2871 lines
123 KiB
C++
2871 lines
123 KiB
C++
#include "chat.h"
|
||
#include "chat-parser.h"
|
||
#include "chat-peg-parser.h"
|
||
#include "common.h"
|
||
#include "json-partial.h"
|
||
#include "json-schema-to-grammar.h"
|
||
#include "log.h"
|
||
#include "regex-partial.h"
|
||
|
||
#include <minja/chat-template.hpp>
|
||
#include <minja/minja.hpp>
|
||
|
||
#include <algorithm>
|
||
#include <cstdio>
|
||
#include <cctype>
|
||
#include <exception>
|
||
#include <functional>
|
||
#include <iostream>
|
||
#include <optional>
|
||
#include <stdexcept>
|
||
#include <string>
|
||
#include <vector>
|
||
|
||
using json = nlohmann::ordered_json;
|
||
|
||
static std::string format_time(const std::chrono::system_clock::time_point & now, const std::string & format) {
|
||
auto time = std::chrono::system_clock::to_time_t(now);
|
||
auto local_time = *std::localtime(&time);
|
||
std::ostringstream ss;
|
||
ss << std::put_time(&local_time, format.c_str());
|
||
auto res = ss.str();
|
||
return res;
|
||
}
|
||
|
||
static std::string string_diff(const std::string & last, const std::string & current) {
|
||
if (last.empty()) {
|
||
return current;
|
||
}
|
||
if (!string_starts_with(current, last)) {
|
||
if (string_starts_with(last, current)) {
|
||
// This happens if the last generation ended on a partial stop word (not erased),
|
||
// and the current ended on a stop word (erased).
|
||
return "";
|
||
}
|
||
throw std::runtime_error("Invalid diff: '" + last + "' not found at start of '" + current + "'");
|
||
}
|
||
return current.substr(last.size());
|
||
}
|
||
|
||
static bool has_content_or_tool_calls(const common_chat_msg & msg) {
|
||
return !msg.content.empty() || !msg.tool_calls.empty();
|
||
}
|
||
|
||
template <>
|
||
json common_chat_msg::to_json_oaicompat() const
|
||
{
|
||
json message {
|
||
{"role", "assistant"},
|
||
};
|
||
if (!reasoning_content.empty()) {
|
||
message["reasoning_content"] = reasoning_content;
|
||
}
|
||
if (content.empty() && !tool_calls.empty()) {
|
||
message["content"] = json();
|
||
} else {
|
||
message["content"] = content;
|
||
}
|
||
if (!tool_calls.empty()) {
|
||
auto arr = json::array();
|
||
for (const auto & tc : tool_calls) {
|
||
arr.push_back({
|
||
{"type", "function"},
|
||
{"function", {
|
||
{"name", tc.name},
|
||
{"arguments", tc.arguments},
|
||
}},
|
||
{"id", tc.id},
|
||
// // Some templates generate and require an id (sometimes in a very specific format, e.g. Mistral Nemo).
|
||
// // We only generate a random id for the ones that don't generate one by themselves
|
||
// // (they also won't get to see it as their template likely doesn't use it, so it's all for the client)
|
||
// {"id", tc.id.empty() ? gen_tool_call_id() : tc.id},
|
||
});
|
||
}
|
||
message["tool_calls"] = arr;
|
||
}
|
||
return message;
|
||
}
|
||
|
||
std::vector<common_chat_msg_diff> common_chat_msg_diff::compute_diffs(const common_chat_msg & msg_prv, const common_chat_msg & msg_new) {
|
||
std::vector<common_chat_msg_diff> diffs;
|
||
if (msg_new.tool_calls.size() > msg_prv.tool_calls.size()) {
|
||
diffs.reserve(msg_new.tool_calls.size() - msg_prv.tool_calls.size() + 3);
|
||
} else {
|
||
diffs.reserve(3);
|
||
}
|
||
|
||
// TODO: these can become expensive for long messages - how to optimize?
|
||
if (msg_prv.reasoning_content != msg_new.reasoning_content) {
|
||
auto & diff = diffs.emplace_back();
|
||
diff.reasoning_content_delta = string_diff(msg_prv.reasoning_content, msg_new.reasoning_content);
|
||
}
|
||
if (msg_prv.content != msg_new.content) {
|
||
auto & diff = diffs.emplace_back();
|
||
diff.content_delta = string_diff(msg_prv.content, msg_new.content);
|
||
}
|
||
|
||
if (msg_new.tool_calls.size() < msg_prv.tool_calls.size()) {
|
||
throw std::runtime_error("Invalid diff: now finding less tool calls!");
|
||
}
|
||
|
||
if (!msg_prv.tool_calls.empty()) {
|
||
const auto idx = msg_prv.tool_calls.size() - 1;
|
||
const auto & pref = msg_prv.tool_calls[idx];
|
||
const auto & newf = msg_new.tool_calls[idx];
|
||
if (pref.name != newf.name) {
|
||
throw std::runtime_error("Invalid diff: tool call mismatch!");
|
||
}
|
||
const auto args_diff = string_diff(pref.arguments, newf.arguments);
|
||
if (!args_diff.empty() || pref.id != newf.id) {
|
||
auto & diff = diffs.emplace_back();
|
||
diff.tool_call_index = idx;
|
||
if (pref.id != newf.id) {
|
||
diff.tool_call_delta.id = newf.id;
|
||
diff.tool_call_delta.name = newf.name;
|
||
}
|
||
diff.tool_call_delta.arguments = args_diff;
|
||
}
|
||
}
|
||
for (size_t idx = msg_prv.tool_calls.size(); idx < msg_new.tool_calls.size(); ++idx) {
|
||
auto & diff = diffs.emplace_back();
|
||
diff.tool_call_index = idx;
|
||
diff.tool_call_delta = msg_new.tool_calls[idx];
|
||
}
|
||
|
||
return diffs;
|
||
}
|
||
|
||
typedef minja::chat_template common_chat_template;
|
||
|
||
struct common_chat_templates {
|
||
bool add_bos;
|
||
bool add_eos;
|
||
bool has_explicit_template; // Model had builtin template or template overridde was specified.
|
||
std::unique_ptr<common_chat_template> template_default; // always set (defaults to chatml)
|
||
std::unique_ptr<common_chat_template> template_tool_use;
|
||
};
|
||
|
||
struct templates_params {
|
||
json messages;
|
||
json tools;
|
||
common_chat_tool_choice tool_choice;
|
||
json json_schema;
|
||
bool parallel_tool_calls;
|
||
common_reasoning_format reasoning_format;
|
||
bool stream;
|
||
std::string grammar;
|
||
bool add_generation_prompt = true;
|
||
bool enable_thinking = true;
|
||
std::chrono::system_clock::time_point now = std::chrono::system_clock::now();
|
||
json extra_context;
|
||
bool add_bos;
|
||
bool add_eos;
|
||
bool is_inference = true;
|
||
};
|
||
|
||
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice) {
|
||
if (tool_choice == "auto") {
|
||
return COMMON_CHAT_TOOL_CHOICE_AUTO;
|
||
}
|
||
if (tool_choice == "none") {
|
||
return COMMON_CHAT_TOOL_CHOICE_NONE;
|
||
}
|
||
if (tool_choice == "required") {
|
||
return COMMON_CHAT_TOOL_CHOICE_REQUIRED;
|
||
}
|
||
throw std::invalid_argument("Invalid tool_choice: " + tool_choice);
|
||
}
|
||
|
||
bool common_chat_templates_support_enable_thinking(const common_chat_templates * chat_templates) {
|
||
common_chat_templates_inputs dummy_inputs;
|
||
common_chat_msg msg;
|
||
msg.role = "user";
|
||
msg.content = "test";
|
||
dummy_inputs.messages = {msg};
|
||
dummy_inputs.enable_thinking = false;
|
||
const auto rendered_no_thinking = common_chat_templates_apply(chat_templates, dummy_inputs);
|
||
dummy_inputs.enable_thinking = true;
|
||
const auto rendered_with_thinking = common_chat_templates_apply(chat_templates, dummy_inputs);
|
||
return rendered_no_thinking.prompt != rendered_with_thinking.prompt;
|
||
}
|
||
|
||
template <>
|
||
std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const json & messages) {
|
||
std::vector<common_chat_msg> msgs;
|
||
|
||
try {
|
||
|
||
if (!messages.is_array()) {
|
||
throw std::invalid_argument("Expected 'messages' to be an array, got " + messages.dump());
|
||
}
|
||
|
||
for (const auto & message : messages) {
|
||
if (!message.is_object()) {
|
||
throw std::invalid_argument("Expected 'message' to be an object, got " + message.dump());
|
||
}
|
||
|
||
common_chat_msg msg;
|
||
if (!message.contains("role")) {
|
||
throw std::invalid_argument("Missing 'role' in message: " + message.dump());
|
||
}
|
||
msg.role = message.at("role");
|
||
|
||
auto has_content = message.contains("content");
|
||
auto has_tool_calls = message.contains("tool_calls");
|
||
if (has_content) {
|
||
const auto & content = message.at("content");
|
||
if (content.is_string()) {
|
||
msg.content = content;
|
||
} else if (content.is_array()) {
|
||
for (const auto & part : content) {
|
||
if (!part.contains("type")) {
|
||
throw std::invalid_argument("Missing content part type: " + part.dump());
|
||
}
|
||
const auto & type = part.at("type");
|
||
if (type != "text") {
|
||
throw std::invalid_argument("Unsupported content part type: " + type.dump());
|
||
}
|
||
common_chat_msg_content_part msg_part;
|
||
msg_part.type = type;
|
||
msg_part.text = part.at("text");
|
||
msg.content_parts.push_back(msg_part);
|
||
}
|
||
} else if (!content.is_null()) {
|
||
throw std::invalid_argument("Invalid 'content' type: expected string or array, got " + content.dump() + " (ref: https://github.com/ggml-org/llama.cpp/issues/8367)");
|
||
}
|
||
}
|
||
if (has_tool_calls) {
|
||
for (const auto & tool_call : message.at("tool_calls")) {
|
||
common_chat_tool_call tc;
|
||
if (!tool_call.contains("type")) {
|
||
throw std::invalid_argument("Missing tool call type: " + tool_call.dump());
|
||
}
|
||
const auto & type = tool_call.at("type");
|
||
if (type != "function") {
|
||
throw std::invalid_argument("Unsupported tool call type: " + tool_call.dump());
|
||
}
|
||
if (!tool_call.contains("function")) {
|
||
throw std::invalid_argument("Missing tool call function: " + tool_call.dump());
|
||
}
|
||
const auto & fc = tool_call.at("function");
|
||
if (!fc.contains("name")) {
|
||
throw std::invalid_argument("Missing tool call name: " + tool_call.dump());
|
||
}
|
||
tc.name = fc.at("name");
|
||
tc.arguments = fc.at("arguments");
|
||
if (tool_call.contains("id")) {
|
||
tc.id = tool_call.at("id");
|
||
}
|
||
msg.tool_calls.push_back(tc);
|
||
}
|
||
}
|
||
if (!has_content && !has_tool_calls) {
|
||
throw std::invalid_argument("Expected 'content' or 'tool_calls' (ref: https://github.com/ggml-org/llama.cpp/issues/8367 & https://github.com/ggml-org/llama.cpp/issues/12279)");
|
||
}
|
||
if (message.contains("reasoning_content")) {
|
||
msg.reasoning_content = message.at("reasoning_content");
|
||
}
|
||
if (message.contains("name")) {
|
||
msg.tool_name = message.at("name");
|
||
}
|
||
if (message.contains("tool_call_id")) {
|
||
msg.tool_call_id = message.at("tool_call_id");
|
||
}
|
||
|
||
msgs.push_back(msg);
|
||
}
|
||
} catch (const std::exception & e) {
|
||
// @ngxson : disable otherwise it's bloating the API response
|
||
// printf("%s\n", std::string("; messages = ") + messages.dump(2));
|
||
throw std::runtime_error("Failed to parse messages: " + std::string(e.what()));
|
||
}
|
||
|
||
return msgs;
|
||
}
|
||
|
||
template <>
|
||
json common_chat_msgs_to_json_oaicompat(const std::vector<common_chat_msg> & msgs, bool concat_typed_text) {
|
||
json messages = json::array();
|
||
for (const auto & msg : msgs) {
|
||
if (!msg.content.empty() && !msg.content_parts.empty()) {
|
||
throw std::runtime_error("Cannot specify both content and content_parts");
|
||
}
|
||
json jmsg {
|
||
{"role", msg.role},
|
||
};
|
||
if (!msg.content.empty()) {
|
||
jmsg["content"] = msg.content;
|
||
} else if (!msg.content_parts.empty()) {
|
||
if (concat_typed_text) {
|
||
std::string text;
|
||
for (const auto & part : msg.content_parts) {
|
||
if (part.type != "text") {
|
||
LOG_WRN("Ignoring content part type: %s\n", part.type.c_str());
|
||
continue;
|
||
}
|
||
if (!text.empty()) {
|
||
text += '\n';
|
||
}
|
||
text += part.text;
|
||
}
|
||
jmsg["content"] = text;
|
||
} else {
|
||
auto & parts = jmsg["content"] = json::array();
|
||
for (const auto & part : msg.content_parts) {
|
||
parts.push_back({
|
||
{"type", part.type},
|
||
{"text", part.text},
|
||
});
|
||
}
|
||
}
|
||
} else {
|
||
jmsg["content"] = json(); // null
|
||
}
|
||
if (!msg.reasoning_content.empty()) {
|
||
jmsg["reasoning_content"] = msg.reasoning_content;
|
||
}
|
||
if (!msg.tool_name.empty()) {
|
||
jmsg["name"] = msg.tool_name;
|
||
}
|
||
if (!msg.tool_call_id.empty()) {
|
||
jmsg["tool_call_id"] = msg.tool_call_id;
|
||
}
|
||
if (!msg.tool_calls.empty()) {
|
||
auto & tool_calls = jmsg["tool_calls"] = json::array();
|
||
for (const auto & tool_call : msg.tool_calls) {
|
||
json tc {
|
||
{"type", "function"},
|
||
{"function", {
|
||
{"name", tool_call.name},
|
||
{"arguments", tool_call.arguments},
|
||
}},
|
||
};
|
||
if (!tool_call.id.empty()) {
|
||
tc["id"] = tool_call.id;
|
||
}
|
||
tool_calls.push_back(tc);
|
||
}
|
||
}
|
||
messages.push_back(jmsg);
|
||
}
|
||
return messages;
|
||
}
|
||
|
||
template <>
|
||
std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const std::string & messages) {
|
||
return common_chat_msgs_parse_oaicompat(json::parse(messages));
|
||
}
|
||
|
||
template <>
|
||
std::vector<common_chat_tool> common_chat_tools_parse_oaicompat(const json & tools) {
|
||
std::vector<common_chat_tool> result;
|
||
|
||
try {
|
||
if (!tools.is_null()) {
|
||
if (!tools.is_array()) {
|
||
throw std::invalid_argument("Expected 'tools' to be an array, got " + tools.dump());
|
||
}
|
||
for (const auto & tool : tools) {
|
||
if (!tool.contains("type")) {
|
||
throw std::invalid_argument("Missing tool type: " + tool.dump());
|
||
}
|
||
const auto & type = tool.at("type");
|
||
if (!type.is_string() || type != "function") {
|
||
throw std::invalid_argument("Unsupported tool type: " + tool.dump());
|
||
}
|
||
if (!tool.contains("function")) {
|
||
throw std::invalid_argument("Missing tool function: " + tool.dump());
|
||
}
|
||
|
||
const auto & function = tool.at("function");
|
||
result.push_back({
|
||
/* .name = */ function.at("name"),
|
||
/* .description = */ function.at("description"),
|
||
/* .parameters = */ function.at("parameters").dump(),
|
||
});
|
||
}
|
||
}
|
||
} catch (const std::exception & e) {
|
||
throw std::runtime_error("Failed to parse tools: " + std::string(e.what()) + "; tools = " + tools.dump(2));
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
template <>
|
||
std::vector<common_chat_tool> common_chat_tools_parse_oaicompat(const std::string & tools) {
|
||
return common_chat_tools_parse_oaicompat(json::parse(tools));
|
||
}
|
||
|
||
template <>
|
||
json common_chat_tools_to_json_oaicompat(const std::vector<common_chat_tool> & tools) {
|
||
if (tools.empty()) {
|
||
return json();
|
||
}
|
||
|
||
auto result = json::array();
|
||
for (const auto & tool : tools) {
|
||
result.push_back({
|
||
{"type", "function"},
|
||
{"function", {
|
||
{"name", tool.name},
|
||
{"description", tool.description},
|
||
{"parameters", json::parse(tool.parameters)},
|
||
}},
|
||
});
|
||
}
|
||
return result;
|
||
}
|
||
|
