llama.cpp/ggml/src/ggml-cuda/conv2d-implicit.cu

940 lines
37 KiB
Plaintext

// #include <cuda_runtime.h>
#include "ggml.h"
#include "common.cuh"
#include "convert.cuh"
#include "conv2d-implicit.cuh"
typedef unsigned int uint;
constexpr uint WARPSIZE = 32;
#define CUDA_NCHW_2_NHWC_TILE_DIM 32
#define CUDA_NCHW_2_NHWC_BLOCK_NM 8
#define CUDA_NCHW_2_NHWC_BLOCK_ROWS 8
//currently not use; in future for split-k kernels
template <typename src_T, typename dst_T>
static __global__ void reduce_f32(const src_T * __restrict__ x, dst_T * __restrict__ dst, const int ncols, const int nrows) {
const int row = blockIdx.x;
const int col = threadIdx.x;
float sum = 0.0f;
if (row * blockDim.x + col < ncols) {
for (int i = 0; i < nrows; ++i){
sum += ggml_cuda_cast<float>(x[i * ncols + row * blockDim.x + col]);
}
dst[row * blockDim.x + col] = ggml_cuda_cast<dst_T>(sum);
}
}
template <typename src_T, typename dst_T>
static __global__ void NCHW2NHWC(const src_T *src, dst_T * dst, const int ne, const int ne00, const int ne01){
const int64_t nmat = ne / (ne00 * ne01);
const int64_t n = ne00 * ne01;
int x = blockIdx.x * CUDA_NCHW_2_NHWC_TILE_DIM + threadIdx.x;
int y = blockIdx.y * CUDA_NCHW_2_NHWC_TILE_DIM + threadIdx.y;
int tx = blockIdx.y * CUDA_NCHW_2_NHWC_TILE_DIM + threadIdx.x; // transpose block offset
int ty = blockIdx.x * CUDA_NCHW_2_NHWC_TILE_DIM + threadIdx.y;
__shared__ src_T tile[CUDA_NCHW_2_NHWC_TILE_DIM][CUDA_NCHW_2_NHWC_TILE_DIM];
for(int i = 0; i < CUDA_NCHW_2_NHWC_BLOCK_NM; ++i){
const unsigned int imat = blockIdx.z * CUDA_NCHW_2_NHWC_BLOCK_NM + i;
if(imat >= nmat)
break;
for (int j = 0; j < CUDA_NCHW_2_NHWC_TILE_DIM; j += CUDA_NCHW_2_NHWC_BLOCK_ROWS){
if(x < ne01 && y + j < ne00){
const int row = threadIdx.y+j;
const int col = threadIdx.x ^ row;
tile[row][col] = src[imat*n + (y+j)*ne01 + x];
}
}
__syncthreads();
for (int j = 0; j < CUDA_NCHW_2_NHWC_TILE_DIM; j += CUDA_NCHW_2_NHWC_BLOCK_ROWS){
if(ty + j < ne01 && tx < ne00){
const int col = (threadIdx.y+j) ^ threadIdx.x;
dst[imat*n + (ty+j)*ne00 + tx] = ggml_cuda_cast<dst_T>(tile[threadIdx.x][col]);
}
}
}
}
template<typename T, const int BM, const int BN, const int BK, const int WM, const int WN,
const int WNITER, const int TM, const int TN, const int NUM_THREADS,
// layout: 0, NHWC; 1, NCHW
const int layout, const bool vec_load, const int ksplit, const int PAD=4>
static __global__ void conv2d_implicit_kernel(const float * __restrict__ input,
const T * __restrict__ kernel,
float * __restrict__ output,
const param_t param) {
__shared__ char smem[sizeof(float) * (TM*TN*NUM_THREADS) <= sizeof(float) * 2 * (BM+PAD) * BK + sizeof(T)*2*BK * (BN+PAD) ?
sizeof(float)*2*(BM+PAD)*BK + sizeof(T)*2*BK*(BN+PAD) : sizeof(float) * (TM*TN*NUM_THREADS)];
T *smemweight = reinterpret_cast<T *>(smem);
float *smeminput = reinterpret_cast<float *>(smem + 2 * BK * (BN+PAD) * sizeof(T));
const uint tx = threadIdx.x;
const uint bx = blockIdx.x;
const uint by = blockIdx.y;
const uint PQ = param.Oh * param.Ow;
const uint CHW = param.c * param.h * param.w;
// Warp tile
const uint lane_id = tx % WARPSIZE;
const uint warp_id = tx / WARPSIZE;
const int mma_tid_x = warp_id / (BN / WN);
const int mma_tid_y = warp_id % (BN / WN);
// size of the warp subtile
constexpr uint WMITER = (WM * WN) / (WARPSIZE * TM * TN * WNITER);
constexpr uint WSUBM = WM / WMITER; // 64/2=32
constexpr uint WSUBN = WN / WNITER; // 32/2=16
// Placement of the thread in the warp subtile
const uint threadColInWarp = lane_id % (WSUBN / TN); // i%(16/4)
const uint threadRowInWarp = lane_id / (WSUBN / TN); // i/4
int z = blockIdx.z;
int inChannelOffset = layout == 0 ? param.c * param.w : param.h * param.w;
int weightKOffset = param.c * param.r * param.s;
const uint ks = (ksplit > 0) ? (weightKOffset + ksplit - 1) / ksplit : weightKOffset;
const uint start_k = (ksplit > 0)? z * ks: 0;
const uint end_k = min(start_k + ks, weightKOffset);
int write_flag = 1;
T weight_frag[2][WNITER * TN];
float input_frag[2][WMITER * TM] = {0.f};
float output_frag[WMITER * TM * WNITER * TN] = {0.f};
// calculating the indices that this thread will load into SMEM
// we'll load 128bit / 32bit = 4 elements per thread at each step
const uint innerRowA = tx / (BK / 4);
const uint innerColA = tx % (BK / 4);
constexpr uint rowStrideA = (NUM_THREADS * 4) / BK;
// ldg
loadFilter<T, BN, rowStrideA, layout, vec_load, ksplit, PAD>
(kernel, smemweight, by, innerRowA, innerColA, weightKOffset,
start_k, end_k, param);
loadInput<BM, rowStrideA, layout, vec_load, ksplit, PAD>
(input, smeminput, bx, innerRowA, innerColA,
