309 lines
11 KiB
Plaintext
309 lines
11 KiB
Plaintext
#include "ggml-cuda/common.cuh"
|
|
#include "ggml.h"
|
|
#include "topk-moe.cuh"
|
|
|
|
#include <initializer_list>
|
|
|
|
// Warp-local softmax used for both the pre-top-k logits and the post-top-k delayed path.
|
|
template <int experts_per_thread, bool use_limit>
|
|
__device__ void softmax_warp_inplace(float (&vals)[experts_per_thread], const int limit, const int lane) {
|
|
float max_val = -INFINITY;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < experts_per_thread; i++) {
|
|
const int idx = lane + i * WARP_SIZE;
|
|
const bool active = !use_limit || (idx < limit);
|
|
if (active) {
|
|
max_val = max(max_val, vals[i]);
|
|
}
|
|
}
|
|
|
|
max_val = warp_reduce_max(max_val);
|
|
|
|
float sum = 0.f;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < experts_per_thread; i++) {
|
|
const int idx = lane + i * WARP_SIZE;
|
|
const bool active = !use_limit || (idx < limit);
|
|
if (active) {
|
|
const float val = expf(vals[i] - max_val);
|
|
vals[i] = val;
|
|
sum += val;
|
|
} else {
|
|
vals[i] = 0.f;
|
|
}
|
|
}
|
|
|
|
sum = warp_reduce_sum(sum);
|
|
|
|
const float inv_sum = 1.0f / sum;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < experts_per_thread; i++) {
|
|
const int idx = lane + i * WARP_SIZE;
|
|
const bool active = !use_limit || (idx < limit);
|
|
if (active) {
|
|
vals[i] *= inv_sum;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
This kernel does the following:
|
|
1. optionally softmax over the logits per token [n_experts, n_tokens]
|
|
2. argmax reduce over the top-k (n_experts_used) logits
|
|
3. write weights + ids to global memory
|
|
4. optionally normalize the weights or apply softmax over the selected logits
|
|
|
|
It is intended as fusion of softmax->top-k->get_rows pipeline for MoE models
|
|
*/
|
|
template <int n_experts, bool with_norm, bool delayed_softmax = false>
|
|
__launch_bounds__(4 * WARP_SIZE, 1) __global__ void topk_moe_cuda(const float * logits,
|
|
float * weights,
|
|
int32_t * ids,
|
|
const int n_rows,
|
|
const int n_expert_used) {
|
|
const int row = blockIdx.x * blockDim.y + threadIdx.y;
|
|
if (row >= n_rows) {
|
|
return;
|
|
}
|
|
|
|
logits += n_experts * row;
|
|
weights += n_expert_used * row;
|
|
ids += n_experts * row;
|
|
|
|
constexpr int experts_per_thread = (n_experts > WARP_SIZE) ? n_experts / WARP_SIZE : 1;
|
|
|
|
float wt[experts_per_thread];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < n_experts; i += WARP_SIZE) {
|
|
const int expert = i + threadIdx.x;
|
|
wt[i / WARP_SIZE] = (n_experts % WARP_SIZE == 0 || expert < n_experts) ? logits[expert] : -INFINITY;
|
|
}
|
|
|
|
if constexpr (!delayed_softmax) {
|
|
softmax_warp_inplace<experts_per_thread, false>(wt, n_experts, threadIdx.x);
|
|
}
|
|
|
|
//at this point, each thread holds either a portion of the softmax distribution
|
|
//or the raw logits. We do the argmax reduce over n_expert_used, each time marking
|
|
//the expert weight as -inf to exclude from the next iteration
|
|
|
|
float wt_sum = 0.f;
|
|
|
|
float output_weights[experts_per_thread];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < experts_per_thread; i++) {
|
|
output_weights[i] = 0.f;
|
|
}
|
|
|
|
