1265 lines
45 KiB
Plaintext
1265 lines
45 KiB
Plaintext
#pragma once
|
|
|
|
#include "ggml.h"
|
|
#include "ggml-impl.h"
|
|
#include "ggml-cuda.h"
|
|
|
|
#include <cstdint>
|
|
#include <memory>
|
|
|
|
#if defined(GGML_USE_HIP)
|
|
#define GGML_COMMON_DECL_HIP
|
|
#define GGML_COMMON_IMPL_HIP
|
|
#else
|
|
#define GGML_COMMON_DECL_CUDA
|
|
#define GGML_COMMON_IMPL_CUDA
|
|
#if defined(GGML_USE_MUSA)
|
|
#define GGML_COMMON_DECL_MUSA
|
|
#define GGML_COMMON_IMPL_MUSA
|
|
#endif
|
|
#endif
|
|
#include "ggml-common.h"
|
|
|
|
#include <array>
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cfloat>
|
|
#include <cstdio>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
#if defined(GGML_USE_HIP)
|
|
#include "vendors/hip.h"
|
|
#elif defined(GGML_USE_MUSA)
|
|
#include "vendors/musa.h"
|
|
#else
|
|
#include "vendors/cuda.h"
|
|
#endif // defined(GGML_USE_HIP)
|
|
|
|
#define STRINGIZE_IMPL(...) #__VA_ARGS__
|
|
#define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__)
|
|
|
|
#define WARP_SIZE 32
|
|
#define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
|
|
#define CUDART_HMASK 12000 // CUDA 12.0, min. ver. for half2 -> uint mask comparisons
|
|
|
|
#define GGML_CUDA_CC_PASCAL 600
|
|
#define GGML_CUDA_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
|
|
#define GGML_CUDA_CC_VOLTA 700
|
|
#define GGML_CUDA_CC_TURING 750
|
|
#define GGML_CUDA_CC_AMPERE 800
|
|
#define GGML_CUDA_CC_ADA_LOVELACE 890
|
|
#define GGML_CUDA_CC_OFFSET_AMD 0x1000000
|
|
#define GGML_CUDA_CC_OFFSET_MTHREADS 0x0100000
|
|
#define GGML_CUDA_CC_IS_NVIDIA(cc) (cc < GGML_CUDA_CC_OFFSET_MTHREADS)
|
|
|
|
// AMD
|
|
// GCN/CDNA, wave size is 64
|
|
#define GGML_CUDA_CC_GCN4 (GGML_CUDA_CC_OFFSET_AMD + 0x803) // Tonga, Fiji, Polaris, minimum for fast fp16
|
|
#define GGML_CUDA_CC_VEGA (GGML_CUDA_CC_OFFSET_AMD + 0x900) // Vega56/64, minimum for fp16 dual issue
|
|
#define GGML_CUDA_CC_VEGA20 (GGML_CUDA_CC_OFFSET_AMD + 0x906) // MI50/Radeon VII, minimum for dp4a
|
|
#define GGML_CUDA_CC_CDNA1 (GGML_CUDA_CC_OFFSET_AMD + 0x908) // MI100, minimum for MFMA, acc registers
|
|
#define GGML_CUDA_CC_CDNA2 (GGML_CUDA_CC_OFFSET_AMD + 0x910) // MI210, minimum acc register renameing
|
|
#define GGML_CUDA_CC_CDNA3 (GGML_CUDA_CC_OFFSET_AMD + 0x942) // MI300
|
|
|
|
// RDNA removes MFMA, dp4a, xnack, acc registers, wave size is 32
|
|
#define GGML_CUDA_CC_RDNA1 (GGML_CUDA_CC_OFFSET_AMD + 0x1010) // RX 5000
|
|
#define GGML_CUDA_CC_RDNA2 (GGML_CUDA_CC_OFFSET_AMD + 0x1030) // RX 6000, minimum for dp4a
|
|
#define GGML_CUDA_CC_RDNA3 (GGML_CUDA_CC_OFFSET_AMD + 0x1100) // RX 7000, minimum for WMMA
|
|
#define GGML_CUDA_CC_RDNA3_5 (GGML_CUDA_CC_OFFSET_AMD + 0x1150) // AI 370, AI Max 395 laptops.