start_k, end_k, PQ, CHW, inChannelOffset, param);
__syncthreads();
// lds
const uint input_lds_addr = mma_tid_x * WM;
#pragma unroll
for (uint wSubRowIdx = 0; wSubRowIdx < WMITER; ++wSubRowIdx)
#pragma unroll
for (uint i = 0; i < TM; ++i)
input_frag[0][wSubRowIdx * TM + i] = smeminput[input_lds_addr + wSubRowIdx * WSUBM +
threadRowInWarp * TM + i];
const uint weight_lds_addr = mma_tid_y * WN;
#pragma unroll
for (uint wSubColIdx = 0; wSubColIdx < WNITER; ++wSubColIdx)
#pragma unroll
for (uint i = 0; i < TN; ++i)
weight_frag[0][wSubColIdx * TN + i] = smemweight[weight_lds_addr + wSubColIdx * WSUBN +
threadColInWarp * TN + i];
for (int crs = start_k; crs < end_k; crs += BK) {
int load_flag = write_flag ^ 1;
#pragma unroll
for (int subcrs = 0; subcrs < BK - 1; ++subcrs)
{
#pragma unroll
for (uint wSubColIdx = 0; wSubColIdx < WNITER; ++wSubColIdx)
#pragma unroll
for (uint i = 0; i < TN; ++i)
weight_frag[(subcrs + 1) % 2][wSubColIdx * TN + i] = smemweight[load_flag * (BN+PAD) * BK +
(subcrs + 1) * (BN+PAD) + weight_lds_addr + wSubColIdx * WSUBN + threadColInWarp * TN + i];
#pragma unroll
for (uint wSubRowIdx = 0; wSubRowIdx < WMITER; ++wSubRowIdx)
#pragma unroll
for (uint i = 0; i < TM; ++i)
input_frag[(subcrs + 1) % 2][wSubRowIdx * TM + i] = smeminput[load_flag * (BM+PAD) * BK +
(subcrs + 1) * (BM+PAD) + input_lds_addr + wSubRowIdx * WSUBM + threadRowInWarp * TM + i];
// execute warptile matmul
#pragma unroll
for (uint wSubRowIdx = 0; wSubRowIdx < WMITER; ++wSubRowIdx) {
#pragma unroll
for (uint wSubColIdx = 0; wSubColIdx < WNITER; ++wSubColIdx) {
// calculate per-thread results
#pragma unroll
for (uint resIdxM = 0; resIdxM < TM; ++resIdxM) {
#pragma unroll
for (uint resIdxN = 0; resIdxN < TN; ++resIdxN) {
output_frag[(wSubRowIdx * TM + resIdxM) * (WNITER * TN) +
(wSubColIdx * TN) + resIdxN] +=
input_frag[subcrs % 2][wSubRowIdx * TM + resIdxM] *
ggml_cuda_cast<float>(weight_frag[subcrs % 2][wSubColIdx * TN + resIdxN]);
}
}
}
}
}
// ldg
loadFilter<T, BN, rowStrideA, layout, vec_load, ksplit, PAD>
(kernel, &smemweight[write_flag * (BN+PAD) * BK], by, innerRowA, innerColA, weightKOffset,
crs+BK, end_k, param);
loadInput<BM, rowStrideA, layout, vec_load, ksplit, PAD>
(input, &smeminput[write_flag * (BM+PAD) * BK], bx, innerRowA, innerColA,
crs + BK, end_k, PQ, CHW, inChannelOffset, param);
__syncthreads();
write_flag ^= 1;
#pragma unroll
for (uint wSubRowIdx = 0; wSubRowIdx < WMITER; ++wSubRowIdx)
#pragma unroll
for (uint i = 0; i < TM; ++i)
input_frag[0][wSubRowIdx * TM + i] = smeminput[(load_flag ^ 1) * (BM+PAD) * BK +
input_lds_addr + wSubRowIdx * WSUBM + threadRowInWarp * TM + i];
#pragma unroll
for (uint wSubColIdx = 0; wSubColIdx < WNITER; ++wSubColIdx)
#pragma unroll
for (uint i = 0; i < TN; ++i)
weight_frag[0][wSubColIdx * TN + i] = smemweight[(load_flag ^ 1) * (BN+PAD) * BK +
weight_lds_addr + wSubColIdx * WSUBN + threadColInWarp * TN + i];
#pragma unroll
for (uint wSubRowIdx = 0; wSubRowIdx < WMITER; ++wSubRowIdx) {
#pragma unroll
for (uint wSubColIdx = 0; wSubColIdx < WNITER; ++wSubColIdx) {
// calculate per-thread results
#pragma unroll
for (uint resIdxM = 0; resIdxM < TM; ++resIdxM) {
#pragma unroll
for (uint resIdxN = 0; resIdxN < TN; ++resIdxN) {
output_frag[(wSubRowIdx * TM + resIdxM) * (WNITER * TN) +
(wSubColIdx * TN) + resIdxN] +=
input_frag[1][wSubRowIdx * TM + resIdxM] *
ggml_cuda_cast<float>(weight_frag[1][wSubColIdx * TN + resIdxN]);
}
}
}
}
}
// reuse smem
float *smemoutput = reinterpret_cast<float *>(smem);
const uint output_lds_addr = warp_id * WSUBM * WSUBN + lane_id;
const uint output_sts_addr = mma_tid_x * BN / WN * TM * TN * WARPSIZE + mma_tid_y * TM * TN * WARPSIZE +
threadColInWarp * TN * WSUBM + threadRowInWarp * TM;
const uint m_idx = by * BN + mma_tid_y * WN;
const uint n_idx = bx * BM + mma_tid_x * WM;
#pragma unroll
for (int i = 0; i < WMITER; ++i)
{
#pragma unroll
for (int j = 0; j < WNITER; ++j)
{
__syncthreads();
#pragma unroll
for (int subi = 0; subi < TM; ++subi)
{
#pragma unroll
for (int subj = 0; subj < TN; ++subj)
{
// output sts
smemoutput[output_sts_addr + subj * WSUBM + subi] =
output_frag[(i * TM + subi) * (WNITER * TN) + j * TN + subj];
}
}
__syncthreads();
#pragma unroll
for (int subk = 0; subk < TM * TN; ++subk){
const uint row = m_idx + j * WSUBN + (lane_id + subk * WARPSIZE) / WSUBM;
const uint gemm_i = n_idx + i * WSUBM + (lane_id + subk * WARPSIZE) % WSUBM;
const int n = (ksplit > 0) ? gemm_i / PQ : z;
const int col = (ksplit > 0) ? gemm_i % PQ : gemm_i;
if (n < param.n && row < param.k && col < param.Oh * param.Ow){
const uint outOffset = ksplit > 0 ?
