* .clone = */ llama_sampler_mirostat_clone,
/* .free = */ llama_sampler_mirostat_free,
/* .backend_init = */ nullptr,
/* .backend_accept = */ nullptr,
/* .backend_apply = */ nullptr,
/* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t seed, float tau, float eta, int32_t m) {
const auto seed_cur = get_rng_seed(seed);
return llama_sampler_init(
/* .iface = */ &llama_sampler_mirostat_i,
/* .ctx = */ new llama_sampler_mirostat {
/* .n_vocab = */ n_vocab,
/* .seed = */ seed,
/* .seed_cur = */ seed_cur,
/* .tau = */ tau,
/* .eta = */ eta,
/* .m = */ m,
/* .mu = */ 2.0f*tau,
/* .rng = */ std::mt19937(seed_cur),
}
);
}
// mirostat v2
struct llama_sampler_mirostat_v2 {
const uint32_t seed;
uint32_t seed_cur;
const float tau;
const float eta;
float mu;
std::mt19937 rng;
};
static const char * llama_sampler_mirostat_v2_name(const struct llama_sampler * /*smpl*/) {
return "mirostat-v2";
}
static void llama_sampler_mirostat_v2_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx;
llama_sampler_softmax_impl(cur_p, true);
// Truncate the words with surprise values greater than mu
cur_p->size = std::distance(cur_p->data, std::find_if(cur_p->data, cur_p->data + cur_p->size, [&](const llama_token_data & candidate) {
return -log2f(candidate.p) > ctx->mu;
}));
if (cur_p->size == 0) {
cur_p->size = 1;
}
// Normalize the probabilities of the remaining words
llama_sampler_softmax_impl(cur_p, true);
const int idx = llama_sample_dist(cur_p, ctx->rng);
cur_p->selected = idx;
float observed_surprise = -log2f(cur_p->data[idx].p);
float e = observed_surprise - ctx->tau;
// Update mu using the learning rate and error
ctx->mu = ctx->mu - ctx->eta * e;
}
static void llama_sampler_mirostat_v2_reset(struct llama_sampler * smpl) {
auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx;
ctx->mu = 2.0f*ctx->tau;
ctx->seed_cur = get_rng_seed(ctx->seed);
ctx->rng.seed(ctx->seed_cur);
}
static struct llama_sampler * llama_sampler_mirostat_v2_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_mirostat_v2 *) smpl->ctx;
auto * result = llama_sampler_init_mirostat_v2(ctx->seed, ctx->tau, ctx->eta);
// copy the state
{
auto * result_ctx = (llama_sampler_mirostat_v2 *) result->ctx;
result_ctx->mu = ctx->mu;
result_ctx->rng = ctx->rng;
}
return result;
}
static void llama_sampler_mirostat_v2_free(struct llama_sampler * smpl) {
delete (llama_sampler_mirostat_v2 *) smpl->ctx;
}
static struct llama_sampler_i llama_sampler_mirostat_v2_i = {
/* .name = */ llama_sampler_mirostat_v2_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_mirostat_v2_apply,
/* .reset = */ llama_sampler_mirostat_v2_reset,
/* .clone = */ llama_sampler_mirostat_v2_clone,
/* .free = */ llama_sampler_mirostat_v2_free,
/* .backend_init = */ nullptr,
/* .backend_accept = */ nullptr,
/* .backend_apply = */ nullptr,
/* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_mirostat_v2(uint32_t seed, float tau, float eta) {
auto seed_cur = get_rng_seed(seed);
return llama_sampler_init(
/* .iface = */ &llama_sampler_mirostat_v2_i,
/* .ctx = */ new llama_sampler_mirostat_v2 {
/* .seed = */ seed,
/* .seed_cur = */ seed_cur,
/* .tau = */ tau,
/* .eta = */ eta,
/* .mu = */ 2.0f*tau,
/* .rng = */ std::mt19937(seed_cur),
}
);
}
// grammar
struct llama_sampler_grammar {
const struct llama_vocab * vocab;
std::string grammar_str;
std::string grammar_root;
struct llama_grammar * grammar;
};
static const char * llama_sampler_grammar_name(const struct llama_sampler * /*smpl*/) {
return "grammar";
}
static void llama_sampler_grammar_accept_impl(struct llama_sampler * smpl, llama_token token) {
auto * ctx = (llama_sampler_grammar *) smpl->ctx;
if (ctx->grammar) {
llama_grammar_accept_impl(*ctx->grammar, token);
}
}
static void llama_sampler_grammar_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_grammar *) smpl->ctx;
if (ctx->grammar) {
llama_grammar_apply_impl(*ctx->grammar, cur_p);
}
}
// Fwd declare to break reset --> init_impl --> llama_sampler_grammar_i --> reset cycle.