|
|
#define GGML_CUDA_CC_RDNA4 (GGML_CUDA_CC_OFFSET_AMD + 0x1200) // RX 9000
|
|
|
|
#define GGML_CUDA_CC_IS_AMD(cc) (cc >= GGML_CUDA_CC_OFFSET_AMD)
|
|
#define GGML_CUDA_CC_IS_RDNA(cc) (cc >= GGML_CUDA_CC_RDNA1)
|
|
#define GGML_CUDA_CC_IS_RDNA1(cc) (cc >= GGML_CUDA_CC_RDNA1 && cc < GGML_CUDA_CC_RDNA2)
|
|
#define GGML_CUDA_CC_IS_RDNA2(cc) (cc >= GGML_CUDA_CC_RDNA2 && cc < GGML_CUDA_CC_RDNA3)
|
|
#define GGML_CUDA_CC_IS_RDNA3_0(cc) (cc >= GGML_CUDA_CC_RDNA3 && cc < GGML_CUDA_CC_RDNA3_5)
|
|
#define GGML_CUDA_CC_IS_RDNA3_5(cc) (cc >= GGML_CUDA_CC_RDNA3_5 && cc < GGML_CUDA_CC_RDNA4)
|
|
#define GGML_CUDA_CC_IS_RDNA3(cc) (GGML_CUDA_CC_IS_RDNA3_0(cc) || GGML_CUDA_CC_IS_RDNA3_5(cc))
|
|
#define GGML_CUDA_CC_IS_RDNA4(cc) (cc >= GGML_CUDA_CC_RDNA4)
|
|
#define GGML_CUDA_CC_IS_GCN(cc) (cc > GGML_CUDA_CC_OFFSET_AMD && cc < GGML_CUDA_CC_CDNA1)
|
|
#define GGML_CUDA_CC_IS_CDNA(cc) (cc >= GGML_CUDA_CC_CDNA1 && cc < GGML_CUDA_CC_RDNA1)
|
|
#define GGML_CUDA_CC_IS_CDNA1(cc) (cc >= GGML_CUDA_CC_CDNA1 && cc < GGML_CUDA_CC_CDNA2)
|
|
#define GGML_CUDA_CC_IS_CDNA2(cc) (cc >= GGML_CUDA_CC_CDNA2 && cc < GGML_CUDA_CC_CDNA3)
|
|
#define GGML_CUDA_CC_IS_CDNA3(cc) (cc >= GGML_CUDA_CC_CDNA3 && cc < GGML_CUDA_CC_RDNA1)
|
|
|
|
// Moore Threads
|
|
#define MUSART_HMASK 40300 // MUSA rc4.3, min. ver. for half2 -> uint mask comparisons
|
|
|
|
#define GGML_CUDA_CC_QY1 (GGML_CUDA_CC_OFFSET_MTHREADS + 0x210) // MTT S80, MTT S3000
|
|
#define GGML_CUDA_CC_QY2 (GGML_CUDA_CC_OFFSET_MTHREADS + 0x220) // MTT S4000
|
|
#define GGML_CUDA_CC_PH1 (GGML_CUDA_CC_OFFSET_MTHREADS + 0x310) // MTT S5000
|
|
|
|
#define GGML_CUDA_CC_IS_MTHREADS(cc) (cc >= GGML_CUDA_CC_OFFSET_MTHREADS && cc < GGML_CUDA_CC_OFFSET_AMD)
|
|
#define GGML_CUDA_CC_IS_QY1(cc) (cc >= GGML_CUDA_CC_QY1 && cc < GGML_CUDA_CC_QY2)
|
|
#define GGML_CUDA_CC_IS_QY2(cc) (cc >= GGML_CUDA_CC_QY2 && cc < GGML_CUDA_CC_PH1)
|
|
#define GGML_CUDA_CC_IS_PH1(cc) (cc >= GGML_CUDA_CC_PH1)
|
|
|
|
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11070
|
|
# define GGML_CUDA_USE_CUB
|
|
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11070
|
|
|
|
#ifdef __CUDA_ARCH_LIST__
|
|
constexpr bool ggml_cuda_has_arch_impl(int) {
|
|
return false;
|
|
}
|
|
|
|
template<class ... Archs>
|
|
constexpr bool ggml_cuda_has_arch_impl(const int arch, const int first, Archs... rest) {
|
|
return arch == first || ggml_cuda_has_arch_impl(arch, rest...);
|
|
}
|
|
|
|
constexpr bool ggml_cuda_has_arch(const int arch) {
|
|
return ggml_cuda_has_arch_impl(arch, __CUDA_ARCH_LIST__);
|
|
}
|
|
|
|
constexpr int ggml_cuda_highest_compiled_arch_impl(const int /*arch*/, const int cur) {
|
|
if (cur == 0) {
|
|
return -1;
|
|
}
|
|
return cur;
|
|
}
|
|
|
|
template<class ... Archs>
|
|
constexpr int ggml_cuda_highest_compiled_arch_impl(const int arch, const int cur, const int first, Archs... rest) {
|
|
if (first <= arch && first > cur) {
|
|
return ggml_cuda_highest_compiled_arch_impl(arch, first, rest...);
|
|
} else {
|
|
return ggml_cuda_highest_compiled_arch_impl(arch, cur, rest...);
|
|
}
|
|
}
|
|
|
|
constexpr int ggml_cuda_highest_compiled_arch(const int arch) {
|
|
return ggml_cuda_highest_compiled_arch_impl(arch, 0, __CUDA_ARCH_LIST__);
|
|
}
|
|
#else
|
|
static int ggml_cuda_highest_compiled_arch(const int arch) {
|
|
return arch;
|
|
}
|
|
#endif // __CUDA_ARCH_LIST__
|
|
|
|
// ---------------------------------------------------------------------------------------------------------
|
|
|
|
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
|
|
|
|
#define GGML_CUDA_MAX_STREAMS 8
|
|
|
|
[[noreturn]]
|
|
void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg);
|
|
|
|