||
template <> json common_chat_msg_diff_to_json_oaicompat(const common_chat_msg_diff & diff) {
|
||
json delta = json::object();
|
||
if (!diff.reasoning_content_delta.empty()) {
|
||
delta["reasoning_content"] = diff.reasoning_content_delta;
|
||
}
|
||
if (!diff.content_delta.empty()) {
|
||
delta["content"] = diff.content_delta;
|
||
}
|
||
if (diff.tool_call_index != std::string::npos) {
|
||
json tool_call;
|
||
tool_call["index"] = diff.tool_call_index;
|
||
if (!diff.tool_call_delta.id.empty()) {
|
||
tool_call["id"] = diff.tool_call_delta.id;
|
||
tool_call["type"] = "function";
|
||
}
|
||
json function = json::object();
|
||
if (!diff.tool_call_delta.name.empty()) {
|
||
function["name"] = diff.tool_call_delta.name;
|
||
}
|
||
function["arguments"] = diff.tool_call_delta.arguments;
|
||
tool_call["function"] = function;
|
||
delta["tool_calls"] = json::array({tool_call});
|
||
}
|
||
return delta;
|
||
}
|
||
|
||
bool common_chat_verify_template(const std::string & tmpl, bool use_jinja) {
|
||
if (use_jinja) {
|
||
try {
|
||
common_chat_msg msg;
|
||
msg.role = "user";
|
||
msg.content = "test";
|
||
|
||
auto tmpls = common_chat_templates_init(/* model= */ nullptr, tmpl);
|
||
|
||
common_chat_templates_inputs inputs;
|
||
inputs.messages = {msg};
|
||
|
||
common_chat_templates_apply(tmpls.get(), inputs);
|
||
return true;
|
||
} catch (const std::exception & e) {
|
||
LOG_ERR("%s: failed to apply template: %s\n", __func__, e.what());
|
||
return false;
|
||
}
|
||
}
|
||
llama_chat_message chat[] = {{"user", "test"}};
|
||
const int res = llama_chat_apply_template(tmpl.c_str(), chat, 1, true, nullptr, 0);
|
||
return res >= 0;
|
||
}
|
||
|
||
std::string common_chat_format_single(
|
||
const struct common_chat_templates * tmpls,
|
||
const std::vector<common_chat_msg> & past_msg,
|
||
const common_chat_msg & new_msg,
|
||
bool add_ass,
|
||
bool use_jinja) {
|
||
|
||
common_chat_templates_inputs inputs;
|
||
inputs.use_jinja = use_jinja;
|
||
inputs.add_bos = tmpls->add_bos;
|
||
inputs.add_eos = tmpls->add_eos;
|
||
|
||
std::string fmt_past_msg;
|
||
if (!past_msg.empty()) {
|
||
inputs.messages = past_msg;
|
||
inputs.add_generation_prompt = false;
|
||
fmt_past_msg = common_chat_templates_apply(tmpls, inputs).prompt;
|
||
}
|
||
std::ostringstream ss;
|
||
// if the past_msg ends with a newline, we must preserve it in the formatted version
|
||
if (add_ass && !fmt_past_msg.empty() && fmt_past_msg.back() == '\n') {
|
||
ss << "\n";
|
||
};
|
||
// format chat with new_msg
|
||
inputs.messages.push_back(new_msg);
|
||
inputs.add_generation_prompt = add_ass;
|
||
auto fmt_new_msg = common_chat_templates_apply(tmpls, inputs).prompt;
|
||
// get the diff part
|
||
ss << fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size());
|
||
return ss.str();
|
||
}
|
||
|
||
std::string common_chat_format_example(const struct common_chat_templates * tmpls, bool use_jinja, const std::map<std::string, std::string> & chat_template_kwargs) {
|
||
common_chat_templates_inputs inputs;
|
||
inputs.use_jinja = use_jinja;
|
||
inputs.add_bos = tmpls->add_bos;
|
||
inputs.add_eos = tmpls->add_eos;
|
||
inputs.chat_template_kwargs = chat_template_kwargs;
|
||
auto add_simple_msg = [&](auto role, auto content) {
|
||
common_chat_msg msg;
|
||
msg.role = role;
|
||
msg.content = content;
|
||
inputs.messages.push_back(msg);
|
||
};
|
||
add_simple_msg("system", "You are a helpful assistant");
|
||
add_simple_msg("user", "Hello");
|
||
add_simple_msg("assistant", "Hi there");
|
||
add_simple_msg("user", "How are you?");
|
||
return common_chat_templates_apply(tmpls, inputs).prompt;
|
||
}
|
||
|
||
#define CHATML_TEMPLATE_SRC \
|
||
"{%- for message in messages -%}\n" \
|
||
" {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>\n' -}}\n" \
|
||
"{%- endfor -%}\n" \
|
||
"{%- if add_generation_prompt -%}\n" \
|
||
" {{- '<|im_start|>assistant\n' -}}\n" \
|
||
"{%- endif -%}"
|
||
|
||
void common_chat_templates_free(struct common_chat_templates * tmpls) {
|
||
delete tmpls;
|
||
}
|
||
|
||
bool common_chat_templates_was_explicit(const struct common_chat_templates * tmpls) {
|
||
return tmpls->has_explicit_template;
|
||
}
|
||
|
||
const char * common_chat_templates_source(const struct common_chat_templates * tmpls, const char * variant) {
|
||
if (variant != nullptr) {
|
||
if (strcmp(variant, "tool_use") == 0) {
|
||
if (tmpls->template_tool_use) {
|
||
return tmpls->template_tool_use->source().c_str();
|
||
}
|
||
return nullptr;
|
||
} else {
|
||
LOG_DBG("%s: unknown template variant: %s\n", __func__, variant);
|
||
}
|
||
}
|
||
return tmpls->template_default->source().c_str();
|
||
}
|
||
|
||
common_chat_templates_ptr common_chat_templates_init(
|
||
const struct llama_model * model,
|
||
const std::string & chat_template_override,
|
||
const std::string & bos_token_override,
|
||
const std::string & eos_token_override)
|
||
{
|
||
std::string default_template_src;
|
||
std::string template_tool_use_src;
|
||
|
||
bool has_explicit_template = !chat_template_override.empty();
|
||
if (chat_template_override.empty()) {
|
||
GGML_ASSERT(model != nullptr);
|
||
const auto * str = llama_model_chat_template(model, /* name */ nullptr);
|
||
if (str) {
|
||
default_template_src = str;
|
||
has_explicit_template = true;
|
||
}
|
||
str = llama_model_chat_template(model, /* name */ "tool_use");
|
||
if (str) {
|
||
template_tool_use_src = str;
|
||
has_explicit_template = true;
|
||
}
|
||
} else {
|
||
default_template_src = chat_template_override;
|
||
}
|
||
if (default_template_src.empty() || default_template_src == "chatml") {
|
||
if (!template_tool_use_src.empty()) {
|
||
default_template_src = template_tool_use_src;
|
||
} else {
|
||
default_template_src = CHATML_TEMPLATE_SRC;
|
||
}
|
||
}
|
||
|
||
// TODO @ngxson : this is a temporary hack to prevent chat template from throwing an error
|
||
// Ref: https://github.com/ggml-org/llama.cpp/pull/15230#issuecomment-3173959633
|
||
if (default_template_src.find("<|channel|>") != std::string::npos
|
||
// search for the error message and patch it
|
||
&& default_template_src.find("in message.content or") != std::string::npos) {
|
||
string_replace_all(default_template_src,
|
||
"{%- if \"<|channel|>analysis<|message|>\" in message.content or \"<|channel|>final<|message|>\" in message.content %}",
|
||
"{%- if false %}");
|
||
}
|
||
|
||
// TODO @aldehir : this is a temporary fix, pending Minja changes
|
||
// Ref: https://github.com/ggml-org/llama.cpp/pull/17713#issuecomment-3631342664
|
||
if (default_template_src.find("[TOOL_CALLS]") != std::string::npos
|
||
// search for the error message and patch it
|
||
&& default_template_src.find("if (message['content'] is none or") != std::string::npos) {
|
||
string_replace_all(default_template_src,
|
||
"{%- if (message['content'] is none or message['content'] == '' or message['content']|length == 0) and (message['tool_calls'] is not defined or message['tool_calls'] is none or message['tool_calls']|length == 0) %}",
|
||
"{%- if false %}");
|
||
}
|
||
|
||
std::string token_bos = bos_token_override;
|
||
std::string token_eos = eos_token_override;
|
||
bool add_bos = false;
|
||
bool add_eos = false;
|
||
if (model) {
|
||
const auto * vocab = llama_model_get_vocab(model);
|
||
const auto get_token = [&](llama_token token, const char * name, const char * jinja_variable_name) {
|
||
if (token == LLAMA_TOKEN_NULL) {
|
||
if (default_template_src.find(jinja_variable_name) != std::string::npos
|
||
|| template_tool_use_src.find(jinja_variable_name) != std::string::npos) {
|
||
LOG_WRN("common_chat_templates_init: warning: vocab does not have a %s token, jinja template won't work as intended.\n", name);
|
||
}
|
||
return std::string();
|
||
}
|
||
return common_token_to_piece(vocab, token, true);
|
||
};
|
||
token_bos = get_token(llama_vocab_bos(vocab), "BOS", "bos_token");
|
||
token_eos = get_token(llama_vocab_eos(vocab), "EOS", "eos_token");
|
||
add_bos = llama_vocab_get_add_bos(vocab);
|
||
add_eos = llama_vocab_get_add_eos(vocab);
|
||
}
|
||
common_chat_templates_ptr tmpls(new common_chat_templates());
|
||
tmpls->has_explicit_template = has_explicit_template;
|
||
tmpls->add_bos = add_bos;
|
||
tmpls->add_eos = add_eos;
|
||
try {
|
||
tmpls->template_default = std::make_unique<minja::chat_template>(default_template_src, token_bos, token_eos);
|
||
} catch (const std::exception & e) {
|
||
LOG_ERR("%s: failed to parse chat template (defaulting to chatml): %s \n", __func__, e.what());
|
||
tmpls->template_default = std::make_unique<minja::chat_template>(CHATML_TEMPLATE_SRC, token_bos, token_eos);
|
||
}
|
||
if (!template_tool_use_src.empty()) {
|
||
try {
|
||
tmpls->template_tool_use = std::make_unique<minja::chat_template>(template_tool_use_src, token_bos, token_eos);
|
||
} catch (const std::exception & e) {
|
||
LOG_ERR("%s: failed to parse tool use chat template (ignoring it): %s\n", __func__, e.what());
|
||
}
|
||
}
|
||
return tmpls;
|
||
}
|
||
|
||
const char * common_chat_format_name(common_chat_format format) {
|
||
switch (format) {
|
||
case COMMON_CHAT_FORMAT_CONTENT_ONLY: return "Content-only";
|
||
case COMMON_CHAT_FORMAT_GENERIC: return "Generic";
|
||
case COMMON_CHAT_FORMAT_MISTRAL_NEMO: return "Mistral Nemo";
|
||
case COMMON_CHAT_FORMAT_MAGISTRAL: return "Magistral";
|
||
case COMMON_CHAT_FORMAT_LLAMA_3_X: return "Llama 3.x";
|
||
case COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS: return "Llama 3.x with builtin tools";
|
||
case COMMON_CHAT_FORMAT_DEEPSEEK_R1: return "DeepSeek R1";
|
||
case COMMON_CHAT_FORMAT_FIREFUNCTION_V2: return "FireFunction v2";
|
||
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2: return "Functionary v3.2";
|
||
case COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1: return "Functionary v3.1 Llama 3.1";
|
||
case COMMON_CHAT_FORMAT_DEEPSEEK_V3_1: return "DeepSeek V3.1";
|
||
case COMMON_CHAT_FORMAT_HERMES_2_PRO: return "Hermes 2 Pro";
|
||
case COMMON_CHAT_FORMAT_COMMAND_R7B: return "Command R7B";
|
||
case COMMON_CHAT_FORMAT_GRANITE: return "Granite";
|
||
case COMMON_CHAT_FORMAT_GPT_OSS: return "GPT-OSS";
|
||
case COMMON_CHAT_FORMAT_SEED_OSS: return "Seed-OSS";
|
||
case COMMON_CHAT_FORMAT_NEMOTRON_V2: return "Nemotron V2";
|
||
case COMMON_CHAT_FORMAT_APERTUS: return "Apertus";
|
||
case COMMON_CHAT_FORMAT_LFM2_WITH_JSON_TOOLS: return "LFM2 with JSON tools";
|
||
case COMMON_CHAT_FORMAT_MINIMAX_M2: return "MiniMax-M2";
|
||
case COMMON_CHAT_FORMAT_GLM_4_5: return "GLM 4.5";
|
||
case COMMON_CHAT_FORMAT_KIMI_K2: return "Kimi K2";
|
||
case COMMON_CHAT_FORMAT_QWEN3_CODER_XML: return "Qwen3 Coder";
|
||
case COMMON_CHAT_FORMAT_APRIEL_1_5: return "Apriel 1.5";
|
||
case COMMON_CHAT_FORMAT_XIAOMI_MIMO: return "Xiaomi MiMo";
|
||
case COMMON_CHAT_FORMAT_PEG_SIMPLE: return "peg-simple";
|
||
case COMMON_CHAT_FORMAT_PEG_NATIVE: return "peg-native";
|
||
case COMMON_CHAT_FORMAT_PEG_CONSTRUCTED: return "peg-constructed";
|
||
default:
|
||
throw std::runtime_error("Unknown chat format");
|
||
}
|
||
}
|
||
|
||
const char * common_reasoning_format_name(common_reasoning_format format) {
|
||
switch (format) {
|
||
case COMMON_REASONING_FORMAT_NONE: return "none";
|
||
case COMMON_REASONING_FORMAT_AUTO: return "auto";
|
||
case COMMON_REASONING_FORMAT_DEEPSEEK: return "deepseek";
|
||
case COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY: return "deepseek-legacy";
|
||
default:
|
||
throw std::runtime_error("Unknown reasoning format");
|
||
}
|
||
}
|
||
|
||
common_reasoning_format common_reasoning_format_from_name(const std::string & format) {
|
||
if (format == "none") {
|
||
return COMMON_REASONING_FORMAT_NONE;
|
||
} else if (format == "auto") {
|
||
return COMMON_REASONING_FORMAT_AUTO;
|
||
} else if (format == "deepseek") {
|
||
return COMMON_REASONING_FORMAT_DEEPSEEK;
|
||
} else if (format == "deepseek-legacy") {
|
||
return COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY;
|
||
}
|
||
throw std::runtime_error("Unknown reasoning format: " + format);
|
||
}
|
||
|
||
static void foreach_function(const json & tools, const std::function<void(const json &)> & fn) {
|
||
for (const auto & tool : tools) {
|
||
if (!tool.contains("type") || tool.at("type") != "function" || !tool.contains("function")) {
|
||
LOG_INF("Skipping tool without function: %s", tool.dump(2).c_str());
|
||
continue;
|
||
}
|
||
fn(tool);
|
||
}
|
||
}
|
||
|
||
static void foreach_parameter(const json & function, const std::function<void(const std::string &, const json &, bool)> & fn) {
|
||
if (!function.contains("parameters") || !function.at("parameters").is_object()) {
|
||
return;
|
||
}
|
||
const auto & params = function.at("parameters");
|
||
if (!params.contains("properties") || !params.at("properties").is_object()) {
|
||
return;
|
||
}
|
||
const auto & props = params.at("properties");
|
||
std::set<std::string> required;
|
||
if (params.contains("required") && params.at("required").is_array()) {
|
||
params.at("required").get_to(required);
|
||
}
|
||
for (const auto & [name, prop] : props.items()) {
|
||
bool is_required = (required.find(name) != required.end());
|
||
fn(name, prop, is_required);
|
||
}
|
||
}
|
||
|
||
static std::string apply(
|
||
const common_chat_template & tmpl,
|
||
const struct templates_params & inputs,
|
||
const std::optional<json> & messages_override = std::nullopt,
|
||
const std::optional<json> & tools_override = std::nullopt,
|
||
const std::optional<json> & additional_context = std::nullopt)
|
||
{
|
||
minja::chat_template_inputs tmpl_inputs;
|
||
tmpl_inputs.messages = messages_override ? *messages_override : inputs.messages;
|
||
if (tools_override) {
|
||
tmpl_inputs.tools = *tools_override;
|
||
} else {
|
||
tmpl_inputs.tools = inputs.tools.empty() ? json() : inputs.tools;
|
||
}
|
||
tmpl_inputs.add_generation_prompt = inputs.add_generation_prompt;
|
||
tmpl_inputs.extra_context = inputs.extra_context;
|
||
tmpl_inputs.extra_context["enable_thinking"] = inputs.enable_thinking;
|
||
if (additional_context) {
|
||
tmpl_inputs.extra_context.merge_patch(*additional_context);
|
||
}
|
||
// TODO: add flag to control date/time, if only for testing purposes.