static struct llama_sampler * llama_sampler_init_grammar_impl(
const struct llama_vocab * vocab,
const char * grammar_str,
const char * grammar_root,
bool lazy,
const char ** trigger_words,
size_t num_trigger_words,
const llama_token * trigger_tokens,
size_t num_trigger_tokens,
const char ** trigger_patterns,
size_t num_trigger_patterns);
static void llama_sampler_grammar_reset(struct llama_sampler * smpl) {
auto * ctx = (llama_sampler_grammar *) smpl->ctx;
if (!ctx->grammar) {
return;
}
std::vector<const char *> trigger_patterns_c;
trigger_patterns_c.reserve(ctx->grammar->trigger_patterns.size());
for (auto & trigger_pattern : ctx->grammar->trigger_patterns) {
trigger_patterns_c.push_back(trigger_pattern.pattern.c_str());
}
auto * grammar_new = llama_grammar_init_impl(ctx->grammar->vocab, ctx->grammar_str.c_str(), ctx->grammar_root.c_str(),
ctx->grammar->lazy, trigger_patterns_c.data(), trigger_patterns_c.size(),
ctx->grammar->trigger_tokens.data(), ctx->grammar->trigger_tokens.size());
llama_grammar_free_impl(ctx->grammar);
ctx->grammar = grammar_new;
}
static struct llama_sampler * llama_sampler_grammar_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_grammar *) smpl->ctx;
auto * result = llama_sampler_init_grammar_impl(ctx->vocab, nullptr, nullptr, false, nullptr, 0, nullptr, 0, nullptr, 0);
GGML_ASSERT(result);
// copy the state
{
auto * result_ctx = (llama_sampler_grammar *) result->ctx;
if (ctx->grammar) {
result_ctx->grammar_str = ctx->grammar_str;
result_ctx->grammar_root = ctx->grammar_root;
result_ctx->grammar = llama_grammar_clone_impl(*ctx->grammar);
}
}
return result;
}
static void llama_sampler_grammar_free(struct llama_sampler * smpl) {
const auto * ctx = (llama_sampler_grammar *) smpl->ctx;
if (ctx->grammar) {
llama_grammar_free_impl(ctx->grammar);
}
delete ctx;
}
static struct llama_sampler_i llama_sampler_grammar_i = {
/* .name = */ llama_sampler_grammar_name,
/* .accept = */ llama_sampler_grammar_accept_impl,
/* .apply = */ llama_sampler_grammar_apply,
/* .reset = */ llama_sampler_grammar_reset,
/* .clone = */ llama_sampler_grammar_clone,
/* .free = */ llama_sampler_grammar_free,
/* .backend_init = */ nullptr,
/* .backend_accept = */ nullptr,
/* .backend_apply = */ nullptr,
/* .backend_set_input = */ nullptr,
};
static struct llama_sampler * llama_sampler_init_grammar_impl(
const struct llama_vocab * vocab,
const char * grammar_str,
const char * grammar_root,
bool lazy,
const char ** trigger_words,
size_t num_trigger_words,
const llama_token * trigger_tokens,
size_t num_trigger_tokens,
const char ** trigger_patterns,
size_t num_trigger_patterns) {
auto * ctx = new llama_sampler_grammar;
if (grammar_str != nullptr && grammar_str[0] != '\0') {
std::string trigger_pattern;
llama_grammar * grammar = nullptr;
// TODO: remove trigger_words support.
if (trigger_words != nullptr && num_trigger_words > 0) {
GGML_ASSERT(trigger_patterns == nullptr && num_trigger_patterns == 0);
trigger_pattern = "[\\s\\S]*?(";
for (size_t i = 0; i < num_trigger_words; ++i) {
static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
if (i > 0) {
trigger_pattern += "|";
}
trigger_pattern += std::regex_replace(trigger_words[i], special_chars, "\\$0");
}
trigger_pattern += ")[\\s\\S]*";
std::array<const char *, 1> tmp_trigger_patterns = { trigger_pattern.c_str() };
grammar = llama_grammar_init_impl(vocab, grammar_str, grammar_root, lazy, tmp_trigger_patterns.data(), tmp_trigger_patterns.size(), trigger_tokens, num_trigger_tokens);
} else {
grammar = llama_grammar_init_impl(vocab, grammar_str, grammar_root, lazy, trigger_patterns, num_trigger_patterns, trigger_tokens, num_trigger_tokens);
}
*ctx = {
/* .vocab = */ vocab,
/* .grammar_str = */ grammar_str,
/* .grammar_root = */ grammar_root,
/* .grammar = */ grammar,
};
if (!ctx->grammar) {
delete ctx;
return nullptr;
}
} else {
*ctx = {
/* .vocab = */ vocab,
/* .grammar_str = */ {},
/* .grammar_root = */ {},
/* .grammar = */ nullptr,
};
}
return llama_sampler_init(
/* .iface = */ &llama_sampler_grammar_i,
/* .ctx = */ ctx
);
}
struct llama_sampler * llama_sampler_init_grammar(
const struct llama_vocab * vocab,
const char * grammar_str,
const char * grammar_root) {
return llama_sampler_init_grammar_impl(vocab, grammar_str, grammar_root, /* lazy= */ false, nullptr, 0, nullptr, 0, nullptr, 0);
}
struct llama_sampler * llama_sampler_init_grammar_lazy(
const struct llama_vocab * vocab,
const char * grammar_str,
const char * grammar_root,
const char ** trigger_words,
size_t num_trigger_words,
const llama_token * trigger_tokens,
size_t num_trigger_tokens) {
return llama_sampler_init_grammar_impl(vocab, grammar_str, grammar_root, /* lazy= */ true, trigger_words, num_trigger_words, trigger_tokens, num_trigger_tokens, nullptr, 0);
}
struct llama_sampler * llama_sampler_init_grammar_lazy_patterns(
const struct llama_vocab * vocab,
const char * grammar_str,
const char * grammar_root,
const char ** trigger_patterns,
size_t num_trigger_patterns,
const llama_token * trigger_tokens,
size_t num_trigger_tokens) {
return llama_sampler_init_grammar_impl(vocab, grammar_str, grammar_root, /* lazy= */ true, nullptr, 0, trigger_tokens, num_trigger_tokens, trigger_patterns, num_trigger_patterns);
}
// penalties
struct llama_sampler_penalties {
const int32_t penalty_last_n;
const float penalty_repeat;
const float penalty_freq;
const float penalty_present;
ring_buffer<llama_token> prev;
// a frequency map to count token occurrences
std::unordered_map<llama_token, int> token_count;
};
static const char * llama_sampler_penalties_name(const struct llama_sampler * /*smpl*/) {
return "penalties";
}
static void llama_sampler_penalties_accept(struct llama_sampler * smpl, llama_token token) {
auto * ctx = (llama_sampler_penalties *) smpl->ctx;
if (ctx->penalty_last_n == 0) {
return;
}
ctx->token_count[token]++;
// if the ring buffer is full, remove the oldest token
if (ctx->prev.size() >= (size_t) ctx->penalty_last_n) {
const auto old = ctx->prev.front();
ctx->token_count[old]--;
if (ctx->token_count[old] == 0) {
ctx->token_count.erase(old);
}
}
ctx->prev.push_back(token);
#if 0
// sanity check
std::unordered_map<llama_token, int> tmp;
for (int i = 0; i < std::min<int>(ctx->penalty_last_n, ctx->prev.size()); ++i) {
tmp[ctx->prev.rat(i)]++;
}
assert(ctx->token_count == tmp);
#endif
}
static void llama_sampler_penalties_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_penalties *) smpl->ctx;
if ((ctx->penalty_last_n == 0) ||
(ctx->penalty_repeat == 1.0f && ctx->penalty_freq == 0.0f && ctx->penalty_present == 0.0f)) {
return;
}
// Apply frequency and presence penalties to the cur_p
for (size_t i = 0; i < cur_p->size; ++i) {
const auto token_iter = ctx->token_count.find(cur_p->data[i].id);
if (token_iter == ctx->token_count.end()) {
continue;
}
const int count = token_iter->second;
assert(count > 0 && count <= ctx->penalty_last_n);
// The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
// This is common fix for this problem, which is to multiply by the penalty instead of dividing.
