llama.cpp/tools/mtmd/models/mobilenetv5.cpp

452 lines
16 KiB
C++

#include "models.h"
// Helpers for MobileNetV5 Blocks
// RMS Norm 2D - normalizes over channels for each spatial position
ggml_tensor * clip_graph_mobilenetv5::rms_norm_2d(ggml_tensor * inp, ggml_tensor * weight, float eps) {
// inp: [W, H, C, B]
ggml_tensor * cur = ggml_permute(ctx0, inp, 2, 1, 0, 3);
cur = ggml_cont(ctx0, cur);
cur = ggml_rms_norm(ctx0, cur, eps);
if (weight) {
cur = ggml_mul(ctx0, cur, weight);
}
cur = ggml_permute(ctx0, cur, 2, 1, 0, 3);
cur = ggml_cont(ctx0, cur);
return cur;
}
// Conv2dSame padding - asymmetric SAME padding like PyTorch/TF
ggml_tensor* clip_graph_mobilenetv5::pad_same_2d(ggml_tensor* inp, int kernel_h, int kernel_w, int stride_h, int stride_w, int dilation_h, int dilation_w) {
const int64_t ih = inp->ne[1]; // height
const int64_t iw = inp->ne[0]; // width
// Calculate output size (ceil division)
const int64_t oh = (ih + stride_h - 1) / stride_h;
const int64_t ow = (iw + stride_w - 1) / stride_w;
// Calculate padding needed
const int64_t pad_h = std::max((int64_t)0, (oh - 1) * stride_h + (kernel_h - 1) * dilation_h + 1 - ih);
const int64_t pad_w = std::max((int64_t)0, (ow - 1) * stride_w + (kernel_w - 1) * dilation_w + 1 - iw);
// Split padding asymmetrically
const int pad_h_top = pad_h / 2;
const int pad_h_bottom = pad_h - pad_h_top;
const int pad_w_left = pad_w / 2;
const int pad_w_right = pad_w - pad_w_left;
// Apply padding if needed
// ggml_pad_ext: (ctx, tensor, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3)
// For [W, H, C, B]: p0=width, p1=height, p2=channels, p3=batch
if (pad_h > 0 || pad_w > 0) {
inp = ggml_pad_ext(ctx0, inp,
pad_w_left, pad_w_right, // width padding (dim 0)
pad_h_top, pad_h_bottom, // height padding (dim 1)
0, 0, // no channel padding (dim 2)
0, 0); // no batch padding (dim 3)
}
return inp;
}
// Edge Residual Block (Stage 0)
ggml_tensor * clip_graph_mobilenetv5::build_edge_residual(ggml_tensor * inp, const mobilenetv5_block & block, int stride) {
ggml_tensor * cur = inp;
// 1. Expansion Conv (3x3)
if (stride == 2) {
// Case: Downsampling (Block 0)
// Replicates Conv2dSame(kernel=3, stride=2)
cur = pad_same_2d(cur, 3, 3, stride, stride);
cur = ggml_conv_2d_direct(ctx0, block.s0_conv_exp_w, cur, stride, stride, 0, 0, 1, 1);
} else {
// Case: Normal 3x3 Block (Block 1, 2)
// Replicates Conv2d(kernel=3, stride=1, padding=1)
cur = ggml_conv_2d_direct(ctx0, block.s0_conv_exp_w, cur, stride, stride, 1, 1, 1, 1);
}
// BN + Activation
if (block.s0_bn1_w) cur = rms_norm_2d(cur, block.s0_bn1_w);
cur = ggml_gelu(ctx0, cur);
// 2. Pointwise Linear Conv (1x1)