z * param.n * param.k * param.Oh * param.Ow + n * param.k * param.Oh * param.Ow +
row * param.Oh * param.Ow + col :
z * param.k * param.Oh * param.Ow + row * param.Oh * param.Ow + col;
output[outOffset] = smemoutput[output_lds_addr + subk * WARPSIZE];
}
}
}
}
}
template <unsigned int mma_tiles_per_warp_m, unsigned int mma_tiles_per_warp_k, unsigned int smem_stride>
__device__ __forceinline__ void ldmatrix_a(
const half* src,
half (&reg)[mma_tiles_per_warp_m][mma_tiles_per_warp_k][4]
){
#if __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
static_assert(mma_tiles_per_warp_m == 8, "mma_tiles_per_warp_m must be 4");
static_assert(mma_tiles_per_warp_k == 4, "mma_tiles_per_warp_k must be 4");
uint32_t (&reg_) [mma_tiles_per_warp_m][mma_tiles_per_warp_k][2] = reinterpret_cast<uint32_t(&)[mma_tiles_per_warp_m][mma_tiles_per_warp_k][2]>(reg);
unsigned int logical_offset = (threadIdx.x % 32) * smem_stride;
unsigned int swizzled_offset = logical_offset ^ ((logical_offset & 0b10000000) >> 4);
swizzled_offset = swizzled_offset ^ ((swizzled_offset & 0b1100000) >> 2);
uint32_t src_addr = cvta_to_shared_u32(src + swizzled_offset);
constexpr unsigned int smem_stride_ = smem_stride * sizeof(half); // convert stride to bytes
// 0
asm volatile (
"ldmatrix.sync.aligned.m8n8.x4.shared.b16 "
"{%0, %1, %2, %3}, [%4];"
: "=r"(reg_[0][0][0]), "=r"(reg_[0][0][1]), "=r"(reg_[1][0][0]), "=r"(reg_[1][0][1])
: "r"(src_addr)
);
// 0
asm volatile (
"ldmatrix.sync.aligned.m8n8.x4.shared.b16 "
"{%0, %1, %2, %3}, [%4];"
: "=r"(reg_[2][0][0]), "=r"(reg_[2][0][1]), "=r"(reg_[3][0][0]), "=r"(reg_[3][0][1])
: "r"(src_addr + 32 * smem_stride_)
);
// 0
asm volatile (
"ldmatrix.sync.aligned.m8n8.x4.shared.b16 "
"{%0, %1, %2, %3}, [%4];"
: "=r"(reg_[4][0][0]), "=r"(reg_[4][0][1]), "=r"(reg_[5][0][0]), "=r"(reg_[5][0][1])
: "r"(src_addr + 64 * smem_stride_)
);
// 0
asm volatile (
"ldmatrix.sync.aligned.m8n8.x4.shared.b16 "
"{%0, %1, %2, %3}, [%4];"
: "=r"(reg_[6][0][0]), "=r"(reg_[6][0][1]), "=r"(reg_[7][0][0]), "=r"(reg_[7][0][1])
: "r"(src_addr + 96 * smem_stride_)
);
src_addr ^= 0b10000;
// 1
asm volatile (
"ldmatrix.sync.aligned.m8n8.x4.shared.b16 "
"{%0, %1, %2, %3}, [%4];"
: "=r"(reg_[0][1][0]), "=r"(reg_[0][1][1]), "=r"(reg_[1][1][0]), "=r"(reg_[1][1][1])
: "r"(src_addr)
);
// 1
asm volatile (
"ldmatrix.sync.aligned.m8n8.x4.shared.b16 "
"{%0, %1, %2, %3}, [%4];"
: "=r"(reg_[2][1][0]), "=r"(reg_[2][1][1]), "=r"(reg_[3][1][0]), "=r"(reg_[3][1][1])
: "r"(src_addr + 32 * smem_stride_)
);
// 1
asm volatile (
"ldmatrix.sync.aligned.m8n8.x4.shared.b16 "
"{%0, %1, %2, %3}, [%4];"
: "=r"(reg_[4][1][0]), "=r"(reg_[4][1][1]), "=r"(reg_[5][1][0]), "=r"(reg_[5][1][1])
: "r"(src_addr + 64 * smem_stride_)
);
// 1
asm volatile (
"ldmatrix.sync.aligned.m8n8.x4.shared.b16 "
"{%0, %1, %2, %3}, [%4];"
: "=r"(reg_[6][1][0]), "=r"(reg_[6][1][1]), "=r"(reg_[7][1][0]), "=r"(reg_[7][1][1])
: "r"(src_addr + 96 * smem_stride_)
);
src_addr ^= 0b110000;
// 2
asm volatile (
"ldmatrix.sync.aligned.m8n8.x4.shared.b16 "
"{%0, %1, %2, %3}, [%4];"
: "=r"(reg_[0][2][0]), "=r"(reg_[0][2][1]), "=r"(reg_[1][2][0]), "=r"(reg_[1][2][1])
: "r"(src_addr)
);
// 2
asm volatile (
"ldmatrix.sync.aligned.m8n8.x4.shared.b16 "
"{%0, %1, %2, %3}, [%4];"
: "=r"(reg_[2][2][0]), "=r"(reg_[2][2][1]), "=r"(reg_[3][2][0]), "=r"(reg_[3][2][1])
: "r"(src_addr + 32 * smem_stride_)
);
// 2
asm volatile (
"ldmatrix.sync.aligned.m8n8.x4.shared.b16 "
"{%0, %1, %2, %3}, [%4];"
: "=r"(reg_[4][2][0]), "=r"(reg_[4][2][1]), "=r"(reg_[5][2][0]), "=r"(reg_[5][2][1])
: "r"(src_addr + 64 * smem_stride_)
);
// 2
asm volatile (
"ldmatrix.sync.aligned.m8n8.x4.shared.b16 "
"{%0, %1, %2, %3}, [%4];"
: "=r"(reg_[6][2][0]), "=r"(reg_[6][2][1]), "=r"(reg_[7][2][0]), "=r"(reg_[7][2][1])
: "r"(src_addr + 96 * smem_stride_)
);