if (cur_p->data[i].logit <= 0) {
cur_p->data[i].logit *= ctx->penalty_repeat;
} else {
cur_p->data[i].logit /= ctx->penalty_repeat;
}
cur_p->data[i].logit -= float(count) * ctx->penalty_freq + float(count > 0) * ctx->penalty_present;
}
cur_p->sorted = false;
}
static void llama_sampler_penalties_reset(struct llama_sampler * smpl) {
auto * ctx = (llama_sampler_penalties *) smpl->ctx;
ctx->prev.clear();
ctx->token_count.clear();
}
static struct llama_sampler * llama_sampler_penalties_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_penalties *) smpl->ctx;
auto * result = llama_sampler_init_penalties(
ctx->penalty_last_n,
ctx->penalty_repeat,
ctx->penalty_freq,
ctx->penalty_present);
// copy the state
{
auto * result_ctx = (llama_sampler_penalties *) result->ctx;
result_ctx->prev = ctx->prev;
}
return result;
}
static void llama_sampler_penalties_free(struct llama_sampler * smpl) {
delete (llama_sampler_penalties *) smpl->ctx;
}
static struct llama_sampler_i llama_sampler_penalties_i = {
/* .name = */ llama_sampler_penalties_name,
/* .accept = */ llama_sampler_penalties_accept,
/* .apply = */ llama_sampler_penalties_apply,
/* .reset = */ llama_sampler_penalties_reset,
/* .clone = */ llama_sampler_penalties_clone,
/* .free = */ llama_sampler_penalties_free,
/* .backend_init = */ nullptr,
/* .backend_accept = */ nullptr,
/* .backend_apply = */ nullptr,
/* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_penalties(
int32_t penalty_last_n,
float penalty_repeat,
float penalty_freq,
float penalty_present) {
penalty_last_n = std::max(penalty_last_n, 0);
const bool is_empty = (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f));
if (is_empty) {
return llama_sampler_init_empty("penalties?");
}
return llama_sampler_init(
/* .iface = */ &llama_sampler_penalties_i,
/* .ctx = */ new llama_sampler_penalties {
/* .penalty_last_n = */ penalty_last_n,
/* .penalty_repeat = */ penalty_repeat,
/* .penalty_freq = */ penalty_freq,
/* .penalty_present = */ penalty_present,
/* .prev = */ ring_buffer<llama_token>(penalty_last_n),
/* .token_count = */ {},
}
);
}
// top-n-sigma
struct llama_sampler_top_n_sigma {
const float n;
};
static const char * llama_sampler_top_n_sigma_name(const struct llama_sampler * /*smpl*/) {
return "top-n-sigma";
}
static void llama_sampler_top_n_sigma_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_top_n_sigma *) smpl->ctx;
if (ctx->n <= 0.0f || cur_p->size <= 1) {
return;
}
// find max logit and calculate mean
float max = cur_p->data[0].logit;
float logits_sum = 0;
size_t valid_count = 0;
for (size_t i = 0; i < cur_p->size; ++i) {
// Only count non-negative infinity values
if (cur_p->data[i].logit != -INFINITY) {
max = std::max(max, cur_p->data[i].logit);
logits_sum += cur_p->data[i].logit;
valid_count++;
}
}
float mean = valid_count > 0 ? logits_sum/valid_count : 0;
// calculate standard deviation
float acc = 0;
for (size_t i = 0; i < cur_p->size; ++i) {
// Skip -infinity in std calculation
if (cur_p->data[i].logit != -INFINITY) {
acc += pow(cur_p->data[i].logit - mean, 2);
}
}
float std = valid_count > 0 ? sqrt(acc/valid_count) : 0;
// apply mask
for (size_t i = 0; i < cur_p->size; ++i) {
if (cur_p->data[i].logit < max - (ctx->n * std)) {
cur_p->data[i].logit = -INFINITY;
}
}
llama_sampler_softmax_impl(cur_p, true);
}
static struct llama_sampler * llama_sampler_top_n_sigma_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_top_n_sigma *) smpl->ctx;
return llama_sampler_init_top_n_sigma(ctx->n);
}
static void llama_sampler_top_n_sigma_free(struct llama_sampler * smpl) {
delete (llama_sampler_top_n_sigma *) smpl->ctx;
}
static struct llama_sampler_i llama_sampler_top_n_sigma_i = {
/* .name = */ llama_sampler_top_n_sigma_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_top_n_sigma_apply,
/* .reset = */ nullptr,
/* .clone = */ llama_sampler_top_n_sigma_clone,
/* .free = */ llama_sampler_top_n_sigma_free,
/* .backend_init = */ nullptr,
/* .backend_accept = */ nullptr,
/* .backend_apply = */ nullptr,
/* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_top_n_sigma(float n) {
const bool is_empty = (n <= 0.0f);
if (is_empty) {
return llama_sampler_init_empty("top-n-sigma?");
}
return llama_sampler_init(
/* .iface = */ &llama_sampler_top_n_sigma_i,
/* .ctx = */ new llama_sampler_top_n_sigma {
/* .n = */ n,
}
);
}
// DRY
struct llama_sampler_dry {
int32_t total_context_size;
const float dry_multiplier;
const float dry_base;
const int32_t dry_allowed_length;
const int32_t dry_penalty_last_n;
std::unordered_multimap<llama_token, std::vector<llama_token>> dry_processed_breakers;
std::vector<int> dry_repeat_count;
std::unordered_map<llama_token, int> dry_max_token_repeat;
ring_buffer<llama_token> last_tokens;
};
// Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am)
static void get_overlapping_token_sequences(const llama_vocab & vocab, const std::string& str, std::unordered_multimap<llama_token, std::vector<llama_token>>& token_sequences, int max_tail_len = -1) {
for (llama_token token_id = 0; token_id < (llama_token) vocab.n_tokens(); token_id++) {
std::string word = vocab.detokenize({token_id}, true);
if (word.find(str) != std::string::npos) {
token_sequences.emplace(token_id, std::vector<llama_token>());
} else {
size_t word_len = word.size();
size_t str_len = str.size();