// 1x1 Convs usually have padding=0 and stride=1
cur = ggml_conv_2d_direct(ctx0, block.s0_conv_pwl_w, cur, 1, 1, 0, 0, 1, 1);
if (block.s0_bn2_w) cur = rms_norm_2d(cur, block.s0_bn2_w);
// 3. Residual Connection
// Only apply residual if spatial dimensions and channels match (stride 1)
if (stride == 1 && inp->ne[2] == cur->ne[2] && inp->ne[0] == cur->ne[0]) {
cur = ggml_add(ctx0, cur, inp);
}
return cur;
}
// Universal Inverted Residual Block (Stage 1+)
ggml_tensor * clip_graph_mobilenetv5::build_inverted_residual(ggml_tensor * inp, const mobilenetv5_block & block, int stride) {
ggml_tensor * cur = inp;
// 1. Depthwise Start (Optional)
// NOTE: dw_start always has stride=1 (no downsampling here)
if (block.dw_start_w) {
int k = block.dw_start_w->ne[0]; // 3 or 5
int p = k / 2;
cur = ggml_conv_2d_dw(ctx0, block.dw_start_w, cur, 1, 1, p, p, 1, 1);
if (block.dw_start_bn_w) cur = rms_norm_2d(cur, block.dw_start_bn_w);
}
// 2. Pointwise Expansion (1x1)
if (block.pw_exp_w) {
// Standard 1x1 conv, pad=0, stride=1
cur = ggml_conv_2d_direct(ctx0, block.pw_exp_w, cur, 1, 1, 0, 0, 1, 1);
if (block.pw_exp_bn_w) cur = rms_norm_2d(cur, block.pw_exp_bn_w);
cur = ggml_gelu(ctx0, cur);
}
// 3. Depthwise Mid (Optional)
// NOTE: dw_mid is where downsampling happens (stride=2 for first block of stage)
if (block.dw_mid_w) {
int k = block.dw_mid_w->ne[0]; // 3 or 5
if (stride > 1) {
// Case: Stride 2 (Downsample) -> Use Asymmetric "Same" Padding
cur = pad_same_2d(cur, k, k, stride, stride);
cur = ggml_conv_2d_dw(ctx0, block.dw_mid_w, cur, stride, stride, 0, 0, 1, 1); // pad=0
} else {
// Case: Stride 1 -> Use Standard Symmetric Padding
int p = k / 2;
cur = ggml_conv_2d_dw(ctx0, block.dw_mid_w, cur, stride, stride, p, p, 1, 1);
}
if (block.dw_mid_bn_w) cur = rms_norm_2d(cur, block.dw_mid_bn_w);
cur = ggml_gelu(ctx0, cur);
}
// 4. Pointwise Projection (1x1)
if (block.pw_proj_w) {
cur = ggml_conv_2d_direct(ctx0, block.pw_proj_w, cur, 1, 1, 0, 0, 1, 1);
if (block.pw_proj_bn_w) cur = rms_norm_2d(cur, block.pw_proj_bn_w);
}
// Apply Layer Scaling if present
if (block.layer_scale_w) {
cur = ggml_mul(ctx0, cur, block.layer_scale_w);
}
// 5. Residual Connection
bool same_spatial = (inp->ne[0] == cur->ne[0]) && (inp->ne[1] == cur->ne[1]);
bool same_channel = (inp->ne[2] == cur->ne[2]);
if (same_spatial && same_channel) {
cur = ggml_add(ctx0, cur, inp);
}
return cur;
}
// Attention Block (MQA)
ggml_tensor * clip_graph_mobilenetv5::build_mobilenet_attn(ggml_tensor * inp, const mobilenetv5_block & block) {
ggml_tensor * cur = inp;
// Norm
if (block.attn_norm_w) {
cur = rms_norm_2d(cur, block.attn_norm_w, 1e-6f);
}
// 1. Q Calculation