#define CUDA_CHECK_GEN(err, success, error_fn) \
|
|
do { \
|
|
auto err_ = (err); \
|
|
if (err_ != (success)) { \
|
|
ggml_cuda_error(#err, __func__, __FILE__, __LINE__, error_fn(err_)); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define CUDA_CHECK(err) CUDA_CHECK_GEN(err, cudaSuccess, cudaGetErrorString)
|
|
|
|
#if CUDART_VERSION >= 12000 || defined(GGML_USE_MUSA)
|
|
static const char * cublas_get_error_str(const cublasStatus_t err) {
|
|
return cublasGetStatusString(err);
|
|
}
|
|
#else
|
|
static const char * cublas_get_error_str(const cublasStatus_t err) {
|
|
switch (err) {
|
|
case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS";
|
|
case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED";
|
|
case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED";
|
|
case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE";
|
|
case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH";
|
|
case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR";
|
|
case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED";
|
|
case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR";
|
|
case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED";
|
|
default: return "unknown error";
|
|
}
|
|
}
|
|
#endif // CUDART_VERSION >= 12000
|
|
|
|
#define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublas_get_error_str)
|
|
|
|
#if !defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)
|
|
static const char * cu_get_error_str(CUresult err) {
|
|
const char * err_str;
|
|
cuGetErrorString(err, &err_str);
|
|
return err_str;
|
|
}
|
|
#define CU_CHECK(err) CUDA_CHECK_GEN(err, CUDA_SUCCESS, cu_get_error_str)
|
|
#endif
|
|
|
|
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
|
# define CUDA_SET_SHARED_MEMORY_LIMIT(kernel, nbytes) \
|
|
do { \
|
|
static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = { false }; \
|
|
const int id = ggml_cuda_get_device(); \
|
|
if (!shared_memory_limit_raised[id]) { \
|
|
CUDA_CHECK(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, nbytes)); \
|
|
shared_memory_limit_raised[id] = true; \
|
|
} \
|
|
} while (0)
|
|
#else
|
|
# define CUDA_SET_SHARED_MEMORY_LIMIT(kernel, nbytes) \
|
|
do { \
|
|
GGML_UNUSED(nbytes); \
|
|
} while (0)
|
|
#endif // !(defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
|
|
|
#if CUDART_VERSION >= 11010 || defined(GGML_USE_MUSA)
|
|
#define GGML_CUDA_ASSUME(x) __builtin_assume(x)
|
|
#else
|
|
#define GGML_CUDA_ASSUME(x)
|
|
#endif // CUDART_VERSION >= 11010
|
|
|
|
#if (!defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)) || (defined(GGML_USE_HIP) && !defined(GGML_HIP_NO_VMM))
|
|
#define GGML_USE_VMM
|
|
#endif // (!defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)) || (defined(GGML_USE_HIP) && !defined(GGML_HIP_NO_VMM))
|
|
|
|
#if defined(GGML_USE_HIP) || defined(GGML_USE_MUSA) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
|
|
#define FP16_AVAILABLE
|
|
#endif // defined(GGML_USE_HIP) || defined(GGML_USE_MUSA) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
|
|
|
|
#if defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
|
|
#define FAST_FP16_AVAILABLE
|
|
#endif // defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
|
|
|
|
#if defined(GGML_USE_HIP) && defined(CDNA) && !defined(GGML_HIP_NO_MMQ_MFMA)
|
|
#define AMD_MFMA_AVAILABLE
|
|
#endif // defined(GGML_USE_HIP) && defined(CDNA) && !defined(GGML_HIP_NO_MMQ_MFMA)
|
|
|
|
#if defined(GGML_USE_HIP) && (defined(RDNA4) || defined(RDNA3))
|
|
#define AMD_WMMA_AVAILABLE
|
|
#endif // defined(GGML_USE_HIP) && defined(RDNA4)
|
|
|
|
// The Volta instructions are in principle available on Turing or newer but they are effectively unusable:
|
|
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
|
#define VOLTA_MMA_AVAILABLE
|
|
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
|
|
|
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
|
|
#define TURING_MMA_AVAILABLE
|
|
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
|
|
|
|
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
|
#define AMPERE_MMA_AVAILABLE
|
|
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
|
|
|
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
|
#define CP_ASYNC_AVAILABLE
|
|
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
|
|
|
#if !defined(GGML_CUDA_NO_FA) && !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ < 220)
|
|
#define FLASH_ATTN_AVAILABLE
|
|
#endif // !defined(GGML_CUDA_NO_FA) && !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ < 220)
|
|
|
|
static bool fp16_available(const int cc) {
|
|
return ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_PASCAL ||
|
|
(GGML_CUDA_CC_IS_MTHREADS(cc) && cc >= GGML_CUDA_CC_PH1);
|
|
}
|
|
|
|
static bool fast_fp16_available(const int cc) {
|
|
return GGML_CUDA_CC_IS_AMD(cc) ||
|
|
(GGML_CUDA_CC_IS_NVIDIA(cc) && fp16_available(cc) && ggml_cuda_highest_compiled_arch(cc) != 610) ||
|
|
(GGML_CUDA_CC_IS_MTHREADS(cc) && fp16_available(cc));
|
|
}
|
|
|
|
// To be used for feature selection of external libraries, e.g. cuBLAS.
|
|
static bool fast_fp16_hardware_available(const int cc) {
|
|
return (GGML_CUDA_CC_IS_NVIDIA(cc) && cc >= GGML_CUDA_CC_PASCAL && cc != 610) || GGML_CUDA_CC_IS_AMD(cc) ||
|
|
(GGML_CUDA_CC_IS_MTHREADS(cc) && cc >= GGML_CUDA_CC_QY2);
|
|
}
|
|
|
|
// To be used for feature selection of external libraries, e.g. cuBLAS.
|
|
static bool fp16_mma_hardware_available(const int cc) {
|
|
return (GGML_CUDA_CC_IS_NVIDIA(cc) && cc >= GGML_CUDA_CC_VOLTA) ||
|
|
GGML_CUDA_CC_IS_CDNA(cc) || GGML_CUDA_CC_IS_RDNA3(cc) || GGML_CUDA_CC_IS_RDNA4(cc) ||
|
|
(GGML_CUDA_CC_IS_MTHREADS(cc) && cc >= GGML_CUDA_CC_QY2);
|
|
}
|
|
|
|
static bool bf16_mma_hardware_available(const int cc) {
|
|
return (GGML_CUDA_CC_IS_NVIDIA(cc) && cc >= GGML_CUDA_CC_AMPERE) ||
|
|
GGML_CUDA_CC_IS_CDNA(cc) || cc >= GGML_CUDA_CC_RDNA3 ||
|
|
(GGML_CUDA_CC_IS_MTHREADS(cc) && cc >= GGML_CUDA_CC_PH1);
|
|
}
|
|
|
|
static bool fp32_mma_hardware_available(const int cc) {
|
|
return GGML_CUDA_CC_IS_CDNA(cc);
|
|
}
|
|
|
|
static bool amd_mfma_available(const int cc) {
|
|
#if !defined(GGML_HIP_NO_MMQ_MFMA)
|
|
return GGML_CUDA_CC_IS_CDNA(cc);
|
|
#else
|
|
return false;
|
|
#endif //!defined(GGML_HIP_NO_MMQ_MFMA)
|
|
}
|
|
|
|
static bool amd_wmma_available(const int cc) {
|
|
return (GGML_CUDA_CC_IS_RDNA4(cc) || GGML_CUDA_CC_IS_RDNA3(cc));
|
|
}
|
|
|
|
static bool volta_mma_available(const int cc) {
|
|
return GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) == GGML_CUDA_CC_VOLTA;
|
|
}
|
|
|
|
static bool turing_mma_available(const int cc) {
|
|
return GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_TURING;
|
|
}
|
|
|
|
static bool ampere_mma_available(const int cc) {
|
|
return GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_AMPERE;
|
|
}
|
|
|
|
static bool cp_async_available(const int cc) {
|
|
return GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_AMPERE;
|
|
}
|
|
|
|
static constexpr __device__ int ggml_cuda_get_physical_warp_size() {
|
|
#if defined(GGML_USE_HIP) && (defined(__GFX9__) || defined(__GFX8__))
|
|
return 64;
|
|
#else
|
|
return 32;
|
|
#endif // defined(GGML_USE_HIP) && (defined(__GFX9__) || defined(__GFX8__))
|
|
}
|
|
|
|
// Maximum number of bytes that can be copied in a single instruction.