|
||
// tmpl_inputs.now = std::chrono::system_clock::now();
|
||
|
||
minja::chat_template_options tmpl_opts;
|
||
// To avoid double BOS / EOS tokens, we're manually removing begining / trailing tokens
|
||
// instead of using `chat_template_options.use_bos_token = false`, since these tokens
|
||
// may be needed inside the template / between messages too.
|
||
auto result = tmpl.apply(tmpl_inputs, tmpl_opts);
|
||
if (inputs.add_bos && string_starts_with(result, tmpl.bos_token())) {
|
||
result = result.substr(tmpl.bos_token().size());
|
||
}
|
||
if (inputs.add_eos && string_ends_with(result, tmpl.eos_token())) {
|
||
result = result.substr(0, result.size() - tmpl.eos_token().size());
|
||
}
|
||
return result;
|
||
}
|
||
|
||
static common_chat_params common_chat_params_init_generic(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||
common_chat_params data;
|
||
|
||
auto tool_call_schemas = json::array();
|
||
foreach_function(inputs.tools, [&](const json & tool) {
|
||
const auto & function = tool.at("function");
|
||
auto tool_schema = json {
|
||
{"type", "object"},
|
||
{"properties", {
|
||
{"name", {
|
||
{"type", "string"},
|
||
{"const", function.at("name")},
|
||
}},
|
||
{"arguments", function.at("parameters")},
|
||
}},
|
||
{"required", json::array({"name", "arguments"})},
|
||
};
|
||
if (function.contains("description")) {
|
||
tool_schema["description"] = function.at("description");
|
||
}
|
||
if (inputs.parallel_tool_calls) {
|
||
tool_schema.at("properties")["id"] = {
|
||
{"type", "string"},
|
||
{"minLength", 4},
|
||
};
|
||
tool_schema.at("required").push_back("id");
|
||
}
|
||
tool_call_schemas.emplace_back(tool_schema);
|
||
});
|
||
const auto tool_call =
|
||
inputs.parallel_tool_calls
|
||
? json {
|
||
{"type", "object"},
|
||
{"properties", {
|
||
{"tool_calls", {
|
||
{"type", "array"},
|
||
{"items", tool_call_schemas.size() == 1 ? tool_call_schemas[0] : json {
|
||
{"anyOf", tool_call_schemas},
|
||
}},
|
||
{"minItems", 1},
|
||
}},
|
||
}},
|
||
{"required", json::array({"tool_calls"})},
|
||
}
|
||
: json {
|
||
{"type", "object"},
|
||
{"properties", {
|
||
{"tool_call", tool_call_schemas.size() == 1 ? tool_call_schemas[0] : json {
|
||
{"anyOf", tool_call_schemas},
|
||
}},
|
||
}},
|
||
{"required", json::array({"tool_call"})},
|
||
};
|
||
const auto schema =
|
||
inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED
|
||
? json {
|
||
{"anyOf", json::array({
|
||
tool_call,
|
||
{
|
||
{"type", "object"},
|
||
{"properties", {
|
||
{"response", inputs.json_schema.is_null()
|
||
? json {{"type", "string"}}
|
||
: inputs.json_schema
|
||
},
|
||
}},
|
||
{"required", json::array({"response"})},
|
||
},
|
||
})}
|
||
}
|
||
: tool_call;
|
||
|
||
data.grammar_lazy = false;
|
||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||
builder.add_schema("root", schema);
|
||
});
|
||
|
||
auto tweaked_messages = common_chat_template::add_system(
|
||
inputs.messages,
|
||
"Respond in JSON format, either with `tool_call` (a request to call tools) or with `response` reply to the user's request");
|
||
|
||
data.prompt = apply(tmpl, inputs, /* messages_override= */ tweaked_messages);
|
||
data.format = COMMON_CHAT_FORMAT_GENERIC;
|
||
return data;
|
||
}
|
||
|
||
static common_chat_params common_chat_params_init_mistral_nemo(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||
common_chat_params data;
|
||
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
|
||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||
auto schemas = json::array();
|
||
foreach_function(inputs.tools, [&](const json & tool) {
|
||
const auto & function = tool.at("function");
|
||
schemas.push_back({
|
||
{"type", "object"},
|
||
{"properties", {
|
||
// Important note: the model is probably trained to take a JSON stringified arguments value.
|
||
// It's hard to constrain that for now (while reusing the JSON schema conversion), so we're just expecting a plain object.
|
||
{"name", {
|
||
{"type", "string"},
|
||
{"const", function.at("name")},
|
||
}},
|
||
{"arguments", function.at("parameters")},
|
||
{"id", {
|
||
{"type", "string"},
|
||
// Nemo's template expects a 9-character alphanumeric ID.
|
||
{"pattern", "^[a-zA-Z0-9]{9}$"},
|
||
}},
|
||
}},
|
||
{"required", json::array({"name", "arguments", "id"})},
|
||
});
|
||
});
|
||
auto schema = json {
|
||
{"type", "array"},
|
||
{"items", schemas.size() == 1 ? schemas[0] : json {{"anyOf", schemas}}},
|
||
{"minItems", 1},
|
||
};
|
||
if (!inputs.parallel_tool_calls) {
|
||
schema["maxItems"] = 1;
|
||
}
|
||
builder.add_rule("root", "\"[TOOL_CALLS]\" " + builder.add_schema("tool_calls", schema));
|
||
});
|
||
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "[TOOL_CALLS]"});
|
||
data.preserved_tokens = {
|
||
"[TOOL_CALLS]",
|
||
};
|
||
data.prompt = apply(tmpl, inputs);
|
||
data.format = COMMON_CHAT_FORMAT_MISTRAL_NEMO;
|
||
return data;
|
||
}
|
||
|
||
|
||
// Case-insensitive find
|
||
static size_t ifind_string(const std::string & haystack, const std::string & needle, size_t pos = 0) {
|
||
auto it = std::search(
|
||
haystack.begin() + pos, haystack.end(),
|
||
needle.begin(), needle.end(),
|
||
[](char a, char b) { return std::tolower(a) == std::tolower(b); }
|
||
);
|
||
return (it == haystack.end()) ? std::string::npos : std::distance(haystack.begin(), it);
|
||
}
|
||
|
||
static common_chat_params common_chat_params_init_lfm2(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||
common_chat_params data;
|
||
const auto is_json_schema_provided = !inputs.json_schema.is_null();
|
||
const auto is_grammar_provided = !inputs.grammar.empty();
|
||
const auto are_tools_provided = inputs.tools.is_array() && !inputs.tools.empty();
|
||
|
||
// the logic requires potentially modifying the messages
|
||
auto tweaked_messages = inputs.messages;
|
||
|
||
auto replace_json_schema_marker = [](json & messages) -> bool {
|
||
static std::string marker1 = "force json schema.\n";
|
||
static std::string marker2 = "force json schema.";
|
||
|
||
if (messages.empty() || messages.at(0).at("role") != "system") {
|
||
return false;
|
||
}
|
||
|
||
std::string content = messages.at(0).at("content");
|
||
|
||
for (const auto & marker : {marker1, marker2}) {
|
||
const auto pos = ifind_string(content, marker);
|
||
if (pos != std::string::npos) {
|
||
content.replace(pos, marker.length(), "");
|
||
// inject modified content back into the messages
|
||
messages.at(0).at("content") = content;
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
};
|
||
|
||
// Lfm2 model does not natively work with json, but can generally understand the tools structure
|
||
//
|
||
// Example of the pytorch dialog structure:
|
||
// <|startoftext|><|im_start|>system
|
||
// List of tools: <|tool_list_start|>[{"name": "get_candidate_status", "description": "Retrieves the current status of a candidate in the recruitment process", "parameters": {"type": "object", "properties": {"candidate_id": {"type": "string", "description": "Unique identifier for the candidate"}}, "required": ["candidate_id"]}}]<|tool_list_end|><|im_end|>
|
||
// <|im_start|>user
|
||
// What is the current status of candidate ID 12345?<|im_end|>
|
||
// <|im_start|>assistant
|
||
// <|tool_call_start|>[get_candidate_status(candidate_id="12345")]<|tool_call_end|>Checking the current status of candidate ID 12345.<|im_end|>
|
||
// <|im_start|>tool
|
||
// <|tool_response_start|>{"candidate_id": "12345", "status": "Interview Scheduled", "position": "Clinical Research Associate", "date": "2023-11-20"}<|tool_response_end|><|im_end|>
|
||
// <|im_start|>assistant
|
||
// The candidate with ID 12345 is currently in the "Interview Scheduled" stage for the position of Clinical Research Associate, with an interview date set for 2023-11-20.<|im_end|>
|
||
//
|
||
// For the llama server compatibility with json tools semantic,
|
||
// the client can add "Follow json schema." line into the system message prompt to force the json output.
|
||
//
|
||
if (are_tools_provided && (is_json_schema_provided || is_grammar_provided)) {
|
||
// server/utils.hpp prohibits that branch for the custom grammar anyways
|
||
throw std::runtime_error("Tools call must not use \"json_schema\" or \"grammar\", use non-tool invocation if you want to use custom grammar");
|
||
} else if (are_tools_provided && replace_json_schema_marker(tweaked_messages)) {
|
||
LOG_INF("%s: Using tools to build a grammar\n", __func__);
|
||
|
||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||
auto schemas = json::array();
|
||
foreach_function(inputs.tools, [&](const json & tool) {
|
||
const auto & function = tool.at("function");
|
||
schemas.push_back({
|
||
{"type", "object"},
|
||
{"properties", {
|
||
{"name", {
|
||
{"type", "string"},
|
||
{"const", function.at("name")},
|
||
}},
|
||
{"arguments", function.at("parameters")},
|
||
}},
|
||
{"required", json::array({"name", "arguments", "id"})},
|
||
});
|
||
});
|
||
auto schema = json {
|
||
{"type", "array"},
|
||
{"items", schemas.size() == 1 ? schemas[0] : json {{"anyOf", schemas}}},
|
||
{"minItems", 1},
|
||
};
|
||
if (!inputs.parallel_tool_calls) {
|
||
schema["maxItems"] = 1;
|
||
}
|
||
|
||
builder.add_rule("root", "\"<|tool_call_start|>\"" + builder.add_schema("tool_calls", schema) + "\"<|tool_call_end|>\"");
|
||
});
|
||
// model has no concept of tool selection mode choice,
|
||
// if the system prompt rendered correctly it will produce a tool call
|
||
// the grammar goes inside the tool call body
|
||
data.grammar_lazy = true;
|
||
data.grammar_triggers = {{COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL, "\\s*<\\|tool_call_start\\|>\\s*\\["}};
|
||
data.preserved_tokens = {"<|tool_call_start|>", "<|tool_call_end|>"};
|
||
data.format = COMMON_CHAT_FORMAT_LFM2_WITH_JSON_TOOLS;
|
||
} else if (are_tools_provided && (!is_json_schema_provided && !is_grammar_provided)) {
|
||
LOG_INF("%s: Using tools without json schema or grammar\n", __func__);
|
||
// output those tokens
|
||
data.preserved_tokens = {"<|tool_call_start|>", "<|tool_call_end|>"};
|
||
} else if (is_json_schema_provided) {
|
||
LOG_INF("%s: Using provided json schema to build a grammar\n", __func__);
|
||
data.grammar = json_schema_to_grammar(inputs.json_schema);
|
||
} else if (is_grammar_provided) {
|
||
LOG_INF("%s: Using provided grammar\n", __func__);
|
||
data.grammar = inputs.grammar;
|
||
} else {
|
||
LOG_INF("%s: Using content relying on the template\n", __func__);
|
||
}
|
||
|
||
data.prompt = apply(tmpl, inputs, /* messages_override= */ tweaked_messages);
|
||
LOG_DBG("%s: Prompt: %s\n", __func__, data.prompt.c_str());
|
||
|
||
return data;
|
||
}
|
||
|
||
static common_chat_params common_chat_params_init_ministral_3(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||
common_chat_params data;
|
||
|
||
// Build up messages to follow the format: https://huggingface.co/mistralai/Ministral-3-14B-Reasoning-2512/blob/main/chat_template.jinja
|
||
auto adjusted_messages = json::array();
|
||
for (const auto & msg : inputs.messages) {
|
||
auto role = msg.value("role", "");
|
||
if (role != "system" && role != "assistant") {
|
||
// Only adjust system and assistant messages. Interestingly, the system message may contain thinking.