ggml_tensor * q = ggml_conv_2d_direct(ctx0, block.attn_q_w, cur, 1, 1, 0, 0, 1, 1);
// 2. K Calculation (Downsampled)
// Uses Conv2dSame(640, 640, kernel_size=(3, 3), stride=(2, 2), groups=640)
ggml_tensor * k_inp = cur;
if (block.attn_k_dw_w) {
int k_size = block.attn_k_dw_w->ne[0]; // Usually 3
k_inp = pad_same_2d(cur, k_size, k_size, 2, 2); // Apply SAME padding
k_inp = ggml_conv_2d_dw(ctx0, block.attn_k_dw_w, k_inp, 2, 2, 0, 0, 1, 1); // padding=0
if (block.attn_k_norm_w) {
k_inp = rms_norm_2d(k_inp, block.attn_k_norm_w, 1e-6f);
}
}
ggml_tensor * k = ggml_conv_2d_direct(ctx0, block.attn_k_w, k_inp, 1, 1, 0, 0, 1, 1);
// 3. V Calculation (Downsampled)
// Uses Conv2dSame(640, 640, kernel_size=(3, 3), stride=(2, 2), groups=640)
ggml_tensor * v_inp = cur;
if (block.attn_v_dw_w) {
int v_size = block.attn_v_dw_w->ne[0]; // Usually 3
v_inp = pad_same_2d(cur, v_size, v_size, 2, 2); // Apply SAME padding
v_inp = ggml_conv_2d_dw(ctx0, block.attn_v_dw_w, v_inp, 2, 2, 0, 0, 1, 1); // padding=0
if (block.attn_v_norm_w) {
v_inp = rms_norm_2d(v_inp, block.attn_v_norm_w, 1e-6f);
}
}
ggml_tensor * v = ggml_conv_2d_direct(ctx0, block.attn_v_w, v_inp, 1, 1, 0, 0, 1, 1);
const int W = cur->ne[0]; const int H = cur->ne[1]; const int B = cur->ne[3];
const int D = k->ne[2]; // Head dimension
const int n_head = q->ne[2] / D;
const int N = W * H;
// Process Q: [W, H, D*n_head, B] -> [D, N, n_head, B]
q = ggml_reshape_3d(ctx0, q, N, D*n_head, B);
q = ggml_reshape_4d(ctx0, q, N, D, n_head, B);
q = ggml_permute(ctx0, q, 1, 0, 2, 3); // [D, N, n_head, B]
q = ggml_cont(ctx0, q);
const int Wk = k->ne[0]; const int Hk = k->ne[1];
const int M = Wk * Hk;
// Process K: [Wk, Hk, D, B] -> [D, M, 1, B]
k = ggml_reshape_3d(ctx0, k, M, D, B);
k = ggml_reshape_4d(ctx0, k, M, D, 1, B);
k = ggml_permute(ctx0, k, 1, 0, 2, 3); // [D, M, 1, B]
k = ggml_cont(ctx0, k);
// Process V: [Wk, Hk, D, B] -> [M, D, 1, B]
v = ggml_reshape_3d(ctx0, v, M, D, B);
v = ggml_reshape_4d(ctx0, v, M, D, 1, B);
v = ggml_cont(ctx0, v); // [M, D, 1, B]
// Multi-Query Attention
float scale = 1.0f / sqrtf((float)D);
// Step 1: Compute Q @ K.T
ggml_tensor * scores = ggml_mul_mat(ctx0, k, q);
scores = ggml_scale(ctx0, scores, scale);
scores = ggml_soft_max(ctx0, scores);
ggml_tensor * kqv = ggml_mul_mat(ctx0, v, scores);
kqv = ggml_permute(ctx0, kqv, 1, 0, 2, 3);
kqv = ggml_cont(ctx0, kqv);
kqv = ggml_reshape_3d(ctx0, kqv, N, D * n_head, B);
kqv = ggml_reshape_4d(ctx0, kqv, W, H, D * n_head, B);
kqv = ggml_cont(ctx0, kqv);
// Output projection
cur = ggml_conv_2d_direct(ctx0, block.attn_o_w, kqv, 1, 1, 0, 0, 1, 1);
// Residual & Layer Scale