src_addr ^= 0b10000;
// 3
asm volatile (
"ldmatrix.sync.aligned.m8n8.x4.shared.b16 "
"{%0, %1, %2, %3}, [%4];"
: "=r"(reg_[0][3][0]), "=r"(reg_[0][3][1]), "=r"(reg_[1][3][0]), "=r"(reg_[1][3][1])
: "r"(src_addr)
);
// 3
asm volatile (
"ldmatrix.sync.aligned.m8n8.x4.shared.b16 "
"{%0, %1, %2, %3}, [%4];"
: "=r"(reg_[2][3][0]), "=r"(reg_[2][3][1]), "=r"(reg_[3][3][0]), "=r"(reg_[3][3][1])
: "r"(src_addr + 32 * smem_stride_)
);
// 3
asm volatile (
"ldmatrix.sync.aligned.m8n8.x4.shared.b16 "
"{%0, %1, %2, %3}, [%4];"
: "=r"(reg_[4][3][0]), "=r"(reg_[4][3][1]), "=r"(reg_[5][3][0]), "=r"(reg_[5][3][1])
: "r"(src_addr + 64 * smem_stride_)
);
// 3
asm volatile (
"ldmatrix.sync.aligned.m8n8.x4.shared.b16 "
"{%0, %1, %2, %3}, [%4];"
: "=r"(reg_[6][3][0]), "=r"(reg_[6][3][1]), "=r"(reg_[7][3][0]), "=r"(reg_[7][3][1])
: "r"(src_addr + 96 * smem_stride_)
);
#else
GGML_UNUSED(src);
GGML_UNUSED(reg);
NO_DEVICE_CODE;
#endif
}
template <unsigned int mma_tiles_per_warp_k, unsigned int mma_tiles_per_warp_n, unsigned int smem_stride>
__device__ __forceinline__ void ldmatrix_b(
const half* src,
half (&reg)[mma_tiles_per_warp_k][mma_tiles_per_warp_n][2]
){
#if __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
static_assert(mma_tiles_per_warp_k == 4, "mma_tiles_per_warp_k must be 4");
static_assert(mma_tiles_per_warp_n == 8, "mma_tiles_per_warp_n must be 8");
uint32_t (&reg_) [4][8] = reinterpret_cast<uint32_t(&)[4][8]>(reg);
unsigned int logical_offset = (threadIdx.x % 32) * smem_stride;
unsigned int swizzled_offset = logical_offset ^ ((logical_offset & 0b10000000) >> 4);
swizzled_offset = swizzled_offset ^ ((swizzled_offset & 0b1100000) >> 2);
uint32_t src_addr = cvta_to_shared_u32(src + swizzled_offset);
constexpr unsigned int smem_stride_ = smem_stride * sizeof(half); // convert stride to bytes
// 0
asm volatile (
"ldmatrix.sync.aligned.m8n8.x4.shared.b16 "
"{%0, %1, %2, %3}, [%4];"
: "=r"(reg_[0][0]), "=r"(reg_[0][1]), "=r"(reg_[0][2]), "=r"(reg_[0][3])
: "r"(src_addr)
);
asm volatile (
"ldmatrix.sync.aligned.m8n8.x4.shared.b16 "
"{%0, %1, %2, %3}, [%4];"
: "=r"(reg_[0][4]), "=r"(reg_[0][5]), "=r"(reg_[0][6]), "=r"(reg_[0][7])
: "r"(src_addr + 32 * smem_stride_)
);
src_addr ^= 0b10000;
asm volatile (
"ldmatrix.sync.aligned.m8n8.x4.shared.b16 "
"{%0, %1, %2, %3}, [%4];"
: "=r"(reg_[1][0]), "=r"(reg_[1][1]), "=r"(reg_[1][2]), "=r"(reg_[1][3])
: "r"(src_addr)
);
asm volatile (
"ldmatrix.sync.aligned.m8n8.x4.shared.b16 "
"{%0, %1, %2, %3}, [%4];"
: "=r"(reg_[1][4]), "=r"(reg_[1][5]), "=r"(reg_[1][6]), "=r"(reg_[1][7])
: "r"(src_addr + 32 * smem_stride_)
);
src_addr ^= 0b110000;
asm volatile (
"ldmatrix.sync.aligned.m8n8.x4.shared.b16 "
"{%0, %1, %2, %3}, [%4];"
: "=r"(reg_[2][0]), "=r"(reg_[2][1]), "=r"(reg_[2][2]), "=r"(reg_[2][3])
: "r"(src_addr)
);
asm volatile (
"ldmatrix.sync.aligned.m8n8.x4.shared.b16 "
"{%0, %1, %2, %3}, [%4];"
: "=r"(reg_[2][4]), "=r"(reg_[2][5]), "=r"(reg_[2][6]), "=r"(reg_[2][7])
: "r"(src_addr + 32 * smem_stride_)
);
src_addr ^= 0b10000;
asm volatile (
"ldmatrix.sync.aligned.m8n8.x4.shared.b16 "
"{%0, %1, %2, %3}, [%4];"
: "=r"(reg_[3][0]), "=r"(reg_[3][1]), "=r"(reg_[3][2]), "=r"(reg_[3][3])
: "r"(src_addr)
);
asm volatile (
"ldmatrix.sync.aligned.m8n8.x4.shared.b16 "
"{%0, %1, %2, %3}, [%4];"
: "=r"(reg_[3][4]), "=r"(reg_[3][5]), "=r"(reg_[3][6]), "=r"(reg_[3][7])
: "r"(src_addr + 32 * smem_stride_)
);
#else
GGML_UNUSED(src);
GGML_UNUSED(reg);
NO_DEVICE_CODE;
#endif
}
template<const int BM, const int BN, const int BK, const int WM, const int WN,
const int WK, const int ksplit, const int NUM_THREADS>
static __global__ void conv2d_implicit_kernel(const half * __restrict__ input,
const half * __restrict__ kernel,
half * __restrict__ output,
const param_t param) {
#if __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