|
||
adjusted_messages.push_back(msg);
|
||
continue;
|
||
}
|
||
|
||
auto content = json::array();
|
||
|
||
// If message contains `reasoning_content`, add it as a block of type `thinking`
|
||
if (msg.contains("reasoning_content") && msg.at("reasoning_content").is_string()) {
|
||
content.push_back({
|
||
{"type", "thinking"},
|
||
{"thinking", msg.at("reasoning_content").get<std::string>()},
|
||
});
|
||
}
|
||
|
||
// If message contains `content`, add it as a block of type `text`
|
||
if (msg.contains("content")) {
|
||
if (msg.at("content").is_string()) {
|
||
content.push_back({
|
||
{"type", "text"},
|
||
{"text", msg.at("content").get<std::string>()},
|
||
});
|
||
} else if (msg.at("content").is_array()) {
|
||
auto blocks = msg.at("content");
|
||
content.insert(content.end(), blocks.begin(), blocks.end());
|
||
}
|
||
}
|
||
|
||
auto adjusted = msg;
|
||
adjusted["content"] = content;
|
||
adjusted.erase("reasoning_content");
|
||
adjusted_messages.push_back(adjusted);
|
||
}
|
||
|
||
auto has_tools = inputs.tools.is_array() && !inputs.tools.empty();
|
||
auto extract_reasoning = inputs.reasoning_format != COMMON_REASONING_FORMAT_NONE;
|
||
auto include_grammar = true;
|
||
|
||
data.prompt = apply(tmpl, inputs, /* messages_override = */ adjusted_messages);
|
||
data.format = COMMON_CHAT_FORMAT_PEG_NATIVE;
|
||
data.preserved_tokens = {
|
||
"[THINK]",
|
||
"[/THINK]",
|
||
"[TOOL_CALLS]",
|
||
"[ARGS]",
|
||
};
|
||
|
||
auto parser = build_chat_peg_native_parser([&](common_chat_peg_native_builder & p) {
|
||
auto reasoning = extract_reasoning ? p.optional("[THINK]" + p.reasoning(p.until("[/THINK]")) + "[/THINK]") : p.eps();
|
||
|
||
// Response format parser
|
||
if (inputs.json_schema.is_object() && !inputs.json_schema.empty()) {
|
||
// Ministral wants to emit json surrounded by code fences
|
||
return reasoning << "```json" << p.content(p.schema(p.json(), "response-format", inputs.json_schema)) << "```";
|
||
}
|
||
|
||
// Tool call parser
|
||
if (has_tools && inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_NONE) {
|
||
auto tool_choice = p.choice();
|
||
foreach_function(inputs.tools, [&](const json & tool) {
|
||
const auto & function = tool.at("function");
|
||
std::string name = function.at("name");
|
||
const auto & schema = function.at("parameters");
|
||
|
||
tool_choice |= p.rule("tool-" + name,
|
||
p.tool_open(p.tool_name(p.literal(name)) + "[ARGS]")
|
||
+ p.tool_args(p.schema(p.json(), "tool-" + name + "-schema", schema))
|
||
);
|
||
});
|
||
|
||
auto min_calls = inputs.tool_choice == COMMON_CHAT_TOOL_CHOICE_REQUIRED ? 1 : 0;
|
||
auto max_calls = inputs.parallel_tool_calls ? -1 : 1;
|
||
auto tool_calls = p.trigger_rule("tool-call", p.repeat("[TOOL_CALLS]" + tool_choice, min_calls, max_calls));
|
||
|
||
return reasoning << p.content(p.until("[TOOL_CALLS]")) << tool_calls;
|
||
}
|
||
|
||
// Content only parser
|
||
include_grammar = false;
|
||
return reasoning << p.content(p.rest());
|
||
});
|
||
|
||
data.parser = parser.save();
|
||
|
||
if (include_grammar) {
|
||
data.grammar_lazy = has_tools && inputs.tool_choice == COMMON_CHAT_TOOL_CHOICE_AUTO;
|
||
|
||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||
foreach_function(inputs.tools, [&](const json & tool) {
|
||
const auto & function = tool.at("function");
|
||
auto schema = function.at("parameters");
|
||
builder.resolve_refs(schema);
|
||
});
|
||
parser.build_grammar(builder, data.grammar_lazy);
|
||
});
|
||
|
||
data.grammar_triggers = {
|
||
{COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "[TOOL_CALLS]"}
|
||
};
|
||
}
|
||
|
||
return data;
|
||
}
|
||
|
||
static common_chat_params common_chat_params_init_magistral(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||
common_chat_params data;
|
||
data.prompt = apply(tmpl, inputs);
|
||
data.format = COMMON_CHAT_FORMAT_MAGISTRAL;
|
||
data.preserved_tokens = {
|
||
"[THINK]",
|
||
"[/THINK]",
|
||
};
|
||
|
||
if (inputs.tools.is_array() && !inputs.tools.empty()) {
|
||
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
|
||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||
auto schemas = json::array();
|
||
foreach_function(inputs.tools, [&](const json & tool) {
|
||
const auto & function = tool.at("function");
|
||
schemas.push_back({
|
||
{"type", "object"},
|
||
{"properties", {
|
||
{"name", {
|
||
{"type", "string"},
|
||
{"const", function.at("name")},
|
||
}},
|
||
{"arguments", function.at("parameters")},
|
||
{"id", {
|
||
{"type", "string"},
|
||
{"pattern", "^[a-zA-Z0-9]{9}$"},
|
||
}},
|
||
}},
|
||
{"required", json::array({"name", "arguments", "id"})},
|
||
});
|
||
});
|
||
auto schema = json {
|
||
{"type", "array"},
|
||
{"items", schemas.size() == 1 ? schemas[0] : json {{"anyOf", schemas}}},
|
||
{"minItems", 1},
|
||
};
|
||
if (!inputs.parallel_tool_calls) {
|
||
schema["maxItems"] = 1;
|
||
}
|
||
builder.add_rule("root", "\"[TOOL_CALLS]\" " + builder.add_schema("tool_calls", schema));
|
||
});
|
||
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "[TOOL_CALLS]"});
|
||
data.preserved_tokens.push_back("[TOOL_CALLS]");
|
||
} else {
|
||
data.grammar_lazy = false;
|
||
if (!inputs.json_schema.is_null()) {
|
||
if (!inputs.grammar.empty()) {
|
||
throw std::runtime_error("Either \"json_schema\" or \"grammar\" can be specified, but not both");
|
||
}
|
||
data.grammar = json_schema_to_grammar(inputs.json_schema);
|
||
} else {
|
||
data.grammar = inputs.grammar;
|
||
}
|
||
}
|
||
|
||
return data;
|
||
}
|
||
|
||
static common_chat_params common_chat_params_init_command_r7b(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||
common_chat_params data;
|
||
|
||
auto adjusted_messages = json::array();
|
||
for (const auto & msg : inputs.messages) {
|
||
auto has_reasoning_content = msg.contains("reasoning_content") && msg.at("reasoning_content").is_string();
|
||
auto has_tool_calls = msg.contains("tool_calls") && msg.at("tool_calls").is_array();
|
||
if (has_reasoning_content && has_tool_calls) {
|
||
auto adjusted_message = msg;
|
||
adjusted_message["tool_plan"] = msg.at("reasoning_content");
|
||
adjusted_message.erase("reasoning_content");
|
||
adjusted_messages.push_back(adjusted_message);
|
||
} else {
|
||
adjusted_messages.push_back(msg);
|
||
}
|
||
}
|
||
data.prompt = apply(tmpl, inputs, /* messages_override= */ adjusted_messages);
|
||
data.format = COMMON_CHAT_FORMAT_COMMAND_R7B;
|
||
if (string_ends_with(data.prompt, "<|START_THINKING|>")) {
|
||
if (!inputs.enable_thinking) {
|
||
data.prompt += "<|END_THINKING|>";
|
||
} else {
|
||
data.thinking_forced_open = true;
|
||
}
|
||
} else if (!inputs.enable_thinking && string_ends_with(data.prompt, "<|CHATBOT_TOKEN|>")) {
|
||
data.prompt += "<|START_THINKING|><|END_THINKING|>";
|
||
}
|
||
|
||
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
|
||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||
auto schemas = json::array();
|
||
foreach_function(inputs.tools, [&](const json & tool) {
|
||
const auto & function = tool.at("function");
|
||
schemas.push_back({
|
||
{"type", "object"},
|
||
{"properties", {
|
||
{"tool_call_id", {
|
||
{"type", "string"},
|
||
// Command-R's template expects an integer string.
|
||
{"pattern", "^[0-9]{1,10}$"},
|
||
}},
|
||
{"tool_name", {
|
||
{"type", "string"},
|
||
{"const", function.at("name")},
|
||
}},
|
||
{"parameters", function.at("parameters")},
|
||
}},
|
||
{"required", json::array({"tool_call_id", "tool_name", "parameters"})},
|
||
});
|
||
});
|
||
auto schema = json {
|
||
{"type", "array"},
|
||
{"items", schemas.size() == 1 ? schemas[0] : json {{"anyOf", schemas}}},
|
||
{"minItems", 1},
|
||
};
|
||
if (!inputs.parallel_tool_calls) {
|
||
schema["maxItems"] = 1;
|
||
}
|
||
builder.add_rule("root",
|
||
std::string(data.thinking_forced_open ? "( \"<|END_THINKING|>\" space )? " : "") +
|
||
"\"<|START_ACTION|>\" " + builder.add_schema("tool_calls", schema) + " \"<|END_ACTION|>\"");
|
||
});
|
||
data.grammar_triggers.push_back({
|
||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
|
||
// If thinking_forced_open, then we capture the </think> tag in the grammar,
|
||
// (important for required tool choice) and in the trigger's first capture (decides what is sent to the grammar)
|
||
std::string(data.thinking_forced_open ? "[\\s\\S]*?(<\\|END_THINKING\\|>\\s*)" : "(?:<\\|START_THINKING\\|>[\\s\\S]*?<\\|END_THINKING\\|>\\s*)?") +
|
||
"(<\\|START_ACTION\\|>)[\\s\\S]*"
|
||
});
|
||
data.preserved_tokens = {
|
||
"<|START_ACTION|>",
|
||
"<|END_ACTION|>",
|
||
"<|START_RESPONSE|>",
|
||
"<|END_RESPONSE|>",
|
||
"<|START_THINKING|>",
|
||
"<|END_THINKING|>",
|
||
};
|
||
return data;
|
||
}
|
||
|
||
static void expect_tool_parameters(const std::string & name, const json & parameters, const std::vector<std::string> & expected_properties) {
|
||
if (!parameters.is_object() || !parameters.contains("type") || parameters.at("type") != "object" || !parameters.contains("properties") || !parameters.contains("required")) {
|
||
throw std::runtime_error("Parameters of tool " + name + " must be an object w/ required properties");
|
||
}
|
||
const auto & parameters_properties = parameters.at("properties");
|
||
const auto & parameters_required = parameters.at("required");
|
||
for (const auto & prop : expected_properties) {
|
||
if (!parameters_properties.contains(prop)) {
|
||
throw std::runtime_error("Parameters of tool " + name + " is missing property: " + prop); // NOLINT
|
||
}
|
||
if (std::find(parameters_required.begin(), parameters_required.end(), json(prop)) == parameters_required.end()) {
|
||
throw std::runtime_error("Parameters of tool " + name + " must have property marked as required: " + prop); // NOLINT
|
||
}
|
||
}
|
||
if (parameters_properties.size() != expected_properties.size()) {
|
||
throw std::runtime_error("Parameters of tool " + name + " must only have these properties:" + string_join(expected_properties, ", "));
|
||
}
|
||
}
|
||
|
||
static common_chat_params common_chat_params_init_llama_3_x(const common_chat_template & tmpl, const struct templates_params & inputs, bool allow_python_tag_builtin_tools) {
|
||
auto builtin_tools = json::array();
|
||
common_chat_params data;
|
||
if (!inputs.tools.is_null()) {
|
||
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
|
||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||
std::vector<std::string> tool_rules;
|
||
|
||
auto handle_builtin_tool = [&](const std::string & name, const json & parameters) {
|
||
if (name == "wolfram_alpha" || name == "web_search" || name == "brave_search") {
|
||
// https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/tool_runtime/wolfram_alpha/wolfram_alpha.py
|
||
// https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/tool_runtime/brave_search/brave_search.py
|
||
expect_tool_parameters(name, parameters, {"query"});
|
||
} else if (name == "python" || name == "code_interpreter") {
|
||
// https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/inline/tool_runtime/code_interpreter/code_interpreter.py
|
||
expect_tool_parameters(name, parameters, {"code"});
|
||
} else {
|
||
return false;
|
||
}
|
||
|
||
std::vector<std::string> kvs;
|
||
for (const auto & [key, value] : parameters.at("properties").items()) {
|
||
kvs.push_back("\"" + key + "=\" " + builder.add_schema(name + "-args-" + key, value)); // NOLINT
|
||
}
|
||
|
||
tool_rules.push_back(
|
||
builder.add_rule(
|
||
name + "-call",
|
||
"\"<|python_tag|>" + name + ".call(\" " + string_join(kvs, " \", \" ") + " \")\""));
|
||
builtin_tools.push_back(name);
|
||
|
||
return true;
|
||
};
|
||
|
||
foreach_function(inputs.tools, [&](const json & tool) {
|
||
const auto & function = tool.at("function");
|
||
std::string name = function.at("name");
|
||
auto parameters = function.at("parameters");
|
||
builder.resolve_refs(parameters);
|
||
|
||
// https://github.com/meta-llama/llama-stack/tree/main/llama_stack/providers/remote/tool_runtime
|
||
if (allow_python_tag_builtin_tools) {
|
||
handle_builtin_tool(name, parameters);
|
||
}
|
||
tool_rules.push_back(
|
||
builder.add_rule(
|
||
name + "-call",
|
||
"\"{\" space "
|
||
"( \"\\\"type\\\"\" space \":\" space \"\\\"function\\\"\" space \",\" space )? "
|
||
" \"\\\"name\\\"\" space \":\" space \"\\\"" + name + "\\\"\" space \",\" space "
|
||
" \"\\\"parameters\\\"\" space \":\" space " + builder.add_schema(name + "-args", parameters) + " "
|
||
"\"}\" space"));
|
||
});
|
||
// Small models may hallucinate function names so we match anything (*at the start*) that looks like the JSON of a function call, regardless of the name.
|
||
data.grammar_triggers.push_back({
|
||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
|
||
"(\\{\\s*(?:\"type\"\\s*:\\s*\"function\"\\s*,\\s*)?\"name\"\\s*:\\s*\")[\\s\\S]*", // + name + "\"[\\s\\S]*",
|
||
});
|
||
if (!builtin_tools.empty()) {
|
||
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<|python_tag|>"});
|
||
data.preserved_tokens.push_back("<|python_tag|>");
|
||
}
|
||
// Allow a few empty lines on top of the usual constrained json schema space rule.
|
||
builder.add_rule("root", string_join(tool_rules, " | "));
|
||
data.additional_stops.push_back("<|eom_id|>");
|
||
});
|
||
data.format = allow_python_tag_builtin_tools && !builtin_tools.empty()
|
||
? COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS
|
||
: COMMON_CHAT_FORMAT_LLAMA_3_X;
|
||
} else {
|
||
data.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
|
||
}
|
||
data.prompt = apply(tmpl, inputs, /* messages_override =*/ std::nullopt, /* tools_override= */ std::nullopt, json {
|
||
{"date_string", format_time(inputs.now, "%d %b %Y")},
|
||
{"tools_in_user_message", false},
|
||
{"builtin_tools", builtin_tools.empty() ? json() : builtin_tools},
|
||
});
|
||
return data;
|
||
}
|
||
|
||
static common_chat_params common_chat_params_init_nemotron_v2(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||
common_chat_params data;
|
||
|
||
// Generate the prompt using the apply() function with the template
|
||
data.prompt = apply(tmpl, inputs);
|
||
data.format = COMMON_CHAT_FORMAT_NEMOTRON_V2;
|
||
|
||
// Handle thinking tags appropriately based on inputs.enable_thinking
|
||
if (string_ends_with(data.prompt, "<think>\n")) {
|
||
if (!inputs.enable_thinking) {
|
||
data.prompt += "</think>";
|
||
} else {
|
||
data.thinking_forced_open = true;
|
||
}
|
||
}
|
||
|
||
// When tools are present, build grammar for the <TOOLCALL> format, similar to CommandR, but without tool call ID
|
||
if (!inputs.tools.is_null() && inputs.tools.is_array() && !inputs.tools.empty()) {
|
||
data.grammar_lazy = true;
|
||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||
auto schemas = json::array();
|
||
foreach_function(inputs.tools, [&](const json & tool) {
|
||
const auto & function = tool.at("function");
|
||
schemas.push_back({
|
||
{ "type", "object" },
|
||
{ "properties",
|
||
{
|
||
{ "name",
|
||
{
|
||
{ "type", "string" },
|
||
{ "const", function.at("name") },
|
||
} },
|
||
{ "arguments", function.at("parameters") },
|
||
} },
|
||
{ "required", json::array({ "name", "arguments" }) },
|
||
});
|
||
});
|
||
auto schema = json{
|
||
{ "type", "array" },
|
||
{ "items", schemas.size() == 1 ? schemas[0] : json{ { "anyOf", schemas } } },
|
||
{ "minItems", 1 },
|
||
};
|
||
if (!inputs.parallel_tool_calls) {
|
||
schema["maxItems"] = 1;
|
||
}
|
||
builder.add_rule("root",
|
||
std::string(data.thinking_forced_open ? "( \"</think>\" space )? " : "") +
|
||
"\"<TOOLCALL>\" " + builder.add_schema("tool_calls", schema) +
|
||
" \"</TOOLCALL>\"");
|
||
});
|
||
data.grammar_triggers.push_back({ COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
|
||
// If thinking_forced_open, then we capture the </think> tag in the grammar,
|
||
// (important for required tool choice) and in the trigger's first capture (decides what is sent to the grammar)
|
||
std::string(data.thinking_forced_open ?