|
|
static constexpr __device__ int ggml_cuda_get_max_cpy_bytes() {
|
|
#ifdef GGML_USE_HIP
|
|
return 16;
|
|
#else
|
|
#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
|
|
return 16;
|
|
#else
|
|
return 8;
|
|
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
|
|
#endif // GGML_USE_HIP
|
|
}
|
|
|
|
|
|
[[noreturn]]
|
|
static __device__ void no_device_code(
|
|
const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
|
|
|
|
#if defined(GGML_USE_HIP)
|
|
printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n",
|
|
file_name, line, function_name, arch);
|
|
GGML_UNUSED(arch_list);
|
|
#else
|
|
printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n",
|
|
file_name, line, function_name, arch, arch_list);
|
|
#endif // defined(GGML_USE_HIP)
|
|
__trap();
|
|
|
|
GGML_UNUSED(no_device_code); // suppress unused function warning
|
|
|
|
#if defined(GGML_USE_MUSA)
|
|
__builtin_unreachable();
|
|
#endif // defined(GGML_USE_MUSA)
|
|
}
|
|
|
|
#ifdef __CUDA_ARCH__
|
|
#define NO_DEVICE_CODE no_device_code(__FILE__, __LINE__, __FUNCTION__, __CUDA_ARCH__, STRINGIZE(__CUDA_ARCH_LIST__))
|
|
#else
|
|
#define NO_DEVICE_CODE //GGML_ABORT("NO_DEVICE_CODE not valid in host code.")
|
|
#endif // __CUDA_ARCH__
|
|
|
|
// The compiler is always able to unroll loops if they contain continue expressions.
|
|
// In such cases loop unrolling can still be achieved via recursion:
|
|
template <int n>
|
|
struct ggml_cuda_unroll {
|
|
template <typename Func, typename... Args>
|
|
__device__ void operator()(const Func & f, Args... args) const {
|
|
f(n - 1, args...);
|
|
ggml_cuda_unroll<n - 1>{}(f, args...);
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct ggml_cuda_unroll<1> {
|
|
template <typename Func, typename... Args>
|
|
__device__ void operator()(const Func & f, Args... args) const {
|
|
f(0, args...);
|
|
}
|
|
};
|
|
|
|
template<int width = WARP_SIZE>
|
|
static __device__ __forceinline__ int warp_reduce_sum(int x) {
|
|
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
|
return __reduce_add_sync(0xffffffff, x);
|
|
#else
|
|
#pragma unroll
|
|
for (int offset = width/2; offset > 0; offset >>= 1) {
|
|
x += __shfl_xor_sync(0xffffffff, x, offset, width);
|
|
}
|
|
return x;
|
|
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
|
}
|
|
|
|
template<int width = WARP_SIZE>
|
|
static __device__ __forceinline__ float warp_reduce_sum(float x) {
|
|
#pragma unroll
|
|
for (int offset = width/2; offset > 0; offset >>= 1) {
|
|
x += __shfl_xor_sync(0xffffffff, x, offset, width);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
template<int width = WARP_SIZE>
|
|
static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
|
|
#pragma unroll
|
|
for (int offset = width/2; offset > 0; offset >>= 1) {
|
|
a.x += __shfl_xor_sync(0xffffffff, a.x, offset, width);
|
|
a.y += __shfl_xor_sync(0xffffffff, a.y, offset, width);
|
|
}
|
|
return a;
|
|
}
|
|
|
|
template<int width = WARP_SIZE>
|
|
static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
|
|
#ifdef FP16_AVAILABLE
|
|
#pragma unroll
|
|
for (int offset = width/2; offset > 0; offset >>= 1) {
|
|
a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, offset, width));
|
|
}
|
|
return a;
|
|
|
|
#else
|
|
NO_DEVICE_CODE;
|
|
return a;
|
|
#endif // FP16_AVAILABLE
|
|
}