constexpr unsigned int MMA_M = 16;
constexpr unsigned int MMA_N = 8;
const unsigned int K = param.c * param.r * param.s;
const uint inChannelOffset = param.c * param.w;
const uint weightKOffset = K;
const unsigned int PQ = param.Ow * param.Oh;
const unsigned int KPQ = param.k * PQ;
const unsigned int NKPQ = param.n * KPQ;
// loop bounds, constexpr where possible allows for loop unrolling
constexpr unsigned int mma_tiles_per_warp_k = 4;
constexpr unsigned int mma_tiles_per_warp_m = WM / MMA_M;
constexpr unsigned int mma_tiles_per_warp_n = WN / MMA_N;
const unsigned int z = blockIdx.z;
const unsigned int ks = (ksplit > 0) ? (weightKOffset + ksplit - 1) / ksplit : weightKOffset;
const unsigned int start_k = (ksplit > 0) ? z * ks : 0;
const unsigned int end_k = min(start_k + ks, weightKOffset);
const unsigned int num_block_tiles_k = (ks + (BK-1)) / BK;
// calculate block/warp indices
const unsigned int block_m = blockIdx.y;
const unsigned int block_n = blockIdx.x;
const unsigned int warp_m = threadIdx.y;
const unsigned int warp_n = threadIdx.x / 32;
// double buffering
extern __shared__ half shmem[];
half* A_block_smem = shmem;
half* B_block_smem = &shmem[BM * BK];
constexpr int BUFFER_SIZE = BM * BK + BK * BN;
// declare register storage
// ptx instructions expect uint32_t registers, where each uint32_t is 2 halfs packed together
uint32_t acc_register[mma_tiles_per_warp_m][mma_tiles_per_warp_n][2];
uint32_t A_register[mma_tiles_per_warp_m][mma_tiles_per_warp_k][2];
uint32_t B_register[mma_tiles_per_warp_k][mma_tiles_per_warp_n];
// convenience cast to half for register storage
half (&acc_register_) [mma_tiles_per_warp_m][mma_tiles_per_warp_n][4] = reinterpret_cast<half(&)[mma_tiles_per_warp_m][mma_tiles_per_warp_n][4]>(acc_register);
half (&A_register_) [mma_tiles_per_warp_m][mma_tiles_per_warp_k][4] = reinterpret_cast<half(&)[mma_tiles_per_warp_m][mma_tiles_per_warp_k][4]>(A_register);
half (&B_register_) [mma_tiles_per_warp_k][mma_tiles_per_warp_n][2] = reinterpret_cast<half(&)[mma_tiles_per_warp_k][mma_tiles_per_warp_n][2]>(B_register);
// accumulators start at 0
for (unsigned int mma_m = 0; mma_m < mma_tiles_per_warp_m; mma_m++){
for (unsigned int mma_n = 0; mma_n < mma_tiles_per_warp_n; mma_n++){
acc_register_[mma_m][mma_n][0] = 0;
acc_register_[mma_m][mma_n][1] = 0;
acc_register_[mma_m][mma_n][2] = 0;
acc_register_[mma_m][mma_n][3] = 0;
}
}
static_assert(BM == 256);
static_assert(BN == 256);
static_assert(BK == 32);
static_assert(NUM_THREADS == 256);
float4 A_gmem_cache_reg[4];
float4 B_gmem_cache_reg[4];
// prefetch the first block tile of A,B into shared memory
const half* A_block_gmem = input;
const half* B_block_gmem = kernel + block_n * BN * weightKOffset;
tileMemcpySwizzleA<BM, NUM_THREADS>(A_block_gmem, A_block_smem, start_k, end_k, inChannelOffset, param);
tileMemcpySwizzleB<BN, NUM_THREADS>(B_block_gmem, B_block_smem, start_k, end_k, weightKOffset, param);
int offset_direction = 1;
for (unsigned int block_k = 1; block_k <= num_block_tiles_k; block_k++){
__syncthreads();
if (block_k != num_block_tiles_k){
const half* A_block_gmem = input;
const half* B_block_gmem = kernel + (block_n * BN * weightKOffset);
tileMemcpyLoadA<BM, BK, NUM_THREADS, 4>(A_block_gmem, A_gmem_cache_reg, block_k * BK, start_k, end_k, inChannelOffset, param);
tileMemcpyLoadB<BN, BK, NUM_THREADS, 4>(B_block_gmem, B_gmem_cache_reg, block_k * BK, start_k, end_k, weightKOffset, param);
}
half* A_warp_tile = A_block_smem + (warp_m * WM * BK);
half* B_warp_tile = B_block_smem + (warp_n * WN * BK);
ldmatrix_a<mma_tiles_per_warp_m, mma_tiles_per_warp_k, BK>(A_warp_tile, A_register_);
ldmatrix_b<mma_tiles_per_warp_k, mma_tiles_per_warp_n, BK>(B_warp_tile, B_register_);
// outer product between mma tiles
#pragma unroll