|
||
"[\\s\\S]*?(</think>\\s*)" :
|
||
"(?:<think>[\\s\\S]*?</think>\\s*)?") +
|
||
"(<TOOLCALL>)[\\s\\S]*" });
|
||
}
|
||
return data;
|
||
}
|
||
|
||
static common_chat_params common_chat_params_init_nemotron_v3(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||
common_chat_params data;
|
||
|
||
data.prompt = apply(tmpl, inputs);
|
||
data.format = COMMON_CHAT_FORMAT_PEG_CONSTRUCTED;
|
||
|
||
// Handle thinking tags appropriately based on inputs.enable_thinking
|
||
if (string_ends_with(data.prompt, "<think>\n")) {
|
||
if (!inputs.enable_thinking) {
|
||
data.prompt += "</think>";
|
||
} else {
|
||
data.thinking_forced_open = true;
|
||
}
|
||
}
|
||
|
||
data.preserved_tokens = {
|
||
"<think>",
|
||
"</think>",
|
||
"<tool_call>",
|
||
"</tool_call>",
|
||
};
|
||
|
||
auto has_tools = inputs.tools.is_array() && !inputs.tools.empty();
|
||
auto extract_reasoning = inputs.reasoning_format != COMMON_REASONING_FORMAT_NONE;
|
||
auto include_grammar = true;
|
||
|
||
auto parser = build_chat_peg_constructed_parser([&](auto & p) {
|
||
auto reasoning = p.eps();
|
||
if (inputs.enable_thinking && extract_reasoning) {
|
||
auto reasoning_content = p.reasoning(p.until("</think>")) + ("</think>" | p.end());
|
||
if (data.thinking_forced_open) {
|
||
reasoning = reasoning_content;
|
||
}
|
||
}
|
||
|
||
// Response format parser
|
||
if (inputs.json_schema.is_object() && !inputs.json_schema.empty()) {
|
||
return reasoning << p.content(p.schema(p.json(), "response-format", inputs.json_schema));
|
||
}
|
||
|
||
// Tool call parser
|
||
if (has_tools && inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_NONE) {
|
||
auto tool_choice = p.choice();
|
||
foreach_function(inputs.tools, [&](const json & tool) {
|
||
const auto & function = tool.at("function");
|
||
std::string name = function.at("name");
|
||
auto parameters = function.at("parameters");
|
||
|
||
auto schema_info = common_schema_info();
|
||
schema_info.resolve_refs(parameters);
|
||
|
||
auto tool_open = "<function=" + p.tool_name(p.literal(name)) + ">\n";
|
||
auto tool_close = p.literal("</function>\n");
|
||
auto args = p.sequence();
|
||
auto arg_string = p.rule("xml-arg-string", p.until_one_of({
|
||
"\n</parameter>",
|
||
"\n<parameter=",
|
||
"\n</function>"
|
||
}));
|
||
|
||
foreach_parameter(function, [&](const auto & param_name, const json & param_schema, bool is_required) {
|
||
auto rule_name = "tool-" + name + "-arg-" + param_name;
|
||
|
||
auto arg_open = "<parameter=" + p.tool_arg_name(p.literal(param_name)) + ">\n";
|
||
auto arg_close = p.literal("</parameter>\n");
|
||
auto arg_value = p.eps();
|
||
|
||
if (schema_info.resolves_to_string(param_schema)) {
|
||
arg_value = p.tool_arg_string_value(arg_string) + "\n";
|
||
} else {
|
||
arg_value = p.tool_arg_json_value(p.schema(p.json(), rule_name + "-schema", param_schema));
|
||
}
|
||
|
||
// Model may or my not close with </parameter>
|
||
auto arg_rule = p.rule(rule_name, p.tool_arg_open(arg_open) + arg_value + p.optional(p.tool_arg_close(arg_close)));
|
||
args += p.repeat(arg_rule, /* min = */ is_required ? 1 : 0, /* max = */ 1);
|
||
});
|
||
|
||
tool_choice |= p.rule("tool-" + name, p.tool_open(tool_open) + args + p.tool_close(tool_close));
|
||
});
|
||
|
||
auto min_calls = inputs.tool_choice == COMMON_CHAT_TOOL_CHOICE_REQUIRED ? 1 : 0;
|
||
auto max_calls = inputs.parallel_tool_calls ? -1 : 1;
|
||
auto tool_call = p.rule("tool-call", "<tool_call>\n" + tool_choice + "</tool_call>" + p.space());
|
||
auto tool_calls = p.trigger_rule("tool-call-root", p.repeat(tool_call, /* min = */ min_calls, /* max = */ max_calls));
|
||
|
||
return reasoning << p.content(p.until("<tool_call>")) << tool_calls;
|
||
}
|
||
|
||
// Content only parser
|
||
include_grammar = false;
|
||
return reasoning << p.content(p.rest());
|
||
});
|
||
|
||
data.parser = parser.save();
|
||
|
||
if (include_grammar) {
|
||
data.grammar_lazy = has_tools && inputs.tool_choice == COMMON_CHAT_TOOL_CHOICE_AUTO;
|
||
|
||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||
foreach_function(inputs.tools, [&](const json & tool) {
|
||
const auto & function = tool.at("function");
|
||
auto schema = function.at("parameters");
|
||
builder.resolve_refs(schema);
|
||
});
|
||
parser.build_grammar(builder, data.grammar_lazy);
|
||
});
|
||
|
||
data.grammar_triggers = {
|
||
{COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<tool_call>"}
|
||
};
|
||
}
|
||
|
||
return data;
|
||
}
|
||
|
||
|
||
static common_chat_params common_chat_params_init_apertus(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||
common_chat_params data;
|
||
|
||
// Generate the prompt using the apply() function with the template
|
||
data.prompt = apply(tmpl, inputs);
|
||
data.format = COMMON_CHAT_FORMAT_APERTUS;
|
||
|
||
// Handle thinking tags appropriately based on inputs.enable_thinking
|
||
if (string_ends_with(data.prompt, "<|inner_prefix|>")) {
|
||
if (!inputs.enable_thinking) {
|
||
data.prompt += "<|inner_suffix|>";
|
||
} else {
|
||
data.thinking_forced_open = true;
|
||
}
|
||
}
|
||
|
||
// When tools are present, build grammar for the <|tools_prefix|> format
|
||
if (!inputs.tools.is_null() && inputs.tools.is_array() && !inputs.tools.empty()) {
|
||
data.grammar_lazy = true;
|
||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||
auto schemas = json::array();
|
||
foreach_function(inputs.tools, [&](const json & tool) {
|
||
const auto & function = tool.at("function");
|
||
schemas.push_back({
|
||
{ "type", "object" },
|
||
{ "properties",
|
||
{
|
||
{ function.at("name"), function.at("parameters") }
|
||
} },
|
||
{ "required", json::array({ function.at("name") }) },
|
||
});
|
||
});
|
||
auto schema = json{
|
||
{ "type", "array" },
|
||
{ "items", schemas.size() == 1 ? schemas[0] : json{ { "anyOf", schemas } } },
|
||
{ "minItems", 1 },
|
||
};
|
||
if (!inputs.parallel_tool_calls) {
|
||
schema["maxItems"] = 1;
|
||
}
|
||
builder.add_rule("root",
|
||
std::string(data.thinking_forced_open ? "( \"<|inner_suffix|>\" space )? " : "") +
|
||
"\"<|tools_prefix|>\"" + builder.add_schema("tool_calls", schema) + "\"<|tools_suffix|>\"");
|
||
});
|
||
data.grammar_triggers.push_back({ COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
|
||
// If thinking_forced_open, then we capture the <|inner_suffix|> tag in the grammar,
|
||
// (important for required tool choice) and in the trigger's first capture (decides what is sent to the grammar)
|
||
std::string(data.thinking_forced_open ?
|
||
"[\\s\\S]*?(<\\|inner_suffix\\|>\\s*)" :
|
||
"(?:<\\|inner_prefix\\|>[\\s\\S]*?<\\|inner_suffix\\|>\\s*)?") +
|
||
"(<\\|tools_prefix\\|>)[\\s\\S]*" });
|
||
data.preserved_tokens = {
|
||
"<|system_start|>",
|
||
"<|system_end|>",
|
||
"<|developer_start|>",
|
||
"<|developer_end|>",
|
||
"<|user_start|>",
|
||
"<|user_end|>",
|
||
"<|assistant_start|>",
|
||
"<|assistant_end|>",
|
||
"<|inner_prefix|>",
|
||
"<|inner_suffix|>",
|
||
"<|tools_prefix|>",
|
||
"<|tools_suffix|>",
|
||
};
|
||
}
|
||
return data;
|
||
}
|
||
|
||
static common_chat_params common_chat_params_init_deepseek_r1(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||
common_chat_params data;
|
||
auto prompt = apply(tmpl, inputs);
|
||
|
||
// Hacks to fix the official (broken) prompt.
|
||
// It is advisable to use --chat-template-file models/templates/llama-cpp-deepseek-r1.jinja instead,
|
||
// until the official template is fixed.
|
||
if (tmpl.source().find("{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}") != std::string::npos) {
|
||
// Don't leave the chat dangling after tool results
|
||
if (string_ends_with(prompt, "<|tool▁outputs▁end|>")) {
|
||
prompt += "<|end▁of▁sentence|>";
|
||
if (inputs.add_generation_prompt) {
|
||
prompt += "<|Assistant|>";
|
||
}
|
||
}
|
||
// Fix up tool call delta example added by Minja
|
||
prompt = std::regex_replace(
|
||
prompt,
|
||
std::regex("(<|tool▁call▁end|>)[\\s\\r\\n]*(<|tool▁outputs▁begin|>|<|User|>)"),
|
||
"$1<|tool▁calls▁end|><|end▁of▁sentence|>$2");
|
||
}
|
||
data.prompt = prompt;
|
||
data.format = COMMON_CHAT_FORMAT_DEEPSEEK_R1;
|
||
if (string_ends_with(data.prompt, "<think>\n")) {
|
||
if (!inputs.enable_thinking) {
|
||
data.prompt += "</think>";
|
||
} else {
|
||
data.thinking_forced_open = true;
|
||
}
|
||
}
|
||
|
||
if (inputs.tools.is_array() && !inputs.tools.empty()) {
|
||
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED && inputs.json_schema.is_null();
|
||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||
std::vector<std::string> tool_rules;
|
||
foreach_function(inputs.tools, [&](const json & tool) {
|
||
const auto & function = tool.at("function");
|
||
std::string name = function.at("name");
|
||
auto parameters = function.at("parameters");
|
||
builder.resolve_refs(parameters);
|
||
tool_rules.push_back(builder.add_rule(name + "-call",
|
||
"( \"<|tool▁call▁begin|>\" )? \"function<|tool▁sep|>" + name + "\\n"
|
||
"```json\\n\" " + builder.add_schema(name + "-args", parameters) + " "
|
||
"\"```<|tool▁call▁end|>\""));
|
||
});
|
||
// Distill Qwen 7B & 32B models seem confused re/ syntax of their tool call opening tag,
|
||
// so we accept common variants (then it's all constrained)
|
||
builder.add_rule("root",
|
||
std::string(data.thinking_forced_open ? "( \"</think>\" space )? " : "") +
|
||
"( \"<|tool▁calls▁begin|>\" | \"<|tool_calls_begin|>\" | \"<|tool calls begin|>\" | \"<|tool\\\\_calls\\\\_begin|>\" | \"<|tool▁calls|>\" ) "
|
||
"(" + string_join(tool_rules, " | ") + ")" + (inputs.parallel_tool_calls ? "*" : "") + " "
|
||
"\"<|tool▁calls▁end|>\""
|
||
" space");
|
||
data.grammar_triggers.push_back({
|
||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
|
||
// If thinking_forced_open, then we capture the </think> tag in the grammar,
|
||
// (important for required tool choice) and in the trigger's first capture (decides what is sent to the grammar)
|
||
std::string(data.thinking_forced_open ? "[\\s\\S]*?(</think>\\s*)" : "(?:<think>[\\s\\S]*?</think>\\s*)?") +
|
||
"(<|tool▁calls▁begin|>|<|tool_calls_begin|>|<|tool calls begin|>|<|tool\\\\_calls\\\\_begin|>|<|tool▁calls|>)[\\s\\S]*"
|
||
});
|
||
data.preserved_tokens = {
|
||
"<think>",
|
||
"</think>",
|
||
"<|tool▁calls▁begin|>",
|
||
"<|tool▁call▁begin|>",
|
||
"<|tool▁sep|>",
|
||
"<|tool▁call▁end|>",
|
||
"<|tool▁calls▁end|",
|
||
};
|
||
});
|
||
}
|
||
return data;
|
||
}
|
||
|
||
static common_chat_params common_chat_params_init_deepseek_v3_1(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||
common_chat_params data;
|
||
|
||
// Pass thinking context for DeepSeek V3.1 template
|
||
json additional_context = {
|
||
{"thinking", inputs.enable_thinking},
|
||
};
|
||
|
||
auto prompt = apply(tmpl, inputs,
|
||
/* messages_override= */ inputs.messages,
|
||
/* tools_override= */ std::nullopt,
|
||
additional_context);
|
||
data.prompt = prompt;
|
||
data.format = COMMON_CHAT_FORMAT_DEEPSEEK_V3_1;
|
||
if (string_ends_with(data.prompt, "<think>")) {
|
||
if (!inputs.enable_thinking) {
|
||
data.prompt += "</think>";
|
||
} else {
|
||
data.thinking_forced_open = true;
|
||
}
|
||
}
|
||
if (inputs.tools.is_array() && !inputs.tools.empty()) {
|
||
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED && inputs.json_schema.is_null();
|
||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||
std::vector<std::string> tool_rules;
|
||
foreach_function(inputs.tools, [&](const json & tool) {
|
||
const auto & function = tool.at("function");
|
||
std::string name = function.at("name");
|
||
auto parameters = function.at("parameters");
|
||
builder.resolve_refs(parameters);
|
||
tool_rules.push_back(builder.add_rule(name + "-call",
|
||
"( \"<|tool▁call▁begin|>\" )? \"" + name + "<|tool▁sep|>"
|
||
"\" " + builder.add_schema(name + "-args", parameters) + " "
|
||
"\"<|tool▁call▁end|>\""));
|
||
});
|
||
// Distill Qwen 7B & 32B models seem confused re/ syntax of their tool call opening tag,
|
||
// so we accept common variants (then it's all constrained)
|
||
builder.add_rule("root",
|
||
std::string(data.thinking_forced_open ? "( \"</think>\" space )? " : "") +
|
||
"( \"<|tool▁calls▁begin|>\" | \"<|tool_calls_begin|>\" | \"<|tool calls begin|>\" | \"<|tool\\\\_calls\\\\_begin|>\" | \"<|tool▁calls|>\" ) "
|
||
"(" + string_join(tool_rules, " | ") + ")" + (inputs.parallel_tool_calls ? "*" : "") + " "
|
||
"\"<|tool▁calls▁end|>\""
|
||
" space");
|
||
data.grammar_triggers.push_back({
|
||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
|
||
// If thinking_forced_open, then we capture the </think> tag in the grammar,
|
||
// (important for required tool choice) and in the trigger's first capture (decides what is sent to the grammar)
|
||
std::string(data.thinking_forced_open ? "[\\s\\S]*?(</think>\\s*)" : "(?:<think>[\\s\\S]*?</think>\\s*)?") +
|
||
"(<|tool▁calls▁begin|>|<|tool_calls_begin|>|<|tool calls begin|>|<|tool\\\\_calls\\\\_begin|>|<|tool▁calls|>)[\\s\\S]*"
|
||
});
|
||
data.preserved_tokens = {
|
||
"<think>",
|
||
"</think>",
|
||
"<|tool▁calls▁begin|>",
|
||
"<|tool▁call▁begin|>",
|
||
"<|tool▁sep|>",
|
||
"<|tool▁call▁end|>",
|
||
"<|tool▁calls▁end|>",
|
||
};
|
||
});
|
||
}
|
||
return data;
|
||
}
|
||
|
||
static common_chat_params common_chat_params_init_minimax_m2(const common_chat_template & tmpl, const struct templates_params & params) {
|
||
common_chat_params data;
|
||
data.grammar_lazy = params.tools.is_array() && !params.tools.empty() && params.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
|
||
|
||
data.prompt = apply(tmpl, params);
|
||
data.format = COMMON_CHAT_FORMAT_MINIMAX_M2;
|
||
|
||
// Handle thinking tags based on prompt ending
|
||
if (string_ends_with(data.prompt, "<think>\n")) {
|
||
if (!params.enable_thinking) {
|
||
// Close the thinking tag immediately if thinking is disabled
|
||
data.prompt += "</think>\n\n";
|
||
} else {
|
||
// Mark thinking as forced open (template started with <think>)
|
||
data.thinking_forced_open = true;
|
||
}
|
||
}
|
||
|
||
// Preserve MiniMax-M2 special tokens
|
||
data.preserved_tokens = {
|
||
"<think>",
|
||
"</think>",
|
||
"<minimax:tool_call>",
|
||
"</minimax:tool_call>",
|
||
};
|
||
|
||
// build grammar for tool call
|
||
static const xml_tool_call_format form {
|
||
/* form.scope_start = */ "<minimax:tool_call>\n",
|
||
/* form.tool_start = */ "<invoke name=\"",
|
||
/* form.tool_sep = */ "\">\n",
|
||
/* form.key_start = */ "<parameter name=\"",
|
||
/* form.key_val_sep = */ "\">",
|
||
/* form.val_end = */ "</parameter>\n",
|
||
/* form.tool_end = */ "</invoke>\n",
|
||
/* form.scope_end = */ "</minimax:tool_call>",
|
||
};
|
||
build_grammar_xml_tool_call(data, params.tools, form);
|
||
|
||
return data;
|
||
}
|
||
|
||
static common_chat_params common_chat_params_init_qwen3_coder_xml(const common_chat_template & tmpl, const struct templates_params & params) {