|
|
|
|
template<int width = WARP_SIZE>
|
|
static __device__ __forceinline__ int warp_reduce_all(int x) {
|
|
if (width == ggml_cuda_get_physical_warp_size()) {
|
|
return __all_sync(0xffffffff, x);
|
|
} else {
|
|
#pragma unroll
|
|
for (int offset = width/2; offset > 0; offset >>= 1) {
|
|
x = __shfl_xor_sync(0xffffffff, x, offset, width) && x;
|
|
}
|
|
return x;
|
|
}
|
|
}
|
|
|
|
template<int width = WARP_SIZE>
|
|
static __device__ __forceinline__ int warp_reduce_any(int x) {
|
|
if (width == ggml_cuda_get_physical_warp_size()) {
|
|
return __any_sync(0xffffffff, x);
|
|
} else {
|
|
#pragma unroll
|
|
for (int offset = width/2; offset > 0; offset >>= 1) {
|
|
x = __shfl_xor_sync(0xffffffff, x, offset, width) || x;
|
|
}
|
|
return x;
|
|
}
|
|
}
|
|
|
|
template<int width = WARP_SIZE>
|
|
static __device__ __forceinline__ float warp_reduce_max(float x) {
|
|
#pragma unroll
|
|
for (int offset = width/2; offset > 0; offset >>= 1) {
|
|
x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, offset, width));
|
|
}
|
|
return x;
|
|
}
|
|
|
|
template<typename T, int width = WARP_SIZE>
|
|
static __device__ __forceinline__ T warp_prefix_inclusive_sum(T x) {
|
|
const int lane_id = threadIdx.x % width;
|
|
#pragma unroll
|
|
for (int offset = 1; offset < width; offset <<= 1) {
|
|
const T t = __shfl_up_sync(0xffffffff, x, offset, width);
|
|
if (lane_id >= offset) {
|
|
x += t;
|
|
}
|
|
}
|
|
return x;
|
|
}
|
|
|
|
template<int width = WARP_SIZE>
|
|
static __device__ __forceinline__ float2 warp_prefix_inclusive_sum(float2 a) {
|
|
const int lane_id = threadIdx.x % width;
|
|
#pragma unroll
|
|
for (int offset = 1; offset < width; offset <<= 1) {
|
|
const float t_x = __shfl_up_sync(0xffffffff, a.x, offset, width);
|
|
const float t_y = __shfl_up_sync(0xffffffff, a.y, offset, width);
|
|
if (lane_id >= offset) {
|
|
a.x += t_x;
|
|
a.y += t_y;
|
|
}
|
|
}
|
|
return a;
|
|
}
|
|
|
|
template<int width = WARP_SIZE>
|
|
static __device__ __forceinline__ half2 warp_prefix_inclusive_sum(half2 a) {
|
|
#ifdef FP16_AVAILABLE
|
|
const int lane_id = threadIdx.x % width;
|
|
#pragma unroll
|
|
for (int offset = 1; offset < width; offset <<= 1) {
|
|
const half2 t = __shfl_up_sync(0xffffffff, a, offset, width);
|
|
if (lane_id >= offset) {
|
|
a = __hadd2(a, t);
|
|
}
|
|
}
|
|
return a;
|
|
|
|
#else
|
|
NO_DEVICE_CODE;
|
|
return a;
|
|
#endif // FP16_AVAILABLE
|
|
}
|
|
|
|
static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b) {
|
|
#ifdef FP16_AVAILABLE
|
|
|
|
#if !defined(GGML_USE_HIP) && CUDART_VERSION < CUDART_HMAX
|
|
return __float2half(fmaxf(__half2float(a), __half2float(b)));
|
|
#else
|
|
return __hmax(a, b);
|
|
#endif // !defined(GGML_USE_HIP) && CUDART_VERSION < CUDART_HMAX
|
|
|
|
#else
|
|
NO_DEVICE_CODE;
|
|
GGML_UNUSED(b);
|
|
return a;
|
|
#endif // FP16_AVAILABLE
|
|
}
|
|
|
|
static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const half2 b) {
|
|
#if defined(GGML_USE_HIP)
|
|
return half2(__hmax(a.x, b.x), __hmax(a.y, b.y));
|
|
#elif CUDART_VERSION >= CUDART_HMAX
|
|
return __hmax2(a, b);
|
|
#else
|
|
half2 ret;
|
|
reinterpret_cast<half&>(ret.x) = __float2half(fmaxf( __low2float(a), __low2float(b)));
|
|
reinterpret_cast<half&>(ret.y) = __float2half(fmaxf(__high2float(a), __high2float(b)));
|
|
return ret;