if (inp->ne[0] == cur->ne[0] && inp->ne[2] == cur->ne[2]) {
if (block.layer_scale_w) {
cur = ggml_mul(ctx0, cur, block.layer_scale_w);
}
cur = ggml_add(ctx0, cur, inp);
}
return cur;
}
ggml_cgraph * clip_graph_mobilenetv5::build() {
ggml_tensor * inp = build_inp_raw();
// 1. Stem - Conv2dSame(3, 64, kernel_size=(3, 3), stride=(2, 2))
ggml_tensor * cur = pad_same_2d(inp, 3, 3, 2, 2); // Apply SAME padding
cur = ggml_conv_2d_direct(ctx0, model.mobilenet_stem_conv_w, cur, 2, 2, 0, 0, 1, 1); // padding=0
if (model.mobilenet_stem_conv_b) {
cur = ggml_add(ctx0, cur, model.mobilenet_stem_conv_b);
}
if (model.mobilenet_stem_norm_w) cur = rms_norm_2d(cur, model.mobilenet_stem_norm_w);
cur = ggml_gelu(ctx0, cur);
// 2. Blocks
std::vector<ggml_tensor*> intermediate_features;
const int total_blocks = model.mobilenet_blocks.size();
auto is_stage_start = [&](int i) {
if (i == 0) return true;
for (int end_idx : model.mobilenet_stage_ends) {
if (i == end_idx + 1) return true;
}
return false;
};
auto is_fusion_point = [&](int i) {
if (model.mobilenet_stage_ends.size() >= 4) {
if (i == model.mobilenet_stage_ends[2]) return true; // End of Stage 2
if (i == model.mobilenet_stage_ends[3]) return true; // End of Stage 3
} else {
if (i == total_blocks - 1) return true;
}
return false;
};
for (int i = 0; i < total_blocks; i++) {
const auto & block = model.mobilenet_blocks[i];
int stride = is_stage_start(i) ? 2 : 1;
if (block.s0_conv_exp_w) cur = build_edge_residual(cur, block, stride);
else if (block.attn_q_w) cur = build_mobilenet_attn(cur, block);
else cur = build_inverted_residual(cur, block, stride);
if (is_fusion_point(i)) {
intermediate_features.push_back(cur);
}
}
// 3. Multi-Scale Fusion Adapter (MSFA)
if (!intermediate_features.empty()) {
// A. Reference Resolution: PyTorch implementation uses inputs[0]
// We assume intermediate_features[0] is the "High Resolution" target.
// In MobileNet designs, this is typically the feature map with the smallest stride (e.g. 32x32).
ggml_tensor* target_feat = intermediate_features[0];
int high_res_w = target_feat->ne[0];
int high_res_h = target_feat->ne[1];
std::vector<ggml_tensor*> resized_feats;
// B. Resize inputs to match inputs[0] (High Resolution)
for (auto feat : intermediate_features) {
int feat_w = feat->ne[0];
int feat_h = feat->ne[1];
// PyTorch: if feat_size < high_resolution: interpolate
if (feat_w < high_res_w || feat_h < high_res_h) {
// Calculate scale factor.
// Note: PyTorch 'nearest' works on arbitrary float scales.
// ggml_upscale generally takes integer factors or target sizes depending on helper.
// Assuming standard power-of-2 scaling (e.g. 16 -> 32 means scale=2).
