llama.cpp/examples/model-conversion/scripts/utils/semantic_check.py

226 lines
9.2 KiB
Python

#!/usr/bin/env python3
import numpy as np
import argparse
import os
import importlib
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM, AutoModel
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
def cosine_similarity(a, b=None):
a = np.asarray(a)
if b is None:
b = a
else:
b = np.asarray(b)
if a.ndim == 1:
a = a.reshape(1, -1)
if b.ndim == 1:
b = b.reshape(1, -1)
a_norms = np.linalg.norm(a, axis=1, keepdims=True)
b_norms = np.linalg.norm(b, axis=1, keepdims=True)
a_norms = np.where(a_norms == 0, 1e-8, a_norms)
b_norms = np.where(b_norms == 0, 1e-8, b_norms)
a_normalized = a / a_norms
b_normalized = b / b_norms
# Compute cosine similarity
return np.dot(a_normalized, b_normalized.T)
def load_embeddings_from_file(filename, n_tokens, n_embd):
embeddings = np.fromfile(filename, dtype=np.float32)
# Check if this is pooled (single embedding) or per-token embeddings
if len(embeddings) == n_embd:
return embeddings.reshape(1, n_embd)
else:
return embeddings.reshape(n_tokens, n_embd)
def test_single_prompt_similarity(python_emb, cpp_emb, tokens, prompt):
np.set_printoptions(suppress=True, precision=6)
print("pytorch embeddings:");
print(python_emb)
print("llama.cpp embeddings:");
print(cpp_emb)
print(f"\n=== Prompt: '{prompt}' ===")
print(f"Tokens: {tokens}")
print(f"Embeddings shape: Python {python_emb.shape}, llama.cpp {cpp_emb.shape}")
n_tokens = len(tokens)
is_pooled = python_emb.shape[0] == 1
if is_pooled:
print(f"\n[Pooled Embeddings Mode - comparing single sentence embeddings]")
# 1. Direct embedding comparison for pooled embeddings
print(f"\n1. Raw Embedding Magnitude Comparison:")
py_mag = np.linalg.norm(python_emb[0])
cpp_mag = np.linalg.norm(cpp_emb[0])
ratio = py_mag / cpp_mag if cpp_mag > 0 else float('inf')
print(f" Pooled embedding: Python={py_mag:.3f}, llama.cpp={cpp_mag:.3f}, ratio={ratio:.3f}")
# 2. Cross-model similarity for pooled embeddings
print(f"\n2. Cross-Model Pooled Embedding Similarity:")
sim = cosine_similarity([python_emb[0]], [cpp_emb[0]])[0][0]
print(f" Cosine similarity: {sim:.6f}")
return {
'cross_model_similarities': [sim],
'similarity_matrix_diff': np.array([[0.0]]),
'max_diff': 0.0,
'mean_diff': 0.0,
'rms_diff': 0.0
}
else:
# Original per-token comparison logic
# 1. Direct embedding comparison
print(f"\n1. Raw Embedding Magnitude Comparison:")
# Check if the distance of each token embedding from the origin and compare
# if the vectors are on the same "sphere". This does not tell us about
# direction (meaning of the token embedding), just magnitude.
for i in range(n_tokens):
py_mag = np.linalg.norm(python_emb[i]) # calculate standard euclidean norm for Python embeddings
cpp_mag = np.linalg.norm(cpp_emb[i]) # calculate standard euclidean norm for llama.cpp embeddings
ratio = py_mag / cpp_mag if cpp_mag > 0 else float('inf')
print(f" Token {i} ({tokens[i]}): Python={py_mag:.3f}, llama.cpp={cpp_mag:.3f}, ratio={ratio:.3f}")
