166 lines
5.9 KiB
C++
166 lines
5.9 KiB
C++
#include "debug.h"
|
|
|
|
#include "log.h"
|
|
|
|
#include <cmath>
|
|
#include <string>
|
|
|
|
static std::string common_ggml_ne_string(const ggml_tensor * t) {
|
|
std::string str;
|
|
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
|
|
str += std::to_string(t->ne[i]);
|
|
if (i + 1 < GGML_MAX_DIMS) {
|
|
str += ", ";
|
|
}
|
|
}
|
|
return str;
|
|
}
|
|
|
|
static float common_ggml_get_float_value(const uint8_t * data,
|
|
ggml_type type,
|
|
const size_t * nb,
|
|
size_t i0,
|
|
size_t i1,
|
|
size_t i2,
|
|
size_t i3) {
|
|
size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
|
|
float v;
|
|
if (type == GGML_TYPE_F16) {
|
|
v = ggml_fp16_to_fp32(*(const ggml_fp16_t *) &data[i]);
|
|
} else if (type == GGML_TYPE_F32) {
|
|
v = *(const float *) &data[i];
|
|
} else if (type == GGML_TYPE_I64) {
|
|
v = (float) *(const int64_t *) &data[i];
|
|
} else if (type == GGML_TYPE_I32) {
|
|
v = (float) *(const int32_t *) &data[i];
|
|
} else if (type == GGML_TYPE_I16) {
|
|
v = (float) *(const int16_t *) &data[i];
|
|
} else if (type == GGML_TYPE_I8) {
|
|
v = (float) *(const int8_t *) &data[i];
|
|
} else if (type == GGML_TYPE_BF16) {
|
|
v = ggml_bf16_to_fp32(*(const ggml_bf16_t *) &data[i]);
|
|
} else {
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
return v;
|
|
}
|
|
|
|
template <bool abort>
|
|
void common_debug_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) {
|
|
GGML_ASSERT(n > 0);
|
|
float sum = 0;
|
|
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
|
|
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
|
|
for (int64_t i1 = 0; i1 < ne[1]; i1++) {
|
|
for (int64_t i0 = 0; i0 < ne[0]; i0++) {
|
|
const float v = common_ggml_get_float_value(data, type, nb, i0, i1, i2, i3);
|
|
sum += v;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
|
|
LOG_ERR(" [\n");
|
|
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
|
|
if (i2 == n && ne[2] > 2 * n) {
|
|
LOG_ERR(" ..., \n");
|
|
i2 = ne[2] - n;
|
|
}
|
|
LOG_ERR(" [\n");
|
|
for (int64_t i1 = 0; i1 < ne[1]; i1++) {
|
|
if (i1 == n && ne[1] > 2 * n) {
|
|
LOG_ERR(" ..., \n");
|
|
i1 = ne[1] - n;
|
|
}
|
|
LOG_ERR(" [");
|
|
for (int64_t i0 = 0; i0 < ne[0]; i0++) {
|
|
if (i0 == n && ne[0] > 2 * n) {
|
|
LOG_ERR("..., ");
|
|
i0 = ne[0] - n;
|
|
}
|
|
const float v = common_ggml_get_float_value(data, type, nb, i0, i1, i2, i3);
|
|
LOG_ERR("%12.4f", v);
|
|
if (i0 < ne[0] - 1) {
|
|
LOG_ERR(", ");
|
|
}
|
|
}
|
|
LOG_ERR("],\n");
|
|
}
|
|
LOG_ERR(" ],\n");
|
|
}
|
|
LOG_ERR(" ]\n");
|
|
LOG_ERR(" sum = %f\n", sum);
|
|
}
|
|
|
|
if constexpr (abort) {
|
|
if (std::isnan(sum)) {
|
|
LOG_ERR("encountered NaN - aborting\n");
|
|
exit(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* GGML operations callback during the graph execution.
|
|
*
|
|
* @param t current tensor
|
|
* @param ask when ask is true, the scheduler wants to know if we are interested in data from this tensor
|
|
* if we return true, a follow-up call will be made with ask=false in which we can do the actual collection.
|
|
* see ggml_backend_sched_eval_callback
|
|
* @param user_data user data to pass at each call back
|
|
* @return true to receive data or continue the graph, false otherwise
|
|
*/
|
|
template <bool abort_on_nan> bool common_debug_cb_eval(struct ggml_tensor * t, bool ask, void * user_data) {
|
|
auto * cb_data = (base_callback_data *) user_data;
|
|
|
|
const struct ggml_tensor * src0 = t->src[0];
|
|
const struct ggml_tensor * src1 = t->src[1];
|
|
|
|
if (ask) {
|
|
return true; // Always retrieve data
|
|
}
|
|
|
|
bool matches_filter = cb_data->tensor_filters.empty();
|
|
|
|
if (!matches_filter) {
|
|
for (const auto & filter : cb_data->tensor_filters) {
|
|
if (std::regex_search(t->name, filter)) {
|
|
matches_filter = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
char src1_str[128] = { 0 };
|
|
if (src1) {
|
|
snprintf(src1_str, sizeof(src1_str), "%s{%s}", src1->name, common_ggml_ne_string(src1).c_str());
|
|
}
|
|
|
|
if (matches_filter) {
|
|
LOG_ERR("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__, t->name, ggml_type_name(t->type),
|
|
ggml_op_desc(t), src0->name, common_ggml_ne_string(src0).c_str(), src1 ? src1_str : "",
|
|
common_ggml_ne_string(t).c_str());
|
|
}
|
|
|
|
const bool is_host = ggml_backend_buffer_is_host(t->buffer);
|
|
|
|
if (!is_host) {
|
|
auto n_bytes = ggml_nbytes(t);
|
|
cb_data->data.resize(n_bytes);
|
|
ggml_backend_tensor_get(t, cb_data->data.data(), 0, n_bytes);
|
|
}
|
|
|
|
if (!ggml_is_quantized(t->type) && matches_filter) {
|
|
uint8_t * data = is_host ? (uint8_t *) t->data : cb_data->data.data();
|
|
common_debug_print_tensor<abort_on_nan>(data, t->type, t->ne, t->nb, 3);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Explicit template instantiations
|
|
template bool common_debug_cb_eval<false>(ggml_tensor *, bool, void *);
|
|
template bool common_debug_cb_eval<true>(ggml_tensor *, bool, void *);
|
|
template void common_debug_print_tensor<false>(uint8_t *, ggml_type, const int64_t *, const size_t *, int64_t);
|
|
template void common_debug_print_tensor<true>(uint8_t *, ggml_type, const int64_t *, const size_t *, int64_t);
|