|
||
common_chat_params data;
|
||
data.grammar_lazy = params.tools.is_array() && !params.tools.empty() && params.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
|
||
|
||
data.prompt = apply(tmpl, params);
|
||
data.format = COMMON_CHAT_FORMAT_QWEN3_CODER_XML;
|
||
|
||
data.preserved_tokens = {
|
||
"<tool_call>",
|
||
"</tool_call>",
|
||
"<function=",
|
||
"</function>",
|
||
"<parameter=",
|
||
"</parameter>",
|
||
};
|
||
|
||
// build grammar for tool call
|
||
static const xml_tool_call_format form {
|
||
/* form.scope_start = */ "<tool_call>\n",
|
||
/* form.tool_start = */ "<function=",
|
||
/* form.tool_sep = */ ">\n",
|
||
/* form.key_start = */ "<parameter=",
|
||
/* form.key_val_sep = */ ">\n",
|
||
/* form.val_end = */ "\n</parameter>\n",
|
||
/* form.tool_end = */ "</function>\n",
|
||
/* form.scope_end = */ "</tool_call>",
|
||
};
|
||
build_grammar_xml_tool_call(data, params.tools, form);
|
||
|
||
return data;
|
||
}
|
||
|
||
static common_chat_params common_chat_params_init_kimi_k2(const common_chat_template & tmpl, const struct templates_params & params) {
|
||
common_chat_params data;
|
||
data.grammar_lazy = params.tools.is_array() && !params.tools.empty() && params.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
|
||
|
||
data.prompt = apply(tmpl, params);
|
||
data.format = COMMON_CHAT_FORMAT_KIMI_K2;
|
||
|
||
data.preserved_tokens = {
|
||
"<think>",
|
||
"</think>",
|
||
"<|tool_calls_section_begin|>",
|
||
"<|tool_call_begin|>",
|
||
"<|tool_call_argument_begin|>",
|
||
"<|tool_call_end|>",
|
||
"<|tool_calls_section_end|>",
|
||
"<|im_end|>",
|
||
"<|im_system|>",
|
||
"<|im_middle|>",
|
||
};
|
||
|
||
data.additional_stops.insert(data.additional_stops.end(), {
|
||
"<|im_end|>",
|
||
"<|im_middle|>"
|
||
});
|
||
// build grammar for tool call
|
||
static const xml_tool_call_format form = ([]() {
|
||
xml_tool_call_format form {};
|
||
form.scope_start = "<|tool_calls_section_begin|>";
|
||
form.tool_start = "<|tool_call_begin|>";
|
||
form.tool_sep = "<|tool_call_argument_begin|>{";
|
||
form.key_start = "\"";
|
||
form.key_val_sep = "\": ";
|
||
form.val_end = ", ";
|
||
form.tool_end = "}<|tool_call_end|>";
|
||
form.scope_end = "<|tool_calls_section_end|>";
|
||
form.raw_argval = false;
|
||
form.last_val_end = "";
|
||
return form;
|
||
})();
|
||
build_grammar_xml_tool_call(data, params.tools, form);
|
||
|
||
return data;
|
||
}
|
||
|
||
static common_chat_params common_chat_params_init_apriel_1_5(const common_chat_template & tmpl, const struct templates_params & params) {
|
||
common_chat_params data;
|
||
data.grammar_lazy = params.tools.is_array() && !params.tools.empty() && params.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
|
||
|
||
data.prompt = apply(tmpl, params);
|
||
data.format = COMMON_CHAT_FORMAT_APRIEL_1_5;
|
||
|
||
data.preserved_tokens = {
|
||
"<thinking>",
|
||
"</thinking>",
|
||
"<tool_calls>",
|
||
"</tool_calls>",
|
||
};
|
||
|
||
// build grammar for tool call
|
||
static const xml_tool_call_format form = ([]() {
|
||
xml_tool_call_format form {};
|
||
form.scope_start = "<tool_calls>[";
|
||
form.tool_start = "{\"name\": \"";
|
||
form.tool_sep = "\", \"arguments\": {";
|
||
form.key_start = "\"";
|
||
form.key_val_sep = "\": ";
|
||
form.val_end = ", ";
|
||
form.tool_end = "}, ";
|
||
form.scope_end = "]</tool_calls>";
|
||
form.raw_argval = false;
|
||
form.last_val_end = "";
|
||
form.last_tool_end = "}";
|
||
return form;
|
||
})();
|
||
build_grammar_xml_tool_call(data, params.tools, form);
|
||
|
||
return data;
|
||
}
|
||
|
||
static common_chat_params common_chat_params_init_xiaomi_mimo(const common_chat_template & tmpl, const struct templates_params & params) {
|
||
common_chat_params data;
|
||
data.grammar_lazy = params.tools.is_array() && !params.tools.empty() && params.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
|
||
|
||
data.prompt = apply(tmpl, params);
|
||
data.format = COMMON_CHAT_FORMAT_XIAOMI_MIMO;
|
||
|
||
data.preserved_tokens = {
|
||
"<tool_call>",
|
||
"</tool_call>",
|
||
};
|
||
|
||
// build grammar for tool call
|
||
static const xml_tool_call_format form = ([]() {
|
||
xml_tool_call_format form {};
|
||
form.scope_start = "\n";
|
||
form.tool_start = "<tool_call>\n{\"name\": \"";
|
||
form.tool_sep = "\", \"arguments\": {";
|
||
form.key_start = "\"";
|
||
form.key_val_sep = "\": ";
|
||
form.val_end = ", ";
|
||
form.tool_end = "}\n</tool_call>";
|
||
form.scope_end = "";
|
||
form.raw_argval = false;
|
||
form.last_val_end = "";
|
||
return form;
|
||
})();
|
||
build_grammar_xml_tool_call(data, params.tools, form);
|
||
|
||
return data;
|
||
}
|
||
|
||
static common_chat_params common_chat_params_init_gpt_oss(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||
common_chat_params data;
|
||
|
||
// Copy reasoning to the "thinking" field as expected by the gpt-oss template
|
||
auto adjusted_messages = json::array();
|
||
for (const auto & msg : inputs.messages) {
|
||
auto has_reasoning_content = msg.contains("reasoning_content") && msg.at("reasoning_content").is_string();
|
||
auto has_tool_calls = msg.contains("tool_calls") && msg.at("tool_calls").is_array();
|
||
|
||
if (has_reasoning_content && has_tool_calls) {
|
||
auto adjusted_message = msg;
|
||
adjusted_message["thinking"] = msg.at("reasoning_content");
|
||
adjusted_messages.push_back(adjusted_message);
|
||
} else {
|
||
adjusted_messages.push_back(msg);
|
||
}
|
||
}
|
||
|
||
auto prompt = apply(tmpl, inputs, /* messages_override= */ adjusted_messages);
|
||
|
||
// Check if we need to replace the return token with end token during
|
||
// inference and without generation prompt. For more details see:
|
||
// https://github.com/ggml-org/llama.cpp/issues/15417
|
||
if (inputs.is_inference && !inputs.add_generation_prompt) {
|
||
static constexpr std::string_view return_token = "<|return|>";
|
||
static constexpr std::string_view end_token = "<|end|>";
|
||
if (size_t pos = prompt.rfind(return_token); pos != std::string::npos) {
|
||
prompt.replace(pos, return_token.length(), end_token);
|
||
}
|
||
}
|
||
|
||
data.prompt = prompt;
|
||
data.format = COMMON_CHAT_FORMAT_GPT_OSS;
|
||
|
||
// These special tokens are required to parse properly, so we include them
|
||
// even if parse_tool_calls is false.
|
||
data.preserved_tokens = {
|
||
"<|channel|>",
|
||
"<|constrain|>",
|
||
"<|message|>",
|
||
"<|start|>",
|
||
"<|end|>",
|
||
};
|
||
|
||
if (!inputs.json_schema.is_null()) {
|
||
data.grammar_lazy = false;
|
||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||
auto schema = inputs.json_schema;
|
||
builder.resolve_refs(schema);
|
||
|
||
auto not_end = builder.add_rule("not-end",
|
||
"[^<] | \"<\" [^|] | \"<|\" [^e] | \"<|e\" [^n] | \"<|en\" [^d] | \"<|end\" [^|] | \"<|end|\" [^>]");
|
||
auto analysis = builder.add_rule("analysis",
|
||
"\"<|channel|>analysis<|message|>\" ( " + not_end + " )* \"<|end|>\"");
|
||
auto constraint = builder.add_rule("constraint", "\"<|constrain|>\"? [a-zA-Z0-9_-]+");
|
||
auto final = builder.add_rule("final",
|
||
"\"<|channel|>final\" ( \" \" " + constraint + " )? \"<|message|>\" " +
|
||
builder.add_schema("response", schema)
|
||
);
|
||
|
||
builder.add_rule("root", "( " + analysis + " \"<|start|>assistant\" )? " + final);
|
||
});
|
||
}
|
||
|
||
if (inputs.tools.is_array() && !inputs.tools.empty()) {
|
||
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
|
||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||
// tool calls can appear in commentary or analysis channels
|
||
auto channel = builder.add_rule("channel", "\"<|channel|>\" ( \"commentary\" | \"analysis\" )");
|
||
|
||
std::vector<std::string> tool_rules_recipient_in_role;
|
||
std::vector<std::string> tool_rules_recipient_in_channel;
|
||
foreach_function(inputs.tools, [&](const json & tool) {
|
||
const auto & function = tool.at("function");
|
||
std::string name = function.at("name");
|
||
auto parameters = function.at("parameters");
|
||
builder.resolve_refs(parameters);
|
||
|
||
tool_rules_recipient_in_role.push_back(
|
||
builder.add_rule(name + "-call",
|
||
"\"" + name + "\"" + channel + " \" <|constrain|>json\"? \"<|message|>\" " +
|
||
builder.add_schema(name + "-args", parameters)
|
||
)
|
||
);
|
||
|
||
tool_rules_recipient_in_channel.push_back(
|
||
builder.add_rule(name + "-call",
|
||
"\"" + name + "\"" + " \" <|constrain|>json\"? \"<|message|>\" " +
|
||
builder.add_schema(name + "-args", parameters)
|
||
)
|
||
);
|
||
});
|
||
|
||
auto recipient_in_channel = builder.add_rule("recipient_in_channel",
|
||
channel + " \" to=functions.\" ( " +
|
||
string_join(tool_rules_recipient_in_channel, " | ") + " )"
|
||
);
|
||
|
||
if (data.grammar_lazy) {
|
||
auto recipient_in_role = builder.add_rule("recipient_in_role",
|
||
"\"<|start|>assistant\"? \" to=functions.\" ( " +
|
||
string_join(tool_rules_recipient_in_role, " | ") + " )"
|
||
);
|
||
|
||
builder.add_rule("root", recipient_in_role + " | " + recipient_in_channel);
|
||
} else {
|
||
auto not_end = builder.add_rule("not-end",
|
||
"[^<] | \"<\" [^|] | \"<|\" [^e] | \"<|e\" [^n] | \"<|en\" [^d] | \"<|end\" [^|] | \"<|end|\" [^>]");
|
||
auto analysis = builder.add_rule("analysis",
|
||
"\"<|channel|>analysis<|message|>\" ( " + not_end + " )* \"<|end|>\"");
|
||
auto commentary = builder.add_rule("commentary",
|
||
"\"<|channel|>commentary<|message|>\" ( " + not_end + " )* \"<|end|>\"");
|
||
|
||
auto recipient_in_role = builder.add_rule("recipient_in_role",
|
||
"\" to=functions.\" ( " + string_join(tool_rules_recipient_in_role, " | ") + " )"
|
||
);
|
||
|
||
builder.add_rule("root",
|
||
"( " + analysis + " \"<|start|>assistant\" )? " +
|
||
"( " + commentary + " \"<|start|>assistant\" )? " +
|
||
"( " + recipient_in_role + " | " + recipient_in_channel + " )"
|
||
);
|
||
}
|
||
|
||
// Trigger on tool calls that appear in the commentary channel
|
||
data.grammar_triggers.push_back({
|
||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
|
||
"<\\|channel\\|>(commentary|analysis) to"
|
||
});
|
||
|
||
// Trigger tool calls that appear in the role section, either at the
|
||
// start or in the middle.
|
||
data.grammar_triggers.push_back({
|
||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
|
||
"^ to"
|
||
});
|
||
|
||
data.grammar_triggers.push_back({
|
||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
|
||
"<\\|start\\|>assistant to"
|
||
});
|
||
});
|
||
}
|
||
|
||
return data;
|
||
}
|
||
|
||
static common_chat_params common_chat_params_init_glm_4_5(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||
common_chat_params data;
|
||
data.grammar_lazy = inputs.tools.is_array() && !inputs.tools.empty() && inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
|
||
|
||
std::string prompt = apply(tmpl, inputs);
|
||
|
||
// match the existing trimming behavior
|
||
if (inputs.add_bos && string_starts_with(prompt, tmpl.bos_token())) {
|
||
prompt.erase(0, tmpl.bos_token().size());
|
||
}
|
||
if (inputs.add_eos && string_ends_with(prompt, tmpl.eos_token())) {
|
||
prompt.erase(prompt.size() - tmpl.eos_token().size());
|
||
}
|
||
if (string_ends_with(prompt, "<think>")) {
|
||
if (!inputs.enable_thinking) {
|
||
prompt += "</think>";
|
||
} else {
|
||
data.thinking_forced_open = true;
|
||
}
|
||
}
|
||
|
||
// add GLM preserved tokens
|
||
data.preserved_tokens = {
|
||
"<|endoftext|>",
|
||
"[MASK]",
|
||
"[gMASK]",
|
||
"[sMASK]",
|
||
"<sop>",
|
||
"<eop>",
|
||
"<|system|>",
|
||
"<|user|>",
|
||
"<|assistant|>",
|
||
"<|observation|>",
|
||
"<|begin_of_image|>",
|
||
"<|end_of_image|>",
|
||
"<|begin_of_video|>",
|
||
"<|end_of_video|>",
|
||
"<|begin_of_audio|>",
|
||
"<|end_of_audio|>",
|
||
"<|begin_of_transcription|>",
|
||
"<|end_of_transcription|>",
|
||
"<|code_prefix|>",
|
||
"<|code_middle|>",
|
||
"<|code_suffix|>",
|
||
"/nothink",
|
||
"<think>",
|
||
"</think>",
|
||
"<tool_call>",
|
||
"</tool_call>",
|
||
"<arg_key>",
|
||
"</arg_key>",
|
||
"<arg_value>",
|
||
"</arg_value>"
|
||
};
|
||
|
||
// extra GLM 4.5 stop word
|
||
data.additional_stops.insert(data.additional_stops.end(), {
|
||
"<|user|>",
|
||
"<|observation|>"
|
||
});
|
||
|
||
// build grammar for tool call
|
||
static const xml_tool_call_format form {
|
||
/* form.scope_start = */ "",
|
||
/* form.tool_start = */ "\n<tool_call>",
|
||
/* form.tool_sep = */ "\n",
|
||
/* form.key_start = */ "<arg_key>",
|
||
/* form.key_val_sep = */ "</arg_key>\n<arg_value>",
|
||
/* form.val_end = */ "</arg_value>\n",
|
||
/* form.tool_end = */ "</tool_call>\n",
|
||
/* form.scope_end = */ "",
|
||
};
|
||
build_grammar_xml_tool_call(data, inputs.tools, form);
|
||
|
||
data.prompt = prompt;
|
||
data.format = COMMON_CHAT_FORMAT_GLM_4_5;
|
||
return data;
|
||
}
|
||
|
||
static common_chat_params common_chat_params_init_firefunction_v2(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||
LOG_DBG("%s\n", __func__);
|
||
common_chat_params data;
|
||
const std::optional<json> tools_override = json();
|
||
const std::optional<json> additional_context = json {
|
||
{"datetime", format_time(inputs.now, "%b %d %Y %H:%M:%S GMT")},
|
||
{"functions", json(inputs.tools.empty() ? "" : inputs.tools.dump(2))},
|
||
};
|
||
data.prompt = apply(tmpl, inputs, /* messages_override =*/ std::nullopt, tools_override, additional_context);
|
||
if (inputs.tools.is_array() && !inputs.tools.empty()) {
|
||
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
|
||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||
auto schemas = json::array();
|
||
foreach_function(inputs.tools, [&](const json & tool) {
|
||
const auto & function = tool.at("function");
|
||
schemas.push_back({
|
||
{"type", "object"},
|
||
{"properties", {
|
||
{"name", {
|
||
{"type", "string"},
|
||
{"const", function.at("name")},
|
||
}},
|
||
{"arguments", function.at("parameters")},
|
||
}},
|
||
{"required", json::array({"name", "arguments", "id"})},
|
||
});
|
||
});
|
||
auto schema = json {
|
||
{"type", "array"},
|
||
{"items", schemas.size() == 1 ? schemas[0] : json {{"anyOf", schemas}}},
|
||
{"minItems", 1},
|
||
};
|
||
if (!inputs.parallel_tool_calls) {
|
||
schema["maxItems"] = 1;
|
||
}
|
||
builder.add_rule("root", "\" functools\"? " + builder.add_schema("tool_calls", schema));
|
||
});
|
||
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, " functools["});
|
||
data.preserved_tokens = {
|
||
" functools[",
|
||
};
|
||
data.format = COMMON_CHAT_FORMAT_FIREFUNCTION_V2;
|
||
} else {
|
||
data.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
|
||
}
|
||
return data;
|
||
}
|
||
|
||
static common_chat_params common_chat_params_init_functionary_v3_2(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||
// >>>all\nlet's call functions>>>fn1\n{"arg1": 1...}\n>>>fn2\n{"arg1": 1...}...