for (int k = 0; k < n_expert_used; k++) {
|
|
float max_val = wt[0];
|
|
int max_expert = threadIdx.x;
|
|
|
|
#pragma unroll
|
|
for (int i = 1; i < experts_per_thread; i++) {
|
|
const int expert = threadIdx.x + i * WARP_SIZE;
|
|
if ((n_experts % WARP_SIZE == 0 || expert < n_experts) && wt[i] > max_val) {
|
|
max_val = wt[i];
|
|
max_expert = expert;
|
|
}
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int mask = WARP_SIZE / 2; mask > 0; mask /= 2) {
|
|
const float val = __shfl_xor_sync(0xFFFFFFFF, max_val, mask, WARP_SIZE);
|
|
const int expert = __shfl_xor_sync(0xFFFFFFFF, max_expert, mask, WARP_SIZE);
|
|
if (val > max_val || (val == max_val && expert < max_expert)) {
|
|
max_val = val;
|
|
max_expert = expert;
|
|
}
|
|
}
|
|
|
|
if ((k & (WARP_SIZE - 1)) == threadIdx.x) {
|
|
output_weights[k / WARP_SIZE] = max_val;
|
|
}
|
|
|
|
if ((max_expert & (WARP_SIZE - 1)) == threadIdx.x) {
|
|
wt[max_expert / WARP_SIZE] = -INFINITY;
|
|
|
|
ids[k] = max_expert;
|
|
if constexpr (with_norm) {
|
|
wt_sum += max_val;
|
|
}
|
|
}
|
|
}
|
|
|
|
if constexpr (with_norm) {
|
|
wt_sum = warp_reduce_sum(wt_sum);
|
|
const float inv_sum = 1.0f / wt_sum;
|
|
|
|
for (int i = 0; i < experts_per_thread; i++) {
|
|
output_weights[i] *= inv_sum;
|
|
}
|
|
}
|
|
|
|
if constexpr (delayed_softmax) {
|
|
softmax_warp_inplace<experts_per_thread, true>(output_weights, n_expert_used, threadIdx.x);
|
|
}
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < experts_per_thread; i++) {
|
|
const int idx = i * WARP_SIZE + threadIdx.x;
|
|
if (idx < n_expert_used) {
|
|
weights[idx] = output_weights[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
template <bool with_norm, bool delayed_softmax = false>
|
|
static void launch_topk_moe_cuda(ggml_backend_cuda_context & ctx,
|
|
const float * logits,
|
|
float * weights,
|
|
int32_t * ids,
|
|
const int n_rows,
|
|
const int n_expert,
|
|
const int n_expert_used) {
|
|
static_assert(!(with_norm && delayed_softmax), "delayed softmax is not supported with weight normalization");
|
|
|
|
const int rows_per_block = 4;
|
|
dim3 grid_dims((n_rows + rows_per_block - 1) / rows_per_block, 1, 1);
|
|
dim3 block_dims(WARP_SIZE, rows_per_block, 1);
|
|
cudaStream_t stream = ctx.stream();
|
|
|
|
switch (n_expert) {
|
|
case 1:
|
|
topk_moe_cuda<1, with_norm, delayed_softmax>
|
|
<<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
|
break;
|
|
case 2:
|
|
topk_moe_cuda<2, with_norm, delayed_softmax>
|
|
<<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
|
break;
|
|
case 4:
|
|
topk_moe_cuda<4, with_norm, delayed_softmax>
|
|
<<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
|
break;
|
|
case 8:
|
|
topk_moe_cuda<8, with_norm, delayed_softmax>
|
|
<<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
|
break;
|
|
case 16:
|
|
topk_moe_cuda<16, with_norm, delayed_softmax>
|
|
<<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
|
break;
|
|
case 32:
|
|
topk_moe_cuda<32, with_norm, delayed_softmax>
|
|
<<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
|
break;
|
|
case 64:
|
|
topk_moe_cuda<64, with_norm, delayed_softmax>
|
|
<<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
|
break;
|
|
case 128:
|
|