size_t pos = -1;
while ((pos = word.find(str[0], pos + 1)) != std::string::npos) {
bool match = true;
size_t i;
for (i = 1; i < str_len && i + pos < word_len; ++i) {
if (word[pos + i] != str[i]) {
match = false;
break;
}
}
if (match) {
std::vector<llama_token> tokenization = vocab.tokenize(str.substr(i), false, false);
if (max_tail_len >= 0 && tokenization.size() > (size_t)max_tail_len) {
tokenization.resize(max_tail_len);
}
// Ensure we don't already have a duplicate matching tokenization
auto its = token_sequences.equal_range(token_id);
bool found = false;
for (auto it = its.first; it != its.second; ++it) {
if (tokenization == it->second) {
found = true;
break;
}
}
if (!found) {
token_sequences.emplace(token_id, tokenization);
}
}
}
}
}
}
static const char * llama_sampler_dry_name(const struct llama_sampler * /*smpl*/) {
return "dry";
}
static void llama_sampler_dry_accept(struct llama_sampler * smpl, llama_token token) {
auto * ctx = (llama_sampler_dry *) smpl->ctx;
if (ctx->dry_multiplier == 0.0f || ctx->dry_base < 1.0f || ctx->dry_penalty_last_n == 0) {
return;
}
ctx->last_tokens.push_back(token);
}
// Ported from Koboldcpp, original PR: https://github.com/LostRuins/koboldcpp/pull/982 (Original author: pi6am)
static void llama_sampler_dry_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_dry *) smpl->ctx;
if (ctx->dry_multiplier == 0.0f || ctx->dry_base < 1.0f || ctx->dry_penalty_last_n == 0) {
return;
}
int32_t effective_dry_penalty_last_n = (ctx->dry_penalty_last_n == -1) ? ctx->total_context_size : std::max(ctx->dry_penalty_last_n, 0);
int last_n_repeat = std::min(std::min((int)ctx->last_tokens.size(), effective_dry_penalty_last_n), ctx->total_context_size);
if (last_n_repeat <= ctx->dry_allowed_length) {
return;
}
ctx->dry_repeat_count.assign(last_n_repeat, 0);
ctx->dry_max_token_repeat.clear();
// Step 1: Look for restart sequences to limit the maximum repetition length.
// Work backwards through the context looking for any token that begins a restart sequence.
//
// The collection `restart_sequences` is a mapping from a "head" token to all "tail"
// sequences that together comprise a restart sequence. This allows us to quickly check
// whether each token is the head of a complete sequence. Most restart sequences are actually
// a single token, and for these the "tail" is an empty vector.
//
// If the token is a "head", test all restart sequences that begin with this token
// (there will often only be one sequence for each token, but if sequences like 'aaaq1' and
// 'aaa1' are used as restart strings, both could start with 'aaa' when tokenized). The
// longest matching sequence (if any) is used to limit the maximum repetition length.
//
// Note that in the case case of a short sequence contained in a longer one, this might fail to
// find the smallest value for `rep_limit`. For example, if 'amniotic' and 'ni' are both used as
// restart sequences, 'ni' will be found first, and since it's shorter it will fail to suppress
// 'otic'. This is a minor issue since fully contained restart sequences are likely to be rare.
//
// This is theoretically worst-case O(N^2) for arbitrary restart sequences, which is why we
// have already clamped the maximum tail sequence length when generating `restart_sequences`.
// With clamping, this scan is O(N) in the context length.
int rep_limit = last_n_repeat;
for (int i = 0; i < last_n_repeat; ++i) {
llama_token token = ctx->last_tokens.rat(i);
auto its = ctx->dry_processed_breakers.equal_range(token);
if (its.first == ctx->dry_processed_breakers.end()) {
continue;
}
int longest_match = -1;
for (auto it = its.first; it != its.second; ++it) {
// Note that (*it) does not contain the head character, so seq_len will be
// the restart sequence length minus 1.
// In the common case of a single-token restart sequence, (*it) will be empty
// and we will trivially match.
int seq_len = (int)it->second.size();
if (seq_len > longest_match && seq_len <= (int)i) {
bool match = true;
for (int offset = 0; offset < seq_len; ++offset) {
// The -1 when indexing `last_tokens` is because we already matched the head.
if (it->second[offset] != ctx->last_tokens.rat(i - offset - 1)) {
match = false;
break;
}
}
if (match) {
longest_match = seq_len;
}
}
}
if (longest_match >= 0) {
// We found a restart sequence starting `i` tokens from the end and continuing for
// `longest_match` tokens.
rep_limit = i - longest_match;
break;
}
}
if (rep_limit < ctx->dry_allowed_length) {
return;
}
// Step 2: Iterate in reverse over the last N tokens of the context, using the "Z-algorithm" (in
// the reverse direction) to efficiently compute the positions and lengths of suffixes appearing
// elsewhere in the context. We limit the suffix length to `rep_limit` to respect restart sequences.
//
// This algorithm is not currently documented on Wikipedia, but there is a clear description here:
// https://ivanyu.me/blog/2014/10/15/z-algorithm/
//
// The code below is adapted from the public domain implementation by the same author here:
// https://github.com/ivanyu/string-algorithms/blob/master/z_algorithm.py
//
// Example:
// Last N tokens: a b c c b c y a b c
// Repeat counts: 0 0 3 1 0 2 0 0 0 0
// ^
// This `3` means that the last three tokens of the context (a b c) also appear here.