|
||
// Using ">>>f1\n", ">>>f2\n"... as trigger words for the grammar
|
||
// If the function is python, we also allow raw python code (if the line after `python\n` doesn't start w/ opening `{`), which the model seems to prefer for multiline code.
|
||
common_chat_params data;
|
||
data.prompt = apply(tmpl, inputs);
|
||
data.format = COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2;
|
||
if (inputs.tools.is_array() && !inputs.tools.empty()) {
|
||
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
|
||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||
std::vector<std::string> first_tool_rules;
|
||
std::vector<std::string> subsequent_tool_rules;
|
||
foreach_function(inputs.tools, [&](const json & tool) {
|
||
const auto & function = tool.at("function");
|
||
std::string name = function.at("name");
|
||
auto parameters = function.at("parameters");
|
||
builder.resolve_refs(parameters);
|
||
std::string args_pattern = "[\\s\\S]*";
|
||
auto args_rule = builder.add_schema(name + "-args", parameters);
|
||
if (name == "python") {
|
||
args_rule = builder.add_rule(name + "-maybe-raw-args", args_rule + " | [^{] .*");
|
||
} else {
|
||
args_pattern = "\\{" + args_pattern;
|
||
}
|
||
auto call_rule = builder.add_rule(name + "-call", "\"" + name + "\\n\" " + args_rule);
|
||
first_tool_rules.push_back(call_rule);
|
||
if (inputs.parallel_tool_calls) {
|
||
subsequent_tool_rules.push_back(builder.add_rule(name + "-call2", "\">>>\" " + call_rule));
|
||
}
|
||
data.grammar_triggers.push_back({
|
||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
|
||
"((?:[\\s\\S]+?>>>)?" + regex_escape(name) + "\n)" + args_pattern,
|
||
});
|
||
});
|
||
data.preserved_tokens = {
|
||
"<|end_header_id|>",
|
||
};
|
||
auto first_rule = first_tool_rules.empty() ? "" : builder.add_rule("first_tool_call", string_join(first_tool_rules, " | ")) + " space";
|
||
if (inputs.parallel_tool_calls) {
|
||
auto subsequent_rule = builder.add_rule("subsequent_tool_call", string_join(subsequent_tool_rules, " | ")) + " space";
|
||
builder.add_rule("root", first_rule + " (" + subsequent_rule + ")*");
|
||
} else {
|
||
builder.add_rule("root", first_rule);
|
||
}
|
||
|
||
});
|
||
}
|
||
return data;
|
||
}
|
||
|
||
static common_chat_params common_chat_params_init_functionary_v3_1_llama_3_1(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||
// https://github.com/MeetKai/functionary/blob/main/tests/prompt_test_v3-llama3.1.txt
|
||
common_chat_params data;
|
||
|
||
if (!inputs.tools.is_null()) {
|
||
std::string python_code_argument_name;
|
||
auto has_raw_python = false;
|
||
|
||
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
|
||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||
std::vector<std::string> tool_rules;
|
||
foreach_function(inputs.tools, [&](const json & tool) {
|
||
const auto & function = tool.at("function");
|
||
const auto & parameters = function.at("parameters");
|
||
std::string name = function.at("name");
|
||
if (name == "python" || name == "ipython") {
|
||
if (!parameters.contains("type")) {
|
||
throw std::runtime_error("Missing type in python tool");
|
||
}
|
||
has_raw_python = true;
|
||
const auto & type = parameters.at("type");
|
||
if (type == "object") {
|
||
auto properties = parameters.at("properties");
|
||
for (auto it = properties.begin(); it != properties.end(); ++it) {
|
||
if (it.value().at("type") == "string") {
|
||
if (!python_code_argument_name.empty()) {
|
||
throw std::runtime_error("Multiple string arguments found in python tool");
|
||
}
|
||
python_code_argument_name = it.key();
|
||
}
|
||
}
|
||
if (python_code_argument_name.empty()) {
|
||
throw std::runtime_error("No string argument found in python tool");
|
||
}
|
||
} else if (type != "string") {
|
||
throw std::runtime_error("Invalid type in python tool: " + type.dump());
|
||
}
|
||
}
|
||
tool_rules.push_back(builder.add_rule(name + "-call", "\"<function=" + name + ">\" " + builder.add_schema(name + "-args", parameters) + " \"</function>\" space"));
|
||
});
|
||
if (has_raw_python) {
|
||
tool_rules.push_back(builder.add_rule("python-call", "\"<|python_tag|>\" .*"));
|
||
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<|python_tag|>"});
|
||
data.preserved_tokens.push_back("<|python_tag|>");
|
||
}
|
||
auto tool_call = builder.add_rule("tool_call", string_join(tool_rules, " | ")) + " space";
|
||
builder.add_rule("root", inputs.parallel_tool_calls ? "(" + tool_call + ")+" : tool_call);
|
||
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<function="});
|
||
});
|
||
data.format = COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1;
|
||
} else {
|
||
data.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
|
||
}
|
||
|
||
data.prompt = apply(tmpl, inputs);
|
||
// TODO: if (has_raw_python)
|
||
return data;
|
||
}
|
||
|
||
static common_chat_params common_chat_params_init_hermes_2_pro(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||
common_chat_params data;
|
||
|
||
json extra_context = json {
|
||
{"enable_thinking", inputs.enable_thinking},
|
||
};
|
||
extra_context.update(inputs.extra_context);
|
||
|
||
data.prompt = apply(tmpl, inputs, /* messages_override =*/ std::nullopt, /* tools_override= */ std::nullopt, extra_context);
|
||
data.format = COMMON_CHAT_FORMAT_HERMES_2_PRO;
|
||
if (string_ends_with(data.prompt, "<think>\n")) {
|
||
if (!extra_context["enable_thinking"]) {
|
||
data.prompt += "</think>";
|
||
} else {
|
||
data.thinking_forced_open = true;
|
||
}
|
||
}
|
||
|
||
if (!inputs.tools.is_null()) {
|
||
// (content)?(<tool_call>{"name": "foo", "arguments": {"a": 1}}</tool_call>)*
|
||
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
|
||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||
std::vector<std::string> tool_rules;
|
||
std::vector<std::string> tool_call_alts;
|
||
std::vector<std::string> escaped_names;
|
||
foreach_function(inputs.tools, [&](const json & tool) {
|
||
const auto & function = tool.at("function");
|
||
std::string name = function.at("name");
|
||
auto parameters = function.at("parameters");
|
||
builder.resolve_refs(parameters);
|
||
tool_rules.push_back(builder.add_schema(name + "-call", {
|
||
{"type", "object"},
|
||
{"properties", json {
|
||
{"name", json {{"const", name}}},
|
||
{"arguments", parameters},
|
||
}},
|
||
{"required", json::array({"name", "arguments"})},
|
||
}));
|
||
tool_call_alts.push_back(builder.add_rule(
|
||
name + "-function-tag",
|
||
"\"<function\" ( \"=" + name + "\" | \" name=\\\"" + name + "\\\"\" ) \">\" space " +
|
||
builder.add_schema(name + "-args", parameters) + " "
|
||
"\"</function>\" space"));
|
||
|
||
data.grammar_triggers.push_back({
|
||
COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
|
||
"<function=" + name + ">",
|
||
});
|
||
auto escaped_name = regex_escape(name);
|
||
data.grammar_triggers.push_back({
|
||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
|
||
"<function\\s+name\\s*=\\s*\"" + escaped_name + "\"",
|
||
});
|
||
escaped_names.push_back(escaped_name);
|
||
});
|
||
auto any_tool_call = builder.add_rule("any_tool_call", "( " + string_join(tool_rules, " | ") + " ) space");
|
||
std::vector<std::string> alt_tags {
|
||
any_tool_call,
|
||
"\"<tool_call>\" space " + any_tool_call + " \"</tool_call>\"",
|
||
// The rest is just to accommodate common "good bad" outputs.
|
||
"\"<function_call>\" space " + any_tool_call + " \"</function_call>\"",
|
||
"\"<response>\" space " + any_tool_call + " \"</response>\"",
|
||
"\"<tools>\" space " + any_tool_call + " \"</tools>\"",
|
||
"\"<json>\" space " + any_tool_call + " \"</json>\"",
|
||
"\"<xml>\" space " + any_tool_call + " \"</xml>\"",
|
||
"\"<JSON>\" space " + any_tool_call + " \"</JSON>\"",
|
||
};
|
||
auto wrappable_tool_call = builder.add_rule("wrappable_tool_call", "( " + string_join(alt_tags, " | ") + " ) space");
|
||
tool_call_alts.push_back(wrappable_tool_call);
|
||
tool_call_alts.push_back(
|
||
"( \"```\\n\" | \"```json\\n\" | \"```xml\\n\" ) space " + wrappable_tool_call + " space \"```\" space ");
|
||
auto tool_call = builder.add_rule("tool_call", string_join(tool_call_alts, " | "));
|
||
builder.add_rule("root",
|
||
std::string(data.thinking_forced_open ? "( \"</think>\" space )? " : "") +
|
||
(inputs.parallel_tool_calls ? "(" + tool_call + ")+" : tool_call));
|
||
// Trigger on some common known "good bad" outputs (only from the start and with a json that's about a specific argument name to avoid false positives)
|
||
data.grammar_triggers.push_back({
|
||
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
|
||
// If thinking_forced_open, then we capture the </think> tag in the grammar,
|
||
// (important for required tool choice) and in the trigger's first capture (decides what is sent to the grammar)
|
||
std::string(data.thinking_forced_open ? "[\\s\\S]*?(</think>\\s*)" : "(?:<think>[\\s\\S]*?</think>\\s*)?") + (
|
||
"\\s*("
|
||
"(?:<tool_call>"
|
||
"|<function"
|
||
"|(?:```(?:json|xml)?\n\\s*)?(?:<function_call>|<tools>|<xml><json>|<response>)?"