for (unsigned int mma_k = 0; mma_k < mma_tiles_per_warp_k; mma_k++){
#pragma unroll
for (unsigned int mma_n = 0; mma_n < mma_tiles_per_warp_n; mma_n++){
#pragma unroll
for (unsigned int mma_m = 0; mma_m < mma_tiles_per_warp_m; mma_m++){
asm volatile (
"mma.sync.aligned.m16n8k8.row.col.f16.f16.f16.f16 "
"{%0, %1}, "
"{%2, %3}, "
"{%4}, "
"{%5, %6};"
: "=r"(acc_register[mma_m][mma_n][0]), "=r"(acc_register[mma_m][mma_n][1])
: "r"(A_register[mma_m][mma_k][0]), "r"(A_register[mma_m][mma_k][1]),
"r"(B_register[mma_k][mma_n])
"r"(acc_register[mma_m][mma_n][0]), "r"(acc_register[mma_m][mma_n][1])
);
}
}
}
if (block_k != num_block_tiles_k)
{
// switch smem buffers each iteration
A_block_smem = A_block_smem + BUFFER_SIZE * offset_direction;
B_block_smem = B_block_smem + BUFFER_SIZE * offset_direction;
offset_direction = -1 * offset_direction;
tileMemcpySwizzleStore<BM, NUM_THREADS, 4>(A_gmem_cache_reg, A_block_smem);
tileMemcpySwizzleStore<BN, NUM_THREADS, 4>(B_gmem_cache_reg, B_block_smem);
}
}
// reuse smem
half *smemoutput = shmem;
const uint lane_id = threadIdx.x % WARPSIZE;
const uint mma_row = lane_id / 4;
const uint mma_col = lane_id % 4;
const uint output_lds_addr = warp_m * WM * BN/2 + lane_id * BN/2 + warp_n * WN/2;
const uint output_sts_addr = warp_m * WM * BN/2 + mma_row * BN/2 + warp_n * WN/2 + mma_col * 2;
const uint m_idx = block_n * BN + warp_n * WN;
const uint n_idx = block_m * BM + warp_m * WM + lane_id;
#pragma unroll
for (int i = 0; i < 2; ++i)
{
__syncthreads();
#pragma unroll
for (unsigned int mma_m = 0; mma_m < mma_tiles_per_warp_m; mma_m++)
{
for (unsigned int mma_n = i * mma_tiles_per_warp_n/2; mma_n < (i+1)*mma_tiles_per_warp_n/2; mma_n++)
{
uint32_t (&reg_)[2] = reinterpret_cast<uint32_t(&)[2]>(acc_register_[mma_m][mma_n]);
uint idx = output_sts_addr +
mma_m * MMA_M * BN / 2 + (mma_n - i * mma_tiles_per_warp_n/2) * MMA_N;
idx = idx ^ ((idx & 0b110000000000) >> 9);
idx = idx ^ ((idx & 0b1110000000) >> 4);
uint32_t* dst_ptr = reinterpret_cast<uint32_t*>(&smemoutput[idx]);
dst_ptr[0] = reg_[0];
dst_ptr = reinterpret_cast<uint32_t*>(&smemoutput[idx + 8 * BN / 2]);
dst_ptr[0] = reg_[1];
}
}
__syncthreads();
const unsigned int m_i_wn = m_idx + i * WN / 2;
#pragma unroll
for (int subk = 0; subk < WN / 4; ++subk){
const uint row = m_i_wn + subk*2;
#pragma unroll
for (int j = 0; j < 4; ++j){
const uint gemm_i = n_idx + j*32;
const int n = fastdiv(gemm_i, param.OHOW_fastdiv);
const int col = fastmodulo(gemm_i, param.OHOW_fastdiv);
uint idx = output_lds_addr + subk*2 + j*32*BN/2;
idx = idx ^ ((idx & 0b110000000000) >> 9);
idx = idx ^ ((idx & 0b1110000000) >> 4);
// uint32_t* dst_ptr = reinterpret_cast<uint32_t*>(&smemoutput[idx]);
uint32_t dst_ptr = *(reinterpret_cast<uint32_t*>(&smemoutput[idx]));
half (&res_)[2] = reinterpret_cast<half(&)[2]>(dst_ptr);
if (n < param.n && row < param.k && col < PQ) {
if constexpr (ksplit > 0) {
const uint outOffset = z * NKPQ +
n * KPQ +
row * PQ + col;
// output[outOffset] = smemoutput[idx];
// output[outOffset] = reinterpret_cast<half *>(dst_ptr)[0];
output[outOffset] = res_[0];
} else {
const uint outOffset = n * KPQ + row * PQ + col;
// output[outOffset] = smemoutput[idx];
// output[outOffset] = reinterpret_cast<half *>(dst_ptr)[0];
output[outOffset] = res_[0];
}
}
if (n < param.n && row+1 < param.k && col < PQ) {
if constexpr (ksplit > 0) {
const uint outOffset = z * NKPQ +
n * KPQ +
(row+1) * PQ + col;
// output[outOffset] = smemoutput[idx];
// output[outOffset] = reinterpret_cast<half *>(dst_ptr)[1];
output[outOffset] = res_[1];
} else {
const uint outOffset = n * KPQ + (row+1) * PQ + col;
// output[outOffset] = smemoutput[idx];
// output[outOffset] = reinterpret_cast<half *>(dst_ptr)[1];
output[outOffset] = res_[1];
}
}
}
}
}
#else
GGML_UNUSED(input);
GGML_UNUSED(kernel);
GGML_UNUSED(output);