//
// This step is worst case O(N) since the Z-algorithm is linear, despite the appearance of nested
// for/while loops. This can be seen by observing that the `lt` and `rt` bounds are set after each
// repeated suffix is detected (i.e. after each while loop when n > 0). These bound variables
// ensure that the inner while loops only examine each token in the context once as the outer
// for loop iterates over the context.
{
const int last = last_n_repeat - 1;
int rt = 0;
int lt = 0;
for (int k = 1; k < last_n_repeat; ++k) {
if (k > rt) {
// If k is outside the current Z-box, do naive computation.
int n = 0;
while (n + k < last_n_repeat && ctx->last_tokens.rat(n) == ctx->last_tokens.rat(n+k)) {
++n;
}
ctx->dry_repeat_count[last - k] = std::min(n, rep_limit);
if (n > 0) {
lt = k;
rt = k + n - 1;
}
} else {
// If k is inside the current Z-box, consider two cases.
int p = k - lt; // Pair index.
int right_part_len = rt - k + 1;
if (ctx->dry_repeat_count[last - p] < right_part_len) {
int n = std::min(ctx->dry_repeat_count[last - p], rep_limit);
ctx->dry_repeat_count[last - k] = n;
} else {
int i = rt + 1;
while (i < last_n_repeat && ctx->last_tokens.rat(i) == ctx->last_tokens.rat(i - k)) {
i += 1;
}
int n = std::min(i - k, rep_limit);
ctx->dry_repeat_count[last - k] = n;
lt = k;
rt = i - 1;
}
}
}
}
// Step 3: Iterate over dry_repeat_count and last_tokens, examining the maximum repeat length
// that would be generated by emitting each new token that would extend a sequence.
//
// Following the same example as above:
// Last N tokens: a b c c b c y a b c
// Repeat counts: 0 0 3 1 0 2 0 0 0 0
//
// For each non-zero, look ahead one token. This token, if emitted, would extend the repetition.
// c: 3 -> 4 (from `a b c` to `a b c c`)
// b: 1 -> 2 (from `c` to `c b`)
// y: 2 -> 3 (from `b c` to `b c y`)
for (int i = 0; i < last_n_repeat - 1; ++i) {
int repeat_len = ctx->dry_repeat_count[i];
if (repeat_len >= ctx->dry_allowed_length) {
// This token ends a repeat, so the next token would continue one.
// By convention, the value of `repeat_len` only includes the tokens currently
// in the context, not the new token that would be added.
llama_token token = ctx->last_tokens.rat(last_n_repeat - 2 - i);
// Track the maximum sequence ending in this token.
const auto& it = ctx->dry_max_token_repeat.find(token);
if (it == ctx->dry_max_token_repeat.end() || it->second < repeat_len) {
ctx->dry_max_token_repeat[token] = repeat_len;
}
}
}
// Step 4: Apply logit penalties based on the maximum repeat length for relevant tokens.
// Prevent floating point overflow in `pow(penalty_base, exponent)` by clamping to `max_exponent`.
// Compute it from `penalty_base` and the approximate log of `std::numeric_limits<float>::max()`
const float FLOAT_MAX_LOG = 88.7228391f;
int max_exponent = 0;
if (ctx->dry_base > 1.000001f) {
max_exponent = FLOAT_MAX_LOG / std::log(ctx->dry_base);
}
for (size_t i = 0; i < cur_p->size; ++i) {
const auto& af_kvp = ctx->dry_max_token_repeat.find(cur_p->data[i].id);
if (af_kvp != ctx->dry_max_token_repeat.end()) {
// Check all sequence breakers starting with this token
auto range = ctx->dry_processed_breakers.equal_range(cur_p->data[i].id);
bool is_single_token_breaker = false;
for (auto it = range.first; it != range.second; ++it) {
if (it->second.empty()) {
is_single_token_breaker = true;
break;
}
}
// Apply penalty only if it's not a single-token sequence breaker
if (!is_single_token_breaker) {
int repeat_exp = af_kvp->second - ctx->dry_allowed_length;
if (max_exponent > 0 && repeat_exp > max_exponent) {
repeat_exp = max_exponent;
}
float penalty = ctx->dry_multiplier * std::pow(ctx->dry_base, repeat_exp);
cur_p->data[i].logit -= penalty;
}
}
}
cur_p->sorted = false;
}
static void llama_sampler_dry_reset(struct llama_sampler * smpl) {
auto * ctx = (llama_sampler_dry *) smpl->ctx;
ctx->last_tokens.clear();
ctx->dry_repeat_count.clear();
ctx->dry_max_token_repeat.clear();
}
static struct llama_sampler * llama_sampler_dry_clone(const struct llama_sampler * smpl) {
const auto * ctx = (llama_sampler_dry *) smpl->ctx;
llama_vocab dummy_vocab;
// dummy vocab is passed because it is only needed for raw sequence breaker processing, which we have already done and will simply be copying
auto * result = llama_sampler_init_dry(&dummy_vocab, ctx->total_context_size, ctx->dry_multiplier, ctx->dry_base, ctx->dry_allowed_length, ctx->dry_penalty_last_n, NULL, 0);
// Copy the state, including the processed breakers
{
auto * result_ctx = (llama_sampler_dry *) result->ctx;
result_ctx->dry_processed_breakers = ctx->dry_processed_breakers;
result_ctx->dry_repeat_count = ctx->dry_repeat_count;
result_ctx->dry_max_token_repeat = ctx->dry_max_token_repeat;
result_ctx->last_tokens = ctx->last_tokens;
}
return result;
}
static void llama_sampler_dry_free(struct llama_sampler * smpl) {
delete (llama_sampler_dry *) smpl->ctx;
}
static struct llama_sampler_i llama_sampler_dry_i = {
/* .name = */ llama_sampler_dry_name,
/* .accept = */ llama_sampler_dry_accept,
/* .apply = */ llama_sampler_dry_apply,
/* .reset = */ llama_sampler_dry_reset,
/* .clone = */ llama_sampler_dry_clone,
/* .free = */ llama_sampler_dry_free,
/* .backend_init = */ nullptr,
/* .backend_accept = */ nullptr,
/* .backend_apply = */ nullptr,
/* .backend_set_input = */ nullptr,
};