|
|
#endif
|
|
}
|
|
|
|
template<int width = WARP_SIZE>
|
|
static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
|
|
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || defined(GGML_USE_HIP)
|
|
#pragma unroll
|
|
for (int offset = width/2; offset > 0; offset >>= 1) {
|
|
x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, offset, width));
|
|
}
|
|
return x;
|
|
#else
|
|
GGML_UNUSED(x);
|
|
NO_DEVICE_CODE;
|
|
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || defined(GGML_USE_HIP)
|
|
}
|
|
|
|
#if (defined(CUDART_VERSION) && CUDART_VERSION < CUDART_HMASK) || defined(GGML_USE_HIP) || \
|
|
(defined(MUSART_VERSION) && MUSART_VERSION < MUSART_HMASK)
|
|
static __device__ __forceinline__ uint32_t __hgt2_mask(const half2 a, const half2 b) {
|
|
const uint32_t mask_low = 0x0000FFFF * (float( __low2half(a)) > float( __low2half(b)));
|
|
const uint32_t mask_high = 0xFFFF0000 * (float(__high2half(a)) > float(__high2half(b)));
|
|
return mask_low | mask_high;
|
|
}
|
|
#endif // (defined(CUDART_VERSION) && CUDART_VERSION < CUDART_HMASK) || defined(GGML_USE_HIP) || (defined(MUSART_VERSION) && MUSART_VERSION < MUSART_HMASK)
|
|
|
|
static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, int c) {
|
|
#if defined(GGML_USE_HIP)
|
|
#if defined(CDNA) || defined(RDNA2) || defined(__gfx906__)
|
|
c = __builtin_amdgcn_sdot4(a, b, c, false);
|
|
#elif defined(RDNA3) || defined(RDNA4)
|
|
c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
|
|
#elif defined(RDNA1) || defined(__gfx900__)
|
|
int tmp1;
|
|
int tmp2;
|
|
asm("\n \
|
|
v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \
|
|
v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \
|
|
v_add3_u32 %0, %1, %2, %0 \n \
|
|
v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \
|
|
v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \
|
|
v_add3_u32 %0, %1, %2, %0 \n \
|
|
"
|
|
: "+v"(c), "=&v"(tmp1), "=&v"(tmp2)
|
|
: "v"(a), "v"(b)
|
|
);
|
|
#else
|
|
const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
|
|
const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
|
|
c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3];
|
|
#endif
|
|
return c;
|
|
|
|
#else // defined(GGML_USE_HIP)
|
|
|
|
#if __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A || defined(GGML_USE_MUSA)
|
|
return __dp4a(a, b, c);
|
|
#else // __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A || defined(GGML_USE_MUSA)
|
|
const int8_t * a8 = (const int8_t *) &a;
|
|
const int8_t * b8 = (const int8_t *) &b;
|
|
return c + a8[0]*b8[0] + a8[1]*b8[1] + a8[2]*b8[2] + a8[3]*b8[3];
|
|
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A || defined(GGML_USE_MUSA)
|
|
|
|
#endif // defined(GGML_USE_HIP)
|
|
}
|
|
|
|
static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const float v, const float u) {
|
|
acc += v*u;
|
|
}
|
|
|
|
static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const float2 v, const float2 u) {
|
|
acc += v.x*u.x;
|
|
acc += v.y*u.y;
|
|
}
|
|
|
|
#if defined(GGML_USE_HIP) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4) || defined(__gfx906__) || defined(CDNA))
|
|
#define V_DOT2_F32_F16_AVAILABLE
|
|
#endif // defined(GGML_USE_HIP) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4) || defined(__gfx906__) || defined(CDNA))
|
|
|
|