GGML_UNUSED(param);
NO_DEVICE_CODE;
#endif
}
#define NUM_VARIANTS 4
/*
conv_shapes[][0]: ne_input=[384,512,256,1],ne_kernel=[3,3,256,256]
conv_shapes[][1]: ne_input=[96,128,512,1],ne_kernel=[3,3,512,512]
conv_shapes[][2]: ne_input=[192,256,512,1git diff],ne_kernel=[3,3,512,512]
*/
constexpr static int conv_shapes[][NUM_VARIANTS] = {
{ 128, 128, 128, 256 }, // BM
{ 256, 128, 256, 128 }, // BN
{ 8, 8, 8, 8 }, // BK
{ 128, 64, 32, 128 }, // WM
{ 32, 32 , 256, 32 }, // WN
{ 2, 2, 1, 1 }, // WNITER
{ 8, 4, 4, 4 }, // TM
{ 8, 4, 8, 8 }, // TN
{ 256, 256, 128, 256} // NUM_THREADS
};
template <typename T, unsigned int CONV_SHAPE>
static void conv2d_implicit_cuda(const float * X_D, const T * K_D, float * Y_D, const param_t P, cudaStream_t st) {
const uint BM = conv_shapes[0][CONV_SHAPE];
const uint BN = conv_shapes[1][CONV_SHAPE];
const uint BK = conv_shapes[2][CONV_SHAPE];
const uint WM = conv_shapes[3][CONV_SHAPE];
const uint WN = conv_shapes[4][CONV_SHAPE];
const uint WNITER = conv_shapes[5][CONV_SHAPE];
const uint TM = conv_shapes[6][CONV_SHAPE];
const uint TN = conv_shapes[7][CONV_SHAPE];
const uint NUM_THREADS = conv_shapes[8][CONV_SHAPE];
int blockx = ((P.Oh * P.Ow + BM - 1) / BM); // blockx number
int blocky = (P.k + BN-1) / BN; // blocky number
int blockz = P.n; // blockz number
int thready = 1; // thready number per block
int threadz = 1; // threadz number per block
dim3 thblock(NUM_THREADS, thready, threadz);
dim3 grid(blockx, blocky, blockz);
conv2d_implicit_kernel<T, BM, BN, BK, WM, WN,
WNITER, TM, TN, NUM_THREADS, 1, false, 0><<<grid, thblock, 0, st>>>(X_D, K_D, Y_D, P);
}
static void conv2d_implicit_cuda_f16(ggml_backend_cuda_context & ctx, const float * X_D, const half * K_D, float * Y_D, int cc, const param_t P, cudaStream_t st) {
if (GGML_CUDA_CC_IS_NVIDIA(cc) && turing_mma_available(cc) && P.c % 8 == 0 && (P.r > 1 || P.s > 1)) {
int id = ggml_cuda_get_device();
int64_t ne = P.c * P.h * P.w * P.n;
int64_t ne00 = P.c;
int64_t ne01 = P.h * P.w;
ggml_cuda_pool_alloc<half> input_f16(ctx.pool(id), ne);
dim3 dimGrid( (ne01 + CUDA_NCHW_2_NHWC_TILE_DIM - 1) / CUDA_NCHW_2_NHWC_TILE_DIM,
(ne00 + CUDA_NCHW_2_NHWC_TILE_DIM - 1) / CUDA_NCHW_2_NHWC_TILE_DIM,
(ne/(ne00*ne01) + CUDA_NCHW_2_NHWC_BLOCK_NM - 1) / CUDA_NCHW_2_NHWC_BLOCK_NM) ;
dim3 dimBlock(CUDA_NCHW_2_NHWC_TILE_DIM,CUDA_NCHW_2_NHWC_BLOCK_ROWS, 1);
NCHW2NHWC<float, half><<<dimGrid, dimBlock, 0, st>>>(X_D, input_f16.get(), ne, ne00, ne01);
ne = P.c * P.r * P.s * P.k;
ne01 = P.r * P.s;
ggml_cuda_pool_alloc<half> kernel_f16(ctx.pool(id), ne);
dim3 dimGrid1((ne01 + CUDA_NCHW_2_NHWC_TILE_DIM - 1) / CUDA_NCHW_2_NHWC_TILE_DIM,
(ne00 + CUDA_NCHW_2_NHWC_TILE_DIM - 1) / CUDA_NCHW_2_NHWC_TILE_DIM,
(ne/(ne00*ne01) + CUDA_NCHW_2_NHWC_BLOCK_NM - 1) / CUDA_NCHW_2_NHWC_BLOCK_NM) ;
NCHW2NHWC<half, half><<<dimGrid1, dimBlock, 0, st>>>(K_D, kernel_f16.get(), ne, ne00, ne01);
const half *X_H = input_f16.get();
const half *K_H = kernel_f16.get();
constexpr unsigned int BM_dim = 256;
constexpr unsigned int BN_dim = 256;
constexpr unsigned int BK_dim = 32;
constexpr unsigned int WARPS_PER_BLOCK_M = 2;
constexpr unsigned int WARPS_PER_BLOCK_N = 4;
constexpr unsigned int WARPS_PER_BLOCK_K = 4;
constexpr unsigned int WM_dim = BM_dim / WARPS_PER_BLOCK_M;
constexpr unsigned int WN_dim = BN_dim / WARPS_PER_BLOCK_N;
constexpr unsigned int WK_dim = BK_dim / WARPS_PER_BLOCK_K;
static_assert(WN_dim % 4 == 0, "final output requires this to be bank conflicts free");
const unsigned int BlocksM = (P.n * P.Oh * P.Ow + BM_dim - 1) / BM_dim;
const unsigned int BlocksN = (P.k + BN_dim - 1) / BN_dim;
constexpr unsigned int ThreadsM = WARPS_PER_BLOCK_M;
constexpr unsigned int ThreadsN = WARPSIZE * WARPS_PER_BLOCK_N;
constexpr unsigned int NumThreads = ThreadsM * ThreadsN;