topk_moe_cuda<128, with_norm, delayed_softmax>
|
|
<<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
|
break;
|
|
case 256:
|
|
topk_moe_cuda<256, with_norm, delayed_softmax>
|
|
<<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
|
break;
|
|
case 512:
|
|
topk_moe_cuda<512, with_norm, delayed_softmax>
|
|
<<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false && "fatal error");
|
|
break;
|
|
}
|
|
}
|
|
|
|
void ggml_cuda_op_topk_moe(ggml_backend_cuda_context & ctx,
|
|
const ggml_tensor * logits,
|
|
ggml_tensor * weights,
|
|
ggml_tensor * ids,
|
|
const bool with_norm,
|
|
const bool delayed_softmax) {
|
|
GGML_ASSERT(logits->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(weights->type == GGML_TYPE_F32);
|
|
GGML_ASSERT(ids->type == GGML_TYPE_I32);
|
|
|
|
const int n_experts = logits->ne[0];
|
|
const int n_rows = logits->ne[1];
|
|
|
|
const float * logits_d = (const float *) logits->data;
|
|
float * weights_d = (float *) weights->data;
|
|
int32_t * ids_d = (int32_t *) ids->data;
|
|
|
|
GGML_ASSERT(ids->nb[1] / ggml_type_size(ids->type) == (size_t) n_experts);
|
|
|
|
const int n_expert_used = weights->ne[1];
|
|
|
|
if (with_norm) {
|
|
launch_topk_moe_cuda<true>(ctx, logits_d, weights_d, ids_d, n_rows, n_experts, n_expert_used);
|
|
} else {
|
|
if (delayed_softmax) {
|
|
launch_topk_moe_cuda<false, true>(ctx, logits_d, weights_d, ids_d, n_rows, n_experts, n_expert_used);
|
|
} else {
|
|
launch_topk_moe_cuda<false, false>(ctx, logits_d, weights_d, ids_d, n_rows, n_experts, n_expert_used);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ggml_cuda_should_use_topk_moe(const ggml_tensor * softmax, const ggml_tensor * weights) {
|
|
float scale = 1.0f;
|
|
float max_bias = 0.0f;
|
|
|
|
memcpy(&scale, (const float *) softmax->op_params + 0, sizeof(float));
|
|
memcpy(&max_bias, (const float *) softmax->op_params + 1, sizeof(float));
|
|
|
|
if (!ggml_is_contiguous(softmax->src[0]) || !ggml_is_contiguous(weights)) {
|
|
return false;
|
|
}
|
|
|
|
if (scale != 1.0f || max_bias != 0.0f) {
|
|
return false;
|
|
}
|
|
|
|
// don't fuse when masks or sinks are present
|
|
if (softmax->src[1] || softmax->src[2]) {
|
|
return false;
|
|
}
|
|
|
|
const int n_expert = softmax->ne[0];
|
|
// n_expert must be a power of 2
|
|
if ((n_expert & (n_expert - 1)) != 0 || n_expert > 512) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
std::initializer_list<enum ggml_op> ggml_cuda_topk_moe_ops(bool norm, bool delayed_softmax) {
|
|
static std::initializer_list<enum ggml_op> norm_ops = { GGML_OP_SOFT_MAX, GGML_OP_RESHAPE, GGML_OP_ARGSORT,
|
|
GGML_OP_VIEW, GGML_OP_GET_ROWS, GGML_OP_RESHAPE,
|
|
GGML_OP_SUM_ROWS, GGML_OP_DIV, GGML_OP_RESHAPE };
|
|
|
|
static std::initializer_list<enum ggml_op> no_norm_ops = { GGML_OP_SOFT_MAX, GGML_OP_RESHAPE, GGML_OP_ARGSORT,
|
|
GGML_OP_VIEW, GGML_OP_GET_ROWS };
|
|
|
|
static std::initializer_list<enum ggml_op> delayed_softmax_ops = { GGML_OP_ARGSORT, GGML_OP_VIEW,
|
|
GGML_OP_GET_ROWS, GGML_OP_RESHAPE,
|
|
GGML_OP_SOFT_MAX, GGML_OP_RESHAPE };
|
|
|
|
GGML_ASSERT(!norm || !delayed_softmax);
|
|
|
|
if (delayed_softmax) {
|
|
return delayed_softmax_ops;
|
|
}
|
|
|
|
if (norm) {
|
|
return norm_ops;
|
|
}
|
|
|
|
return no_norm_ops;
|
|
}
|