static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const half2 v, const half2 u) {
|
|
#ifdef V_DOT2_F32_F16_AVAILABLE
|
|
asm volatile("v_dot2_f32_f16 %0, %1, %2, %0" : "+v"(acc) : "v"(v), "v"(u));
|
|
#else
|
|
#ifdef FAST_FP16_AVAILABLE
|
|
const float2 tmp = __half22float2(v*u);
|
|
acc += tmp.x + tmp.y;
|
|
#else
|
|
const float2 tmpv = __half22float2(v);
|
|
const float2 tmpu = __half22float2(u);
|
|
acc += tmpv.x * tmpu.x;
|
|
acc += tmpv.y * tmpu.y;
|
|
#endif // FAST_FP16_AVAILABLE
|
|
#endif // V_DOT2_F32_F16_AVAILABLE
|
|
}
|
|
|
|
static __device__ __forceinline__ void ggml_cuda_mad(half2 & acc, const half2 v, const half2 u) {
|
|
#ifdef FAST_FP16_AVAILABLE
|
|
acc += v*u;
|
|
#else
|
|
const float2 tmpv = __half22float2(v);
|
|
const float2 tmpu = __half22float2(u);
|
|
float2 tmpacc = __half22float2(acc);
|
|
tmpacc.x += tmpv.x * tmpu.x;
|
|
tmpacc.y += tmpv.y * tmpu.y;
|
|
acc = make_half2(tmpacc.x, tmpacc.y);
|
|
#endif // FAST_FP16_AVAILABLE
|
|
}
|
|
|
|
// Aligned memory transfers of 8/16 bytes can be faster than 2 transfers with 4 bytes, especially on AMD.
|
|
// Important: do not use this function if dst and src both point at registers.
|
|
// Due to the strict aliasing rule the compiler can do incorrect optimizations if src and dst have different types.
|
|
// The function is intended for copies between registers and SRAM/VRAM to make the compiler emit the right instructions.
|
|
// If dst and src point at different address spaces then they are guaranteed to not be aliased.
|
|
template <int nbytes, int alignment = 0>
|
|
static __device__ __forceinline__ void ggml_cuda_memcpy_1(void * __restrict__ dst, const void * __restrict__ src) {
|
|
static_assert(
|
|
nbytes <= ggml_cuda_get_max_cpy_bytes() || alignment == 0,
|
|
"You are misusing the alignment parameter for ggml_cuda_memcpy_1. "
|
|
"The intent is for the parameter is only as a workaround if either one of the pointers is not properly aligned. "
|
|
"If you use it to do more bytes per copy than ggml_cuda_max_cpy_bytes() the reads and writes may not be coalesced. "
|
|
"Call ggml_cuda_memcpy_1 in a loop instead.");
|
|
if constexpr (alignment != 0) {
|
|
static_assert(nbytes % alignment == 0, "bad alignment");
|
|
}
|
|
constexpr int nb_per_cpy = alignment == 0 ? nbytes : alignment;
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < nbytes/nb_per_cpy; ++i) {
|
|
if constexpr (nb_per_cpy == 1) {
|
|
((char *) dst)[i] = ((const char *) src)[i];
|
|
} else if constexpr (nb_per_cpy == 2) {
|
|
((short *) dst)[i] = ((const short *) src)[i];
|
|
} else if constexpr (nb_per_cpy == 4) {
|
|
((int *) dst)[i] = ((const int *) src)[i];
|
|
} else if constexpr (nb_per_cpy == 8) {
|
|
((int2 *) dst)[i] = ((const int2 *) src)[i];
|
|
} else if constexpr (nb_per_cpy == 16) {
|
|
((int4 *) dst)[i] = ((const int4 *) src)[i];
|
|
} else {
|
|
static_assert(nbytes == 0 && nbytes == -1, "bad nbytes");
|
|
}
|
|
}
|
|
}
|
|
|
|
static __device__ __forceinline__ float ggml_cuda_e8m0_to_fp32(uint8_t x) {
|
|
#if CUDART_VERSION >= 12080
|
|
const nv_bfloat16 e = __nv_cvt_e8m0_to_bf16raw(x);
|
|
return (float) e;
|
|
#else
|
|
uint32_t bits;
|
|
if (x == 0) {
|
|
bits = 0x00400000;
|
|
} else {
|
|
bits = (uint32_t) x << 23;
|
|
}
|
|
|
|
float result;
|
|
memcpy(&result, &bits, sizeof(