const unsigned int shmem_bytes = (BM_dim * BK_dim + BK_dim * BN_dim) * 2 * sizeof(half);
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
const unsigned int ksplit = 8;
if (BlocksM * BlocksN < nsm && P.c >= 8 * ksplit && (P.c * P.r * P.s) % (8*ksplit) == 0) {
ggml_cuda_pool_alloc<half> Y_H(ctx.pool(id), ksplit * P.k * P.Oh * P.Ow * P.n);
cudaFuncSetAttribute(conv2d_implicit_kernel<BM_dim, BN_dim, BK_dim, WM_dim, WN_dim, WK_dim, ksplit, NumThreads>,
cudaFuncAttributeMaxDynamicSharedMemorySize, 65536); // set shared memory limit to 64KB which is maximum for sm_75
dim3 gridDim(BlocksN, BlocksM, ksplit);
dim3 blockDim(ThreadsN, ThreadsM);
conv2d_implicit_kernel<BM_dim, BN_dim, BK_dim,
WM_dim, WN_dim, WK_dim, ksplit, NumThreads>
<<<gridDim, blockDim, shmem_bytes, st>>>(X_H, K_H, Y_H.get(), P);
const unsigned int nrows = P.n * P.k * P.Oh * P.Ow;
const unsigned int blockx = (nrows + 511) / 512;
const dim3 block_nums(blockx, 1, 1);
const dim3 block_dims(512, 1, 1);
reduce_f32<half, float><<<block_nums, block_dims, 0, st>>>(Y_H.get(), Y_D, nrows, ksplit);
} else {
ggml_cuda_pool_alloc<half> Y_H(ctx.pool(id), P.k * P.Oh * P.Ow * P.n);
cudaFuncSetAttribute(conv2d_implicit_kernel<BM_dim, BN_dim, BK_dim, WM_dim, WN_dim, WK_dim, 0, NumThreads>,
cudaFuncAttributeMaxDynamicSharedMemorySize, 65536); // set shared memory limit to 64KB which is maximum for sm_75
dim3 gridDim(BlocksN, BlocksM);
dim3 blockDim(ThreadsN, ThreadsM);
conv2d_implicit_kernel<BM_dim, BN_dim, BK_dim,
WM_dim, WN_dim, WK_dim, 0, NumThreads>
<<<gridDim, blockDim, shmem_bytes, st>>>(X_H, K_H, Y_H.get(), P);
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
to_fp32_cuda(Y_H.get(), Y_D, P.k * P.Oh * P.Ow * P.n, st);
}
} else{
conv2d_implicit_cuda<half, 1>(X_D, K_D, Y_D, P, st);
}
}
static void conv2d_implicit_cuda_f32(ggml_backend_cuda_context & ctx, const float * X_D, const float * K_D, float * Y_D, int cc, const param_t P, cudaStream_t st) {
conv2d_implicit_cuda<float, 1>(X_D, K_D, Y_D, P, st);
GGML_UNUSED(ctx);
GGML_UNUSED(cc);
}
void ggml_cuda_op_conv2d_implicit(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * kernel = dst->src[0];
const ggml_tensor * input = dst->src[1];
float * K_D = (float *) kernel->data;
const float * X_D = (const float *) input->data;
float * Y_D = (float *) dst->data;
GGML_ASSERT(ggml_is_contiguous(kernel));
GGML_ASSERT(kernel->type == GGML_TYPE_F16 || kernel->type == GGML_TYPE_F32);
cudaStream_t st = ctx.stream();
const int cc = ggml_cuda_info().devices[ctx.device].cc;
const int32_t * p = (const int32_t *) dst->op_params;
const uint ST_X = p[0]; // stride_x
const uint ST_Y = p[1]; // stride_y
const uint PD_X = p[2]; // padding_x
const uint PD_Y = p[3]; // padding_y
const uint DL_X = p[4]; // dilation_x
const uint DL_Y = p[5]; // dilation_y
// const int LT = p[6]; // layout
// GGML_ASSERT(LT == 0 || LT == 1);
// same number of input channels
// GGML_ASSERT(LT == 0 ? input->ne[0] == kernel->ne[0] : input->ne[2] == kernel->ne[2]);
// No cwhn
GGML_ASSERT(p[6] == false);
const uint IW = input->ne[0]; // input_w
const uint IH = input->ne[1]; // input_h
const uint OW = dst->ne[0]; // output_w
const uint OH = dst->ne[1]; // output_h
const uint KW = kernel->ne[0]; // kernel_w
const uint KH = kernel->ne[1]; // kernel_h
const uint IC = input->ne[2]; // input_channels
const uint OC = kernel->ne[3]; // ouptut_chanles
const uint B = input->ne[3]; // n_batches
param_t params = { B, IC, IH, IW, OC, KH, KW, ST_Y, ST_X, PD_Y, PD_X, DL_Y, DL_X, OH, OW,
init_fastdiv_values(KW*IC),
init_fastdiv_values(OW),
init_fastdiv_values(IC),
init_fastdiv_values(KW*KH),
init_fastdiv_values(KW),
init_fastdiv_values(OW*OH)};
if (kernel->type == GGML_TYPE_F16) {
conv2d_implicit_cuda_f16(ctx, X_D, (half *) K_D, Y_D, cc, params, st);
} else {
conv2d_implicit_cuda_f32(ctx, X_D, K_D, Y_D, cc, params, st);
}
}