|
||
"\\s*\\{\\s*\"name\"\\s*:\\s*\"(?:" + string_join(escaped_names, "|") + ")\""
|
||
")"
|
||
")[\\s\\S]*"
|
||
),
|
||
});
|
||
data.preserved_tokens = {
|
||
"<think>",
|
||
"</think>",
|
||
"<tool_call>",
|
||
"</tool_call>",
|
||
"<function",
|
||
"<tools>",
|
||
"</tools>",
|
||
"<response>",
|
||
"</response>",
|
||
"<function_call>",
|
||
"</function_call>",
|
||
"<json>",
|
||
"</json>",
|
||
"<JSON>",
|
||
"</JSON>",
|
||
"```",
|
||
"```json",
|
||
"```xml",
|
||
};
|
||
});
|
||
}
|
||
|
||
return data;
|
||
}
|
||
|
||
static common_chat_params common_chat_params_init_granite(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||
common_chat_params data;
|
||
|
||
// Pass thinking context for Granite template
|
||
json additional_context = {
|
||
{"thinking", inputs.enable_thinking},
|
||
};
|
||
|
||
data.prompt = apply(tmpl, inputs, /* messages_override= */ std::nullopt, /* tools_override= */ std::nullopt, additional_context);
|
||
data.format = COMMON_CHAT_FORMAT_GRANITE;
|
||
|
||
if (string_ends_with(data.prompt, "<think>\n") || string_ends_with(data.prompt, "<think>")) {
|
||
if (!inputs.enable_thinking) {
|
||
data.prompt += "</think>";
|
||
} else {
|
||
data.thinking_forced_open = true;
|
||
}
|
||
}
|
||
|
||
if (!inputs.tools.is_null()) {
|
||
// Granite uses <|tool_call|> followed by JSON list
|
||
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
|
||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||
std::vector<std::string> tool_rules;
|
||
foreach_function(inputs.tools, [&](const json & tool) {
|
||
const auto & function = tool.at("function");
|
||
std::string name = function.at("name");
|
||
auto parameters = function.at("parameters");
|
||
builder.resolve_refs(parameters);
|
||
tool_rules.push_back(builder.add_rule(name + "-call", builder.add_schema(name +
|
||
"-args", {
|
||
{"type", "object"},
|
||
{"properties", {
|
||
{"name", {{"const", name}}},
|
||
{"arguments", parameters},
|
||
}},
|
||
{"required", json::array({"name", "arguments"})},
|
||
})));
|
||
});
|
||
|
||
auto tool_call = builder.add_rule("tool_call", string_join(tool_rules, " | "));
|
||
auto tool_list = builder.add_rule("tool_list", "\"[\" space " + tool_call + " (\",\" space " + tool_call + ")* space \"]\"");
|
||
|
||
if (data.thinking_forced_open) {
|
||
builder.add_rule("root", "\"</think>\" space \"<response>\" space [^<]* \"</response>\" space \"<|tool_call|>\" space " + tool_list);
|
||
} else {
|
||
builder.add_rule("root", "\"<|tool_call|>\" space " + tool_list);
|
||
}
|
||
|
||
data.grammar_triggers.push_back({
|
||
COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
|
||
"<|tool_call|>"
|
||
});
|
||
|
||
data.preserved_tokens = {
|
||
"<think>",
|
||
"</think>",
|
||
"<response>",
|
||
"</response>",
|
||
"<|tool_call|>",
|
||
};
|
||
});
|
||
} else {
|
||
// Handle thinking tags for non-tool responses
|
||
if (data.thinking_forced_open && inputs.enable_thinking) {
|
||
data.grammar_lazy = false;
|
||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||
builder.add_rule("root", "\"</think>\" space \"<response>\" space .* \"</response>\" space");
|
||
});
|
||
data.preserved_tokens = {
|
||
"<think>",
|
||
"</think>",
|
||
"<response>",
|
||
"</response>",
|
||
};
|
||
}
|
||
}
|
||
|
||
return data;
|
||
}
|
||
|
||
static common_chat_params common_chat_params_init_without_tools(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||
common_chat_params data;
|
||
data.prompt = apply(tmpl, inputs);
|
||
data.format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
|
||
data.grammar_lazy = false;
|
||
if (!inputs.json_schema.is_null()) {
|
||
if (!inputs.grammar.empty()) {
|
||
throw std::runtime_error("Either \"json_schema\" or \"grammar\" can be specified, but not both");
|
||
}
|
||
data.grammar = json_schema_to_grammar(inputs.json_schema);
|
||
} else {
|
||
data.grammar = inputs.grammar;
|
||
}
|
||
return data;
|
||
}
|
||
|
||
static common_chat_params common_chat_params_init_seed_oss(
|
||
const common_chat_template & tmpl,
|
||
templates_params & params,
|
||
const common_chat_templates_inputs & inputs)
|
||
{
|
||
common_chat_params data;
|
||
data.prompt = apply(tmpl, params);
|
||
data.format = COMMON_CHAT_FORMAT_SEED_OSS;
|
||
if (string_ends_with(data.prompt, "<seed:think>")) {
|
||
if (!inputs.enable_thinking) {
|
||
data.prompt += "</seed:think>";
|
||
} else {
|
||
data.thinking_forced_open = true;
|
||
}
|
||
}
|
||
|
||
if (params.tools.is_array() && !params.tools.empty()) {
|
||
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
|
||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||
std::vector<std::string> tool_rules;
|
||
foreach_function(params.tools, [&](const json & tool) {
|
||
const auto & function = tool.at("function");
|
||
std::string name = function.at("name");
|
||
auto parameters = function.at("parameters");
|
||
builder.resolve_refs(parameters);
|
||
|
||
// Create rule for Seed-OSS function call format
|
||
std::string param_rules;
|
||
if (parameters.contains("properties")) {
|
||
for (const auto & [key, value] : parameters.at("properties").items()) {
|
||
param_rules += "\"<parameter=" + key + ">\"" + builder.add_schema(name + "-arg-" + key, value) +
|
||
"\"</parameter>\"";
|
||
}
|
||
}
|
||
|
||
tool_rules.push_back(builder.add_rule(name + "-call",
|
||
"\"<seed:tool_call>\" space \"<function=" + name + ">\" space " +
|
||
param_rules +
|
||
" \"</function>\" space \"</seed:tool_call>\""));
|
||
});
|
||
|
||
data.grammar_triggers.push_back({ COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<seed:tool_call>" });
|
||
|
||
data.preserved_tokens = {
|
||
"<seed:think>", "</seed:think>", "<seed:tool_call>", "</seed:tool_call>",
|
||
"<function=", "</function>", "<parameter=", "</parameter>",
|
||
};
|
||
|
||
builder.add_rule("root", string_join(tool_rules, " | "));
|
||
});
|
||
}
|
||
return data;
|
||
}
|
||
|
||
static common_chat_params common_chat_templates_apply_jinja(
|
||
const struct common_chat_templates * tmpls,
|
||
const struct common_chat_templates_inputs & inputs)
|
||
{
|
||
templates_params params;
|
||
params.tools = common_chat_tools_to_json_oaicompat<json>(inputs.tools);
|
||
const auto & tmpl = params.tools.is_array() && tmpls->template_tool_use
|
||
? *tmpls->template_tool_use
|
||
: *tmpls->template_default;
|
||
const auto & src = tmpl.source();
|
||
const auto & caps = tmpl.original_caps();
|
||
params.messages = common_chat_msgs_to_json_oaicompat<json>(inputs.messages, /* concat_text= */ !tmpl.original_caps().requires_typed_content);
|
||
params.add_generation_prompt = inputs.add_generation_prompt;
|
||
params.tool_choice = inputs.tool_choice;
|
||
params.reasoning_format = inputs.reasoning_format;
|
||
params.enable_thinking = inputs.enable_thinking;
|
||
params.grammar = inputs.grammar;
|
||
params.now = inputs.now;
|
||
params.add_bos = tmpls->add_bos;
|
||
params.add_eos = tmpls->add_eos;
|
||
|
||
params.extra_context = json::object();
|
||
for (auto el : inputs.chat_template_kwargs) {
|
||
params.extra_context[el.first] = json::parse(el.second);
|
||
}
|
||
|
||
if (!inputs.json_schema.empty()) {
|
||
params.json_schema = json::parse(inputs.json_schema);
|
||
}
|
||
|
||
if (inputs.parallel_tool_calls && !tmpl.original_caps().supports_parallel_tool_calls) {
|
||
LOG_DBG("Disabling parallel_tool_calls because the template does not support it\n");
|
||
params.parallel_tool_calls = false;
|
||
} else {
|
||
params.parallel_tool_calls = inputs.parallel_tool_calls;
|
||
}
|
||
|
||
if (params.tools.is_array()) {
|
||
if (params.tool_choice != COMMON_CHAT_TOOL_CHOICE_NONE && !params.grammar.empty()) {
|
||
throw std::runtime_error("Cannot specify grammar with tools");
|
||
}
|
||
if (caps.supports_tool_calls && !caps.supports_tools) {
|
||
LOG_WRN("Template supports tool calls but does not natively describe tools. The fallback behaviour used may produce bad results, inspect prompt w/ --verbose & consider overriding the template.\n");
|
||
}
|
||
}
|
||
|
||
// DeepSeek V3.1: detect based on specific patterns in the template
|
||
if (src.find("message['prefix'] is defined and message['prefix'] and thinking") != std::string::npos &&
|
||
params.json_schema.is_null()) {
|
||
return common_chat_params_init_deepseek_v3_1(tmpl, params);
|
||
}
|
||
|
||
// DeepSeek R1: use handler in all cases except json schema (thinking / tools).
|
||
if (src.find("<|tool▁calls▁begin|>") != std::string::npos && params.json_schema.is_null()) {
|
||
return common_chat_params_init_deepseek_r1(tmpl, params);
|
||
}
|
||
|
||
// Command R7B: : use handler in all cases except json schema (thinking / tools).
|
||
if (src.find("<|END_THINKING|><|START_ACTION|>") != std::string::npos && params.json_schema.is_null()) {
|
||
return common_chat_params_init_command_r7b(tmpl, params);
|
||
}
|
||
|
||
// Granite (IBM) - detects thinking / tools support
|
||
if (src.find("elif thinking") != std::string::npos && src.find("<|tool_call|>") != std::string::npos) {
|
||
return common_chat_params_init_granite(tmpl, params);
|
||
}
|
||
|
||
// GLM 4.5: detect by <arg_key> and <arg_value> tags (check before Hermes since both use <tool_call>)
|
||
if (src.find("[gMASK]<sop>") != std::string::npos &&
|
||
src.find("<arg_key>") != std::string::npos &&
|
||
src.find("<arg_value>") != std::string::npos &&
|
||
params.json_schema.is_null()) {
|
||
return common_chat_params_init_glm_4_5(tmpl, params);
|
||
}
|
||
|
||
// Qwen3-Coder XML format detection (must come before Hermes 2 Pro)
|
||
// Detect via explicit XML markers unique to Qwen3-Coder to avoid false positives in other templates.
|
||
// Require presence of <tool_call>, <function=...>, and <parameter=...> blocks.
|
||
if (src.find("<tool_call>") != std::string::npos &&
|
||
src.find("<function>") != std::string::npos &&
|
||
src.find("<function=") != std::string::npos &&
|
||
src.find("<parameters>") != std::string::npos &&
|
||
src.find("<parameter=") != std::string::npos) {
|
||
// Nemotron 3 Nano 30B A3B
|
||
if (src.find("<think>") != std::string::npos) {
|
||
return common_chat_params_init_nemotron_v3(tmpl, params);
|
||
}
|
||
return common_chat_params_init_qwen3_coder_xml(tmpl, params);
|
||
}
|
||
|
||
// Xiaomi MiMo format detection (must come before Hermes 2 Pro)
|
||
if (src.find("<tools>") != std::string::npos &&
|
||
src.find("# Tools") != std::string::npos &&
|
||
src.find("</tools>") != std::string::npos &&
|
||
src.find("<tool_calls>") != std::string::npos &&
|
||
src.find("</tool_calls>") != std::string::npos &&
|
||
src.find("<tool_response>") != std::string::npos) {
|
||
return common_chat_params_init_xiaomi_mimo(tmpl, params);
|
||
}
|
||
|
||
// Hermes 2/3 Pro, Qwen 2.5 Instruct (w/ tools)
|
||
if (src.find("<tool_call>") != std::string::npos && params.json_schema.is_null()) {
|
||
return common_chat_params_init_hermes_2_pro(tmpl, params);
|
||
}
|
||
|
||
// GPT-OSS
|
||
if (src.find("<|channel|>") != std::string::npos) {
|
||
return common_chat_params_init_gpt_oss(tmpl, params);
|
||
}
|
||
|
||
// Seed-OSS
|
||
if (src.find("<seed:think>") != std::string::npos) {
|
||
return common_chat_params_init_seed_oss(tmpl, params, inputs);
|
||
}
|
||
|
||
// Nemotron v2
|
||
if (src.find("<SPECIAL_10>") != std::string::npos) {
|
||
return common_chat_params_init_nemotron_v2(tmpl, params);
|
||
}
|
||
|
||
// Apertus format detection
|
||
if (src.find("<|system_start|>") != std::string::npos && src.find("<|tools_prefix|>") != std::string::npos) {
|
||
return common_chat_params_init_apertus(tmpl, params);
|
||
}
|
||
|
||
// LFM2 (w/ tools)
|
||
if (src.find("List of tools: <|tool_list_start|>[") != std::string::npos &&
|
||
src.find("]<|tool_list_end|>") != std::string::npos) {
|
||
return common_chat_params_init_lfm2(tmpl, params);
|
||
}
|
||
|
||
// MiniMax-M2 format detection
|
||
if (src.find("]~!b[") != std::string::npos && src.find("]~b]") != std::string::npos) {
|
||
return common_chat_params_init_minimax_m2(tmpl, params);
|
||
}
|
||
|
||
// Kimi K2 format detection
|
||
if (src.find("<|im_system|>tool_declare<|im_middle|>") != std::string::npos &&
|
||
src.find("<|tool_calls_section_begin|>") != std::string::npos &&
|
||
src.find("## Return of") != std::string::npos) {
|
||
return common_chat_params_init_kimi_k2(tmpl, params);
|
||
}
|
||
|
||
// Apriel 1.5 format detection
|
||
if (src.find("<thinking>") != std::string::npos &&
|
||
src.find("</thinking>") != std::string::npos &&
|
||
src.find("<available_tools>") != std::string::npos &&
|
||
src.find("<|assistant|>") != std::string::npos &&
|
||
src.find("<|tool_result|>") != std::string::npos &&
|
||
src.find("<tool_calls>[") != std::string::npos &&
|
||
src.find("]</tool_calls>") != std::string::npos) {
|
||
return common_chat_params_init_apriel_1_5(tmpl, params);
|
||
}
|
||
|
||
// Use generic handler when mixing tools + JSON schema.
|
||
// TODO: support that mix in handlers below.
|
||
if ((params.tools.is_array() && params.json_schema.is_object())) {
|
||
return common_chat_params_init_generic(tmpl, params);
|
||
}
|
||
|
||
// Functionary prepends "all\n" to plain content outputs, so we use its handler in all cases.
|
||
if (src.find(">>>all") != std::string::npos) {
|
||
return common_chat_params_init_functionary_v3_2(tmpl, params);
|
||
}
|
||
|
||
// Firefunction v2 requires datetime and functions in the context even w/o tools, so we also use its handler in all cases.
|
||
if (src.find(" functools[") != std::string::npos) {
|
||
return common_chat_params_init_firefunction_v2(tmpl, params);
|
||
}
|
||
|
||
// Functionary v3.1 (w/ tools)
|
||
if (src.find("<|start_header_id|>") != std::string::npos
|
||
&& src.find("<function=") != std::string::npos) {
|
||
return common_chat_params_init_functionary_v3_1_llama_3_1(tmpl, params);
|
||
}
|
||
|
||
// Llama 3.1, 3.2, 3.3 (also requires date_string so using it even w/o tools)
|
||
if (src.find("<|start_header_id|>ipython<|end_header_id|>") != std::string::npos) {
|
||
auto allow_python_tag_builtin_tools = src.find("<|python_tag|>") != std::string::npos;
|
||
return common_chat_params_init_llama_3_x(tmpl, params, allow_python_tag_builtin_tools);
|
||
}
|
||
|
||
// Ministral/Mistral Large 3
|
||
if (src.find("[SYSTEM_PROMPT]") != std::string::npos &&
|
||
src.find("[TOOL_CALLS]") != std::string::npos &&
|
||
src.find("[ARGS]") != std::string::npos) {
|
||
return common_chat_params_init_ministral_3(tmpl, params);
|
||
}
|
||
|
||
if (src.find("[THINK]") != std::string::npos && src.find("[/THINK]") != std::string::npos) {
|
||
return common_chat_params_init_magistral(tmpl, params);
|
||
}
|
||
|
||
// Plain handler (no tools)
|
||
if (params.tools.is_null() || inputs.tool_choice == COMMON_CHAT_TOOL_CHOICE_NONE) {
|
||
return common_chat_params_init_without_tools(tmpl, params);
|
||
}
|
||
|
||
// Mistral Nemo (w/ tools)
|
||
if (src.find("[TOOL_CALLS]") != std::string::npos) {
|
||
return common_chat_params_init_mistral_nemo(tmpl, params);
|
||
}
|
||
|
||
// Generic fallback
|
||
return common_chat_params_init_generic(tmpl, params);
|
||
}
|
||
|
||
// Legacy template route (adhoc C++ implementation of known templates), forward to llama_chat_apply_template.
|
||
static common_chat_params common_chat_templates_apply_legacy(
|
||
const struct common_chat_templates * tmpls,
|
||
const struct common_chat_templates_inputs & inputs)
|
||
{
|
||
size_t alloc_size = 0;
|
||
std::vector<llama_chat_message> chat;
|
||
std::vector<std::string> contents;
|
||
|
||
for (const auto & msg : inputs.messages) {
|
||
auto content = msg.content;
|
||
for (const auto & part : msg.content_parts) {
|
||
if (part.type != "text") {
|
||
LOG_WRN("Ignoring non-text content part: %s\n", part.type.c_str());
|
||
continue;
|
||
}
|
||
if (!content.empty()) {
|
||
content += "\n";;
|
||
}
|
||
content += part.text;
|
||
}
|
||
contents.emplace_back(std::move(content));
|
||
}
|
||
for (size_t i = 0; i < contents.size(); ++i) {
|
||
const auto & msg = inputs.messages[i];
|
||
const auto & content = contents[i];
|
||
chat.push_back({msg.role.c_str(), content.c_str()});
|
||
size_t msg_size = msg.role.size() + content.size();
|
||
alloc_size += msg_size + (msg_size / 4); // == msg_size * 1.25 but avoiding float ops
|
||
}
|
||
|
||
std::vector<char> buf(alloc_size);
|
||
|
||
// run the first time to get the total output length
|
||
const auto & src = tmpls->template_default->source();
|
||
int32_t res = llama_chat_apply_template(src.c_str(), chat.data(), chat.size(), inputs.add_generation_prompt, buf.data(), buf.size());
|
||
|
||
// error: chat template is not supported
|
||
if (res < 0) {
|
||
// if the custom "tmpl" is not supported, we throw an error
|
||
// this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template()
|
||
throw std::runtime_error("this custom template is not supported, try using --jinja");
|
||
}
|
||
|
||
// if it turns out that our buffer is too small, we resize it
|
||
if ((size_t) res > buf.size()) {
|
||
buf.resize(res);
|
||
res = llama_chat_apply_template(src.c_str(), chat.data(), chat.size(), inputs.add_generation_prompt, buf.data(), buf.size());
|
||
}
|
||
|
||
// for safety, we check the result again
|
||
if (res < 0 || (size_t) res > buf.size()) {
|
||
throw std::runtime_error("failed to apply chat template, try using --jinja");
|
||
}
|
||
|
||
common_chat_params params;
|
||
params.prompt = std::string(buf.data(), res);
|
||
if (!inputs.json_schema.empty()) {
|
||
params.grammar = json_schema_to_grammar(json::parse(inputs.json_schema));
|
||
} else {
|
||
params.grammar = inputs.grammar;
|
||
}
|
||
return params;
|
||
}
|
||
|
||
common_chat_params common_chat_templates_apply(
|
||
const struct common_chat_templates * tmpls,
|
||
const struct common_chat_templates_inputs & inputs)
|
||
{
|
||
GGML_ASSERT(tmpls != nullptr);
|
||
return inputs.use_jinja
|
||
? common_chat_templates_apply_jinja(tmpls, inputs)
|
||
: common_chat_templates_apply_legacy(tmpls, inputs);
|
||
}
|