269 lines
8.3 KiB
C++
269 lines
8.3 KiB
C++
#include "llama.h"
|
|
#include "common.h"
|
|
|
|
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <ctype.h>
|
|
#include <filesystem>
|
|
|
|
static void print_usage(int, char ** argv) {
|
|
printf("\nexample usage:\n");
|
|
printf("\n %s -m model.gguf [-ngl n_gpu_layers] -embd-mode [-pooling] [-embd-norm <norm>] [prompt]\n", argv[0]);
|
|
printf("\n");
|
|
printf(" -embd-norm: normalization type for pooled embeddings (default: 2)\n");
|
|
printf(" -1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm\n");
|
|
printf("\n");
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
std::string model_path;
|
|
std::string prompt = "Hello, my name is";
|
|
int ngl = 0;
|
|
bool embedding_mode = false;
|
|
bool pooling_enabled = false;
|
|
int32_t embd_norm = 2; // (-1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm)
|
|
|
|
{
|
|
int i = 1;
|
|
for (; i < argc; i++) {
|
|
if (strcmp(argv[i], "-m") == 0) {
|
|
if (i + 1 < argc) {
|
|
model_path = argv[++i];
|
|
} else {
|
|
print_usage(argc, argv);
|
|
return 1;
|
|
}
|
|
} else if (strcmp(argv[i], "-ngl") == 0) {
|
|
if (i + 1 < argc) {
|
|
try {
|
|
ngl = std::stoi(argv[++i]);
|
|
} catch (...) {
|
|
print_usage(argc, argv);
|
|
return 1;
|
|
}
|
|
} else {
|
|
print_usage(argc, argv);
|
|
return 1;
|
|
}
|
|
} else if (strcmp(argv[i], "-embd-mode") == 0) {
|
|
embedding_mode = true;
|
|
} else if (strcmp(argv[i], "-pooling") == 0) {
|
|
pooling_enabled = true;
|
|
} else if (strcmp(argv[i], "-embd-norm") == 0) {
|
|
if (i + 1 < argc) {
|
|
try {
|
|
embd_norm = std::stoi(argv[++i]);
|
|
} catch (...) {
|
|
print_usage(argc, argv);
|
|
return 1;
|
|
}
|
|
} else {
|
|
print_usage(argc, argv);
|
|
return 1;
|
|
}
|
|
} else {
|
|
// prompt starts here
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (model_path.empty()) {
|
|
print_usage(argc, argv);
|
|
return 1;
|
|
}
|
|
|
|
if (i < argc) {
|
|
prompt = argv[i++];
|
|
for (; i < argc; i++) {
|
|
prompt += " ";
|
|
prompt += argv[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
ggml_backend_load_all();
|
|
llama_model_params model_params = llama_model_default_params();
|
|
model_params.n_gpu_layers = ngl;
|
|
|
|
llama_model * model = llama_model_load_from_file(model_path.c_str(), model_params);
|
|
|
|
if (model == NULL) {
|
|
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
|
return 1;
|
|
}
|
|
|
|
// Extract basename from model_path
|
|
const char * basename = strrchr(model_path.c_str(), '/');
|
|
basename = (basename == NULL) ? model_path.c_str() : basename + 1;
|
|
|
|
char model_name[256];
|
|
strncpy(model_name, basename, 255);
|
|
model_name[255] = '\0';
|
|
|
|
char * dot = strrchr(model_name, '.');
|
|
if (dot != NULL && strcmp(dot, ".gguf") == 0) {
|
|
*dot = '\0';
|
|
}
|
|
printf("Model name: %s\n", model_name);
|
|
|
|
const llama_vocab * vocab = llama_model_get_vocab(model);
|
|
const int n_prompt = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, true, true);
|
|
|
|
std::vector<llama_token> prompt_tokens(n_prompt);
|
|
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true, true) < 0) {
|
|
fprintf(stderr, "%s: error: failed to tokenize the prompt\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
llama_context_params ctx_params = llama_context_default_params();
|
|
ctx_params.n_ctx = n_prompt;
|
|
ctx_params.n_batch = n_prompt;
|
|
ctx_params.no_perf = false;
|
|
if (embedding_mode) {
|
|
ctx_params.embeddings = true;
|
|
ctx_params.pooling_type = pooling_enabled ? LLAMA_POOLING_TYPE_MEAN : LLAMA_POOLING_TYPE_NONE;
|
|
ctx_params.n_ubatch = ctx_params.n_batch;
|
|
}
|
|
|
|
llama_context * ctx = llama_init_from_model(model, ctx_params);
|
|
if (ctx == NULL) {
|
|