int scale_w = high_res_w / feat_w;
// int scale_h = high_res_h / feat_h;
// Safety check for non-integer scaling if strictly replicating
GGML_ASSERT(high_res_w % feat_w == 0);
// Upsample (Nearest Neighbor)
// 2 is the scale factor
feat = ggml_upscale(ctx0, feat, scale_w, ggml_scale_mode::GGML_SCALE_MODE_NEAREST);
}
resized_feats.push_back(feat);
}
// C. Concatenate at High Resolution (Channel Dim = 2 in ggml)
cur = resized_feats[0];
for (size_t k = 1; k < resized_feats.size(); ++k) {
cur = ggml_concat(ctx0, cur, resized_feats[k], 2);
}
// D. FFN (UniversalInvertedResidual)
// Structure: Expand Conv -> Norm -> GELU -> Project Conv -> Norm
// 1. Expansion
if (model.msfa_ffn_expand_w) {
// 1x1 Conv
cur = ggml_conv_2d_direct(ctx0, model.msfa_ffn_expand_w, cur, 1, 1, 0, 0, 1, 1);
if (model.msfa_ffn_expand_bn) {
cur = rms_norm_2d(cur, model.msfa_ffn_expand_bn);
}
cur = ggml_gelu(ctx0, cur);
}
// 2. Projection (No DW because kernel_size=0)
if (model.msfa_ffn_project_w) {
// 1x1 Conv
cur = ggml_conv_2d_direct(ctx0, model.msfa_ffn_project_w, cur, 1, 1, 0, 0, 1, 1);
// UniversalInvertedResidual typically has a norm after projection
if (model.msfa_ffn_project_bn) {
cur = rms_norm_2d(cur, model.msfa_ffn_project_bn);
}
}
// E. Final Downsample to Target Resolution (Output Resolution)
// PyTorch: matches self.output_resolution (e.g. 16x16)
const int target_out_res = 16;
int current_w = cur->ne[0];
if (current_w > target_out_res) {
int s = current_w / target_out_res;
GGML_ASSERT(current_w % target_out_res == 0);
// Avg Pool: Kernel=s, Stride=s
cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, s, s, s, s, 0, 0);
}
// F. Final Norm
if (model.msfa_concat_norm_w) {
cur = rms_norm_2d(cur, model.msfa_concat_norm_w);
}
}
// 4. Gemma 3n Multimodal Projection (Embedder)
// Input: 'cur' is [Width, Height, Channels, Batch]
int W = cur->ne[0];
int H = cur->ne[1];
int C = cur->ne[2];
int B = cur->ne[3];
GGML_ASSERT(C == hparams.n_embd);
// 1. Permute and Flatten to [Channels, Tokens, Batch]
// PyTorch expects (Batch, Seq, Hidden), GGML usually processes (Hidden, Seq, Batch)
cur = ggml_permute(ctx0, cur, 2, 1, 0, 3); // -> [C, H, W, B]
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3); // -> [C, W, H, B]
cur = ggml_cont(ctx0, cur);
cur = ggml_reshape_3d(ctx0, cur, C, W*H, B);
cur = ggml_cont(ctx0, cur);
// 2. FEATURE SCALING
// PyTorch: vision_outputs *= self.config.vision_config.hidden_size**0.5
const float scale_factor = sqrtf((float)C);
cur = ggml_scale(ctx0, cur, scale_factor);
// 3. SOFT EMBEDDING NORM
// PyTorch: self._norm(x) * self.weight
// We must normalize regardless, then multiply if weight exists.
{
const float eps = 1e-6f; // Gemma3n uses 1e-6
cur = ggml_rms_norm(ctx0, cur, eps);
if (model.mm_soft_emb_norm_w) {
// Weight shape is (2048,) -> Element-wise broadcast multiply
cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);
}
}
// 4. PROJECTION
// PyTorch: embedding_projection = nn.Linear(vision_hidden, text_hidden, bias=False)
// Weight stored as [out_features, in_features] = [text_hidden_size, vision_hidden_size]
if (model.mm_input_proj_w) {
cur = ggml_mul_mat(ctx0, model.mm_input_proj_w, cur);
}
// 5. POST PROJECTION NORM
// PyTorch: embedding_post_projection_norm = Gemma3nRMSNorm(..., with_scale=False)
// with_scale=False means weight is registered as buffer with value 1.0
// So output = rms_norm(x) * 1.0 = rms_norm(x), magnitude ~1
{
const float eps = 1e-6f;
cur = ggml_rms_norm(ctx0, cur, eps);
if (model.mm_post_proj_norm_w) {
// If weight is loaded, multiply (should be ~1.0 anyway)
cur = ggml_mul(ctx0, cur, model.mm_post_proj_norm_w);
}
}
ggml_build_forward_expand(gf, cur);
return gf;
}