struct llama_sampler * llama_sampler_init_dry(const struct llama_vocab * vocab, int32_t n_ctx_train, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const char** seq_breakers, size_t num_breakers) {
int32_t effective_dry_penalty_last_n = (dry_penalty_last_n == -1) ? n_ctx_train : std::max(dry_penalty_last_n, 0);
std::unordered_multimap<llama_token, std::vector<llama_token>> processed_breakers;
const int MAX_CHAR_LEN = 40;
const int MAX_SEQ_LEN = 20;
const bool dry_enabled = (dry_multiplier != 0.0f && dry_base >= 1.0f && dry_penalty_last_n != 0);
if (!dry_enabled) {
return llama_sampler_init_empty("dry?");
}
if (dry_enabled && seq_breakers != nullptr && num_breakers > 0) {
// Process sequence breakers
for (size_t i = 0; i < num_breakers; ++i) {
if (seq_breakers[i] == nullptr || std::strlen(seq_breakers[i]) == 0) {
LLAMA_LOG_WARN("skipping null or empty DRY sequence breaker at index %zu\n", i);
continue;
}
std::string sequence_break(seq_breakers[i]);
if (sequence_break.empty()) {
LLAMA_LOG_WARN("skipping empty DRY sequence breaker\n");
continue;
}
if (sequence_break.size() > MAX_CHAR_LEN) {
LLAMA_LOG_WARN("truncating DRY sequence breaker to %d characters\n", MAX_CHAR_LEN);
sequence_break.resize(MAX_CHAR_LEN);
}
get_overlapping_token_sequences(*vocab, sequence_break, processed_breakers, MAX_SEQ_LEN);
}
}
return llama_sampler_init(
/* .iface = */ &llama_sampler_dry_i,
/* .ctx = */ new llama_sampler_dry {
/* .total_context_size = */ n_ctx_train,
/* .dry_multiplier = */ dry_multiplier,
/* .dry_base = */ dry_base,
/* .dry_allowed_length = */ dry_allowed_length,
/* .dry_penalty_last_n = */ dry_penalty_last_n,
/* .dry_processed_breakers = */ std::move(processed_breakers),
/* .dry_repeat_count = */ dry_enabled ? std::vector<int>(effective_dry_penalty_last_n, 0) : std::vector<int>{},
/* .dry_max_token_repeat = */ {},
/* .last_tokens = */ dry_enabled ? ring_buffer<llama_token>(effective_dry_penalty_last_n) : ring_buffer<llama_token>(0),
}
);
}
// wrapper for test-sampling.cpp
struct llama_sampler * llama_sampler_init_dry_testing(int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const std::vector<std::vector<llama_token>>& seq_breakers) {
llama_vocab dummy_vocab;
auto * result = llama_sampler_init_dry(&dummy_vocab, context_size, dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n, NULL, 0);
auto * ctx = (llama_sampler_dry *) result->ctx;
// Process the token-based sequence breakers
ctx->dry_processed_breakers.clear();
if (seq_breakers.empty()) {
LLAMA_LOG_WARN("empty DRY sequence breakers list in llama_sampler_init_dry_testing\n");
} else {
for (const auto& breaker : seq_breakers) {
if (breaker.empty()) {
LLAMA_LOG_WARN("skipping DRY empty sequence breaker\n");
continue;
}
llama_token head_token = breaker[0];
std::vector<llama_token> tail_tokens(breaker.begin() + 1, breaker.end());
ctx->dry_processed_breakers.emplace(head_token, std::move(tail_tokens));
}
if (ctx->dry_processed_breakers.empty()) {
LLAMA_LOG_WARN("no valid DRY sequence breakers processed in llama_sampler_init_dry_testing\n");
}
}
return result;
}
// logit-bias
struct llama_sampler_logit_bias {
const int32_t n_vocab;
const std::vector<llama_logit_bias> logit_bias;
std::vector<llama_logit_bias> to_search;
struct ggml_tensor * inp_logit_bias;
ggml_context_ptr inp_ctx;
ggml_backend_buffer_ptr inp_buf;
};
static const char * llama_sampler_logit_bias_name(const struct llama_sampler * /*smpl*/) {
return "logit-bias";
}
static void llama_sampler_logit_bias_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_logit_bias *) smpl->ctx;
if (ctx->logit_bias.empty()) {
return;
}
ctx->to_search.clear();
// update the candidates that have not been shuffled in the vocabulary (i.e. idx == id)
for (const auto & lb : ctx->logit_bias) {
if (lb.token >= 0 && cur_p->size > (size_t) lb.token && cur_p->data[lb.token].id == lb.token) {
cur_p->data[lb.token].logit += lb.bias;
} else {
ctx->to_search.push_back(lb);
}
}
if (ctx->to_search.empty()) {
return;
}
// search for the remaining candidates that were not found in the previous step
for (size_t i = 0; i < cur_p->size; ++i) {
for (const auto & lb : ctx->to_search) {
if (cur_p->data[i].id == lb.token) {
cur_p->data[i].logit += lb.bias;
break;
}
}
}
}
static struct llama_sampler * llama_sampler_logit_bias_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_logit_bias *) smpl->ctx;
return llama_sampler_init_logit_bias(ctx->n_vocab, ctx->logit_bias.size(), ctx->logit_bias.data());
}
static void llama_sampler_logit_bias_free(struct llama_sampler * smpl) {
delete (llama_sampler_logit_bias *) smpl->ctx;
}
static void llama_sampler_logit_bias_backend_apply(
struct llama_sampler * smpl,
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct llama_sampler_data * data) {
GGML_UNUSED(gf);
GGML_UNUSED(ctx);
auto * sctx = (llama_sampler_logit_bias *) smpl->ctx;
if (sctx->logit_bias.empty()) {
return;
}
// Add the sparse logit logit_bias to the logits
struct ggml_tensor * logit_biased = ggml_add_inplace(ctx, data->logits, sctx->inp_logit_bias);
data->logits = logit_biased;
ggml_build_forward_expand(gf, logit_biased);
}
static void llama_sampler_logit_bias_backend_set_input(struct llama_sampler * smpl) {
auto * sctx = (llama_sampler_logit_bias *) smpl->ctx;
if (sctx->logit_bias.empty()) {
return;
}
GGML_ASSERT(sctx->inp_logit_bias != nullptr);
// Create a sparse logit_bias vector from the logit_bias entries.