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
|
return 1;
|
|
}
|
|
|
|
printf("Input prompt: \"%s\"\n", prompt.c_str());
|
|
printf("Tokenized prompt (%d tokens): ", n_prompt);
|
|
for (auto id : prompt_tokens) {
|
|
char buf[128];
|
|
int n = llama_token_to_piece(vocab, id, buf, sizeof(buf), 0, true);
|
|
if (n < 0) {
|
|
fprintf(stderr, "%s: error: failed to convert token to piece\n", __func__);
|
|
return 1;
|
|
}
|
|
std::string s(buf, n);
|
|
printf("%s", s.c_str());
|
|
}
|
|
printf("\n");
|
|
|
|
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
|
|
|
|
if (llama_decode(ctx, batch)) {
|
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
float * data_ptr;
|
|
int data_size;
|
|
const char * type;
|
|
std::vector<float> embd_out;
|
|
|
|
if (embedding_mode) {
|
|
const int n_embd = llama_model_n_embd(model);
|
|
const int n_embd_count = pooling_enabled ? 1 : batch.n_tokens;
|
|
const int n_embeddings = n_embd * n_embd_count;
|
|
float * embeddings;
|
|
type = "-embeddings";
|
|
|
|
if (llama_pooling_type(ctx) != LLAMA_POOLING_TYPE_NONE) {
|
|
embeddings = llama_get_embeddings_seq(ctx, 0);
|
|
embd_out.resize(n_embeddings);
|
|
printf("Normalizing embeddings using norm: %d\n", embd_norm);
|
|
common_embd_normalize(embeddings, embd_out.data(), n_embeddings, embd_norm);
|
|
embeddings = embd_out.data();
|
|
} else {
|
|
embeddings = llama_get_embeddings(ctx);
|
|
}
|
|
|
|
printf("Embedding dimension: %d\n", n_embd);
|
|
printf("\n");
|
|
|
|
// Print embeddings in the specified format
|
|
for (int j = 0; j < n_embd_count; j++) {
|
|
printf("embedding %d: ", j);
|
|
|
|
// Print first 3 values
|
|
for (int i = 0; i < 3 && i < n_embd; i++) {
|
|
printf("%9.6f ", embeddings[j * n_embd + i]);
|
|
}
|
|
|
|
printf(" ... ");
|
|
|
|
// Print last 3 values
|
|
for (int i = n_embd - 3; i < n_embd; i++) {
|
|
if (i >= 0) {
|
|
printf("%9.6f ", embeddings[j * n_embd + i]);
|
|
}
|
|
}
|
|
|
|
printf("\n");
|
|
}
|
|
printf("\n");
|
|
|
|
printf("Embeddings size: %d\n", n_embeddings);
|
|
|
|
data_ptr = embeddings;
|
|
data_size = n_embeddings;
|
|
} else {
|
|
float * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
|
|
const int n_logits = llama_vocab_n_tokens(vocab);
|
|
type = "";
|
|
printf("Vocab size: %d\n", n_logits);
|
|
|
|
data_ptr = logits;
|
|
data_size = n_logits;
|
|
}
|
|
|
|
std::filesystem::create_directory("data");
|
|
|
|
// Save data to binary file
|
|
char bin_filename[512];
|
|
snprintf(bin_filename, sizeof(bin_filename), "data/llamacpp-%s%s.bin", model_name, type);
|
|
printf("Saving data to %s\n", bin_filename);
|
|
|
|
FILE * f = fopen(bin_filename, "wb");
|
|
if (f == NULL) {
|
|
fprintf(stderr, "%s: error: failed to open binary output file\n", __func__);
|
|
return 1;
|
|
}
|
|
fwrite(data_ptr, sizeof(float), data_size, f);
|
|
fclose(f);
|
|
|
|
// Also save as text for debugging
|
|
char txt_filename[512];
|
|
snprintf(txt_filename, sizeof(txt_filename), "data/llamacpp-%s%s.txt", model_name, type);
|
|
f = fopen(txt_filename, "w");
|
|
if (f == NULL) {
|
|
fprintf(stderr, "%s: error: failed to open text output file\n", __func__);
|
|
return 1;
|
|
}
|
|
for (int i = 0; i < data_size; i++) {
|
|
fprintf(f, "%d: %.6f\n", i, data_ptr[i]);
|
|
}
|
|
fclose(f);
|
|
|
|
if (!embedding_mode) {
|
|
printf("First 10 logits: ");
|
|
for (int i = 0; i < 10 && i < data_size; i++) {
|
|
printf("%.6f ", data_ptr[i]);
|
|
}
|
|
printf("\n");
|
|
|
|
printf("Last 10 logits: ");
|
|
for (int i = data_size - 10; i < data_size; i++) {
|
|
if (i >= 0) printf("%.6f ", data_ptr[i]);
|
|
}
|
|
printf("\n\n");
|
|
}
|
|
|
|
printf("Data saved to %s\n", bin_filename);
|
|
printf("Data saved to %s\n", txt_filename);
|
|
|
|
llama_free(ctx);
|
|
llama_model_free(model);
|
|
|
|
return 0;
|
|
}
|