# 2. Cosine similarity between tokens within each model
# Here we check the direction of token embeddings to see if the have the
# same meaning (similarity). This is done by calculating cosine similarity
# of a pair of token embeddings within each model.
print(f"\n2. Within-Model Token Similarities:")
print(" Python model:")
for i in range(n_tokens):
for j in range(i+1, n_tokens):
sim = cosine_similarity([python_emb[i]], [python_emb[j]])[0][0]
print(f" {tokens[i]}{tokens[j]}: {sim:.4f}")
print(" llama.cpp model:")
for i in range(n_tokens):
for j in range(i+1, n_tokens):
sim = cosine_similarity([cpp_emb[i]], [cpp_emb[j]])[0][0]
print(f" {tokens[i]}{tokens[j]}: {sim:.4f}")
# 3. Cross-model similarity (same token position)
print(f"\n3. Cross-Model Same-Token Similarities:")
for i in range(n_tokens):
sim = cosine_similarity([python_emb[i]], [cpp_emb[i]])[0][0]
print(f" Token {i} ({tokens[i]}): {sim:.4f}")
# 4. Similarity matrix comparison
print(f"\n4. Similarity Matrix Differences:")
py_sim_matrix = cosine_similarity(python_emb)
cpp_sim_matrix = cosine_similarity(cpp_emb)
diff_matrix = np.abs(py_sim_matrix - cpp_sim_matrix)
print(f" Max difference: {np.max(diff_matrix):.4f}")
print(f" Mean difference: {np.mean(diff_matrix):.4f}")
print(f" RMS difference: {np.sqrt(np.mean(diff_matrix**2)):.4f}")
return {
'cross_model_similarities': [cosine_similarity([python_emb[i]], [cpp_emb[i]])[0][0] for i in range(n_tokens)],
'similarity_matrix_diff': diff_matrix,
'max_diff': np.max(diff_matrix),
'mean_diff': np.mean(diff_matrix),
'rms_diff': np.sqrt(np.mean(diff_matrix**2))
}
def read_prompt_from_file(file_path):
try:
with open(file_path, 'r', encoding='utf-8') as f:
return f.read().strip()
except FileNotFoundError:
print(f"Error: Prompts file '{file_path}' not found")
exit(1)
except Exception as e:
print(f"Error reading prompts file: {e}")
exit(1)
def main():
parser = argparse.ArgumentParser(description='Test semantic similarity between Python and llama.cpp embeddings')
parser.add_argument('--model-path', '-m', required=True, help='Path to the original Python model')
parser.add_argument('--python-embeddings', '-pe', help='Path to pytorch embeddings "logits" binary file')
parser.add_argument('--cpp-embeddings', '-ce', help='Path to llama.cpp embeddings "logits" binary file')
parser.add_argument('--causal', '-c', default=False, help='if the model is causal (default: false)', action='store_true')
parser.add_argument('--prompt', '-p', default='Hello world today', help='Test prompt')
parser.add_argument('--prompts-file', '-pf', help='Path to file containing prompts')
args = parser.parse_args()
if args.prompts_file:
prompt = read_prompt_from_file(args.prompts_file)
else:
prompt = args.prompt
print("Semantic Similarity Test Between Python and llama.cpp Embedding Models")
print("=" * 70)
# Single prompt detailed comparison
print(f"\nTesting with prompt: '{prompt}'")
# Load the python model to get configuration information and also to load the tokenizer.
print("Loading model and tokenizer using AutoTokenizer:", args.model_path)
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
config = AutoConfig.from_pretrained(args.model_path)
if unreleased_model_name:
model_name_lower = unreleased_model_name.lower()
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
if args.causal:
class_name = f"{unreleased_model_name}ForCausalLM"
else:
class_name = f"{unreleased_model_name}Model"
print(f"Model class: {class_name}")
print(f"Importing unreleased model module: {unreleased_module_path}")
try:
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
model = model_class.from_pretrained(args.model_path)
except (ImportError, AttributeError) as e:
print(f"Failed to import or load model: {e}")
exit(1)
else:
if args.causal:
model = AutoModelForCausalLM.from_pretrained(args.model_path)
else:
model = AutoModel.from_pretrained(args.model_path)
encoded = tokenizer(prompt, return_tensors="pt")
tokens = tokenizer.convert_ids_to_tokens(encoded['input_ids'][0])
n_tokens = len(tokens)
print(f"n_tokens: {n_tokens}");
print(f"hidden_size: {model.config.hidden_size}")
# Load binary embeddings from data directory.
llamacpp_embeddings = load_embeddings_from_file(args.cpp_embeddings, n_tokens, model.config.hidden_size)
python_embeddings = load_embeddings_from_file(args.python_embeddings, n_tokens, model.config.hidden_size)
# Run comparison
results = test_single_prompt_similarity(python_embeddings, llamacpp_embeddings, tokens, prompt)
# Summary
print(f"\n=== SUMMARY ===")
avg_cross_sim = np.mean(results['cross_model_similarities'])
print(f"Average cross-model similarity: {avg_cross_sim:.4f}")
print(f"Similarity matrix RMS difference: {results['rms_diff']:.4f}")
# Quality assessment
if avg_cross_sim > 0.95:
print("✅ EXCELLENT: Models are highly similar")
elif avg_cross_sim > 0.90:
print("✅ VERY GOOD: Models are very similar")
elif avg_cross_sim > 0.80:
print("⚠️ GOOD: Models are reasonably similar")
elif avg_cross_sim > 0.70:
print("⚠️ FAIR: Models have some differences")
else:
print("❌ POOR: Models are significantly different")
if __name__ == "__main__":
main()