std::vector<float> logit_bias_sparse(sctx->n_vocab, 0.0f);
for (const auto & lb : sctx->logit_bias) {
GGML_ASSERT(lb.token >= 0 && lb.token < (int32_t) sctx->n_vocab);
logit_bias_sparse[lb.token] = lb.bias;
}
ggml_backend_tensor_set(sctx->inp_logit_bias, logit_bias_sparse.data(), 0, ggml_nbytes(sctx->inp_logit_bias));
}
static void llama_sampler_logit_bias_backend_init(
struct llama_sampler * smpl,
ggml_backend_buffer_type_t buft) {
auto * sctx = (llama_sampler_logit_bias *) smpl->ctx;
if (sctx->logit_bias.empty()) {
return;
}
ggml_init_params params = {
/*.mem_size =*/ ggml_tensor_overhead(),
/*.mem_buffer =*/ nullptr,
/*.no_alloc =*/ true,
};
sctx->inp_ctx.reset(ggml_init(params));
sctx->inp_logit_bias = ggml_new_tensor_1d(sctx->inp_ctx.get(), GGML_TYPE_F32, sctx->n_vocab);
ggml_set_name(sctx->inp_logit_bias, "logit_bias");
ggml_set_input(sctx->inp_logit_bias);
// Allocate all tensors from our context to the backend
sctx->inp_buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(sctx->inp_ctx.get(), buft));
}
static struct llama_sampler_i llama_sampler_logit_bias_i = {
/* .name = */ llama_sampler_logit_bias_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_logit_bias_apply,
/* .reset = */ nullptr,
/* .clone = */ llama_sampler_logit_bias_clone,
/* .free = */ llama_sampler_logit_bias_free,
/* .backend_init = */ llama_sampler_logit_bias_backend_init,
/* .backend_accept = */ nullptr,
/* .backend_apply = */ llama_sampler_logit_bias_backend_apply,
/* .backend_set_input = */ llama_sampler_logit_bias_backend_set_input,
};
struct llama_sampler * llama_sampler_init_logit_bias(
int32_t n_vocab,
int32_t n_logit_bias,
const llama_logit_bias * logit_bias) {
const bool is_empty = n_logit_bias <= 0;
if (is_empty) {
return llama_sampler_init_empty("logit-bias?");
}
return llama_sampler_init(
/* .iface = */ &llama_sampler_logit_bias_i,
/* .ctx = */ new llama_sampler_logit_bias {
/* .n_vocab = */ n_vocab,
/* .logit_bias = */ std::vector<llama_logit_bias>(logit_bias, logit_bias + n_logit_bias),
/* .to_search = */ {},
/* .inp_logit_bias = */ nullptr,
/* .inp_ctx = */ nullptr,
/* .inp_buf = */ nullptr,
}
);
}
// infill
//#define GGML_DEBUG_SAMPLER_INFILL
struct llama_sampler_infill {
const struct llama_vocab * vocab;
std::vector<char> buf0;
std::vector<char> buf1;
};
static const char * llama_sampler_infill_name(const struct llama_sampler * /*smpl*/) {
return "infill";
}
static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_infill *) smpl->ctx;
llama_sampler_softmax_impl(cur_p, true);
#if defined(GGML_DEBUG_SAMPLER_INFILL)
#define LOG_DBG_CUR LLAMA_LOG_DEBUG
#else
#define LOG_DBG_CUR(...)
#endif
for (size_t i = 0; i < cur_p->size; ++i) {
LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit);
}
float p_txt_sum = 0.0f;
float p_eog_sum = 0.0f;
for (size_t i = 0; i < cur_p->size; ++i) {
if (ctx->vocab->is_eog(cur_p->data[i].id)) {
p_eog_sum += cur_p->data[i].p;
} else {
p_txt_sum += cur_p->data[i].p;
}
}
const float rat = p_eog_sum == 0.0 ? INFINITY : p_txt_sum / p_eog_sum; GGML_UNUSED(rat);
LOG_DBG_CUR("%s: p_txt_sum = %.2f, p_eog_sum = %.2f, rat = %.2f, n = %zu\n", __func__, p_txt_sum, p_eog_sum, rat, cur_p->size);
if (3*p_eog_sum*cur_p->size > p_txt_sum) {
LOG_DBG_CUR("%s: the ratio p_txt/p_eog = %.2f is too low -> sampling EOG\n", __func__, p_txt_sum/p_eog_sum);
// keep just the EOG tokens
const auto size_org = cur_p->size;
cur_p->size = 0;
float p_sum = 0.0f;
for (size_t i = 0; i < size_org; ++i) {
if (ctx->vocab->is_eog(cur_p->data[i].id)) {
p_sum += cur_p->data[i].p;
cur_p->data[cur_p->size++] = cur_p->data[i];
}
}
// normalize probs
for (size_t i = 0; i < cur_p->size; ++i) {
cur_p->data[i].p /= p_sum;
}
return;
}
size_t n_combined = 0; GGML_UNUSED(n_combined);
// combine tokens with common prefix
for (size_t i0 = 0; i0 < cur_p->size; ++i0) {
for (size_t i1 = 0; i1 < cur_p->size; ++i1) {
if (cur_p->data[i0].logit == -INFINITY) {
break;
}
if (i0 == i1 || cur_p->data[i1].logit == -INFINITY) {
continue;
}
int len0 = ctx->vocab->token_to_piece(cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
if (len0 < 0) {
ctx->buf0.resize(len0);
len0 = ctx->vocab->token_to_piece(cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false);
assert(len0 > 0);
}
int len1 = ctx->vocab->token_to_piece(cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
if (len1 < 0) {
ctx->buf1.resize(len1);
len1 = ctx->vocab->token_to_piece(cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false);
assert(len1 > 0);
}
// token i0 is a prefix of token i1
if (len0 > 0 && len0 <= len1 && memcmp(ctx->buf0.data(), ctx->buf1.data(), len0) == 0) {
int dst = i0;
int src = i1;
// merge into the token with higher probability
if (cur_p->data[i1].p > cur_p->data[i0].p) {
std::swap(dst, src);
}
cur_p->data[dst].p += cur_p->data[src].p;
cur_p->data[src].logit = -INFINITY;
cur_p->data[src].p = 0.0f;
n_combined++;
}
}
}
size_t n_non_eog = 0;
size_t size_org = cur_p->size;
float p_sum = 0.0f;
float thold = 0.2f;
cur_p->size = 0;
LOG_DBG_CUR("%s: n_combined = %zu, applying thold = %.3f\n", __func__, n_combined, thold);
for (size_t i = 0; i < size_org; ++i) {
const bool is_eog = ctx->vocab->is_eog(cur_p->data[i].id);
if (cur_p->data[i].p < thold && !is_eog) {
continue;
}
if (!is_eog) {
++n_non_eog;
}
p_sum += cur_p->data[i].p;
// keep this token
cur_p->data[cur_p->size++] = cur_p->data[i];
}
LOG_DBG_CUR("%s: n_non_eog = %zu\n", __func__, n_non_eog);
// if no non-EOG tokens are left -> reduce cur_p to single EOT token
if (n_non_eog == 0) {
cur_p->size = 1;
cur_p->data[0].id = ctx->vocab->token_eot();
if (cur_p->data[0].id == LLAMA_TOKEN_NULL) {
cur_p->data[0].id = ctx->vocab->token_eos();
}
cur_p->data[0].logit = 1.0f;
GGML_ASSERT(cur_p->data[0].id != LLAMA_TOKEN_NULL);
return;
}
// normalize probs
for (size_t i = 0; i < cur_p->size; ++i) {
cur_p->data[i].p /= p_sum;
LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit);
}
size_org = cur_p->size;
p_sum = 0.0f;
thold = 1.0/(n_non_eog + 1);
cur_p->size = 0;
LOG_DBG_CUR("%s: applying thold = %.3f\n", __func__, thold);
for (size_t i = 0; i < size_org; ++i) {
const bool is_eog = ctx->vocab->is_eog(cur_p->data[i].id);
if (cur_p->data[i].p < thold && !is_eog) {
continue;
}
p_sum += cur_p->data[i].p;
cur_p->data[cur_p->size++] = cur_p->data[i];
}
// normalize probs
for (size_t i = 0; i < cur_p->size; ++i) {
cur_p->data[i].p /= p_sum;
LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit);
}
#undef LOG_DBG_CUR
}
static struct llama_sampler * llama_sampler_infill_clone(const struct llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_infill *) smpl->ctx;
return llama_sampler_init_infill(ctx->vocab);
}
static void llama_sampler_infill_free(struct llama_sampler * smpl) {
delete (llama_sampler_infill *) smpl->ctx;
}
static struct llama_sampler_i llama_sampler_infill_i = {
/* .name = */ llama_sampler_infill_name,
/* .accept = */ nullptr,
/* .apply = */ llama_sampler_infill_apply,
/* .reset = */ nullptr,
/* .clone = */ llama_sampler_infill_clone,
/* .free = */ llama_sampler_infill_free,
/* .backend_apply = */ nullptr,
/* .backend_accept = */ nullptr,
/* .backend_set_input = */ nullptr,
/* .backend_init = */ nullptr,
};
struct llama_sampler * llama_sampler_init_infill(const struct llama_vocab * vocab) {
return llama_sampler_init(
/* .iface = */ &llama_sampler_infill_i,
/* .ctx = */ new llama_sampler_infill {
/* .vocab = */ vocab,
/* .buf0 = */ std::vector<char>(512),
/* .buf1 = */ std::vector<char>(512),
}
);
}
// utils
uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl) {
if (smpl->iface == &llama_sampler_dist_i) {
return ((const llama_sampler_dist *) smpl->ctx)->seed_cur;
}
if (smpl->iface == &llama_sampler_mirostat_i) {
return ((const llama_sampler_mirostat *) smpl->ctx)->seed_cur;
}
if (smpl->iface == &llama_sampler_mirostat_v2_i) {
return ((const llama_sampler_mirostat_v2 *) smpl->ctx)->seed_cur;
}
if (smpl->iface == &llama_sampler_chain_i) {
const auto * ctx = (const llama_sampler_chain *) smpl->ctx;
for (auto it = ctx->samplers.rbegin(); it != ctx->samplers.rend(); ++it) {
const uint32_t seed = llama_sampler_get_seed(*it);
if (seed != LLAMA_DEFAULT_SEED) {
return seed;
}
}
}
return LLAMA_DEFAULT_SEED;
}
// perf
struct llama_perf_sampler_data llama_perf_sampler(const struct llama_sampler * chain) {
struct llama_perf_sampler_data data = {};
if (chain == nullptr || chain->iface != &llama_sampler_chain_i) {
GGML_ABORT("%s: invalid sampler passed - requires a sampler created with llama_sampler_chain_init()\n", __func__);
}
const auto * ctx = (const struct llama_sampler_chain *) chain->ctx;
data.t_sample_ms = 1e-3 * ctx->t_sample_us;
data.n_sample = std::max(0, ctx->n_sample);
return data;
}
void llama_perf_sampler_print(const struct llama_sampler * chain) {
const auto data = llama_perf_sampler(chain);
LLAMA_LOG_INFO("%s: samplers time = %10.2f ms / %5d runs\n", __func__, data.t_sample_ms, data.n_sample);
}
void llama_perf_sampler_reset(struct llama_sampler * chain) {
if (chain == nullptr || chain->iface != &llama_sampler_chain_i) {
GGML_ABORT("%s: invalid sampler passed - requires a sampler created with llama_sampler_chain_init()\n", __func__);
}
auto * ctx = (struct llama_sampler_chain *) chain->ctx;
ctx->t_sample_us = 0;
ctx->n_sample = 0;
}