llama.cpp/ggml/src/ggml-vulkan/vulkan-shaders/rms_norm.comp

151 lines
4.8 KiB
Plaintext

#version 450
#include "generic_binary_head.glsl"
#include "types.glsl"
#if RMS_NORM_ROPE_FUSION
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
// data is passed from rms_norm -> rope through shared memory.
// rms_norm calls this data_d, rope calls this rope_data_a.
// Binding 2 is not used
shared FLOAT_TYPE rope_data_a[1024];
#define data_d rope_data_a
layout (binding = 3) readonly buffer R_Y {int rope_data_pos[];};
layout (binding = 4) readonly buffer R_Z {float rope_data_ff[];};
layout (binding = 5) writeonly buffer R_D {ROPE_D_TYPE rope_data_d[];};
layout (binding = 6) readonly buffer R_I {uvec2 rope_data_i[];}; // indices for set_rows
#include "rope_params.glsl"
#include "rope_funcs.glsl"
#define GGML_ROPE_TYPE_NORMAL 0
#define GGML_ROPE_TYPE_NEOX 2
#define GGML_ROPE_TYPE_MROPE 8
#define GGML_ROPE_TYPE_VISION 24
#endif
#extension GL_EXT_control_flow_attributes : enable
#define BLOCK_SIZE 512
layout (constant_id = 1) const bool do_multiply = false;
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
shared FLOAT_TYPE sumsh[BLOCK_SIZE];
void rms_norm(uint num_iters) {
const uint ncols = p.ne00;
const uint nrows = gl_NumWorkGroups.x;
const uint nchannels = gl_NumWorkGroups.y;
const uint row = gl_WorkGroupID.x;
const uint channel = gl_WorkGroupID.y;
const uint samp = gl_WorkGroupID.z;
const uint tid = gl_LocalInvocationID.x;
const uint stride_row = p.nb01;
const uint stride_channel = p.nb02;
const uint stride_sample = p.nb03;
uint32_t a_offset = samp*stride_sample + channel*stride_channel + row*stride_row + get_aoffset();
uint32_t b_offset = src1_idx(0, row, channel, samp) + get_boffset();
#if RMS_NORM_ROPE_FUSION
// Per-row offset in shared memory
uint32_t d_offset = 0;
#else
uint32_t d_offset = ((samp*nchannels + channel)*nrows + row)*ncols + get_doffset();
#endif
FLOAT_TYPE sum = FLOAT_TYPE(0.0f); // partial sum for thread in warp
[[unroll]] for (uint col = tid, idx = 0; idx < num_iters; col += BLOCK_SIZE, ++idx) {
FLOAT_TYPE xi = FLOAT_TYPE(0);
if (col < ncols) {
xi = FLOAT_TYPE(data_a[a_offset + col]);
}
sum += xi * xi;
}
sumsh[tid] = sum;
// sum up partial sums and write back result
barrier();
[[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
if (tid < s) {
sum += sumsh[tid + s];
sumsh[tid] = sum;
}
barrier();
}
sum = sumsh[0];
const FLOAT_TYPE mean = sum / FLOAT_TYPE(ncols);
const FLOAT_TYPE scale = inversesqrt(mean + FLOAT_TYPE(p.param1));
if (do_multiply) {
if (ncols > p.ne10) {
[[unroll]] for (uint col = tid, idx = 0; idx < num_iters; col += BLOCK_SIZE, ++idx) {
if (col >= ncols) {
continue;
}
data_d[d_offset + col] = D_TYPE(scale * FLOAT_TYPE(data_a[a_offset + col]) * FLOAT_TYPE(data_b[b_offset + fastmod(col, p.ne10)]));
}
} else {
[[unroll]] for (uint col = tid, idx = 0; idx < num_iters; col += BLOCK_SIZE, ++idx) {
if (col >= ncols) {
continue;
}
data_d[d_offset + col] = D_TYPE(scale * FLOAT_TYPE(data_a[a_offset + col]) * FLOAT_TYPE(data_b[b_offset + col]));
}
}
} else {
[[unroll]] for (uint col = tid, idx = 0; idx < num_iters; col += BLOCK_SIZE, ++idx) {
if (col >= ncols) {
continue;
}
data_d[d_offset + col] = D_TYPE(scale * FLOAT_TYPE(data_a[a_offset + col]));
}
}
#if RMS_NORM_ROPE_FUSION
barrier();
rope_params rp = p.rope;
for (uint t = 2*tid; t < ncols; t += 2*BLOCK_SIZE) {
if (rp.rope_mode == GGML_ROPE_TYPE_NEOX) {
rope_neox(t, row, channel, samp, rp);
} else if (rp.rope_mode == GGML_ROPE_TYPE_NORMAL) {
rope_norm(t, row, channel, samp, rp);
}
}
#endif
}
void main() {
// instantiate the rms_norm function for several different
// dimensions, to allow loop unrolling
uint num_blocks = (p.ne00 + BLOCK_SIZE - 1) / BLOCK_SIZE;
if (num_blocks > 32) {
rms_norm(num_blocks);
} else if (num_blocks > 16) {
rms_norm(32);
} else if (num_blocks > 12) {
rms_norm(16);
} else if (num_blocks > 10) {
rms_norm(12);
} else if (num_blocks > 8) {
rms_norm(10);
} else if (num_blocks > 4) {
rms_norm(8);
} else if (num_blocks == 4) {
rms_norm(4);
} else if (num_blocks == 3) {
rms_norm(3);
} else if (num_blocks == 2) {
rms_norm(2);
} else if (num_blocks == 1) {
rms_norm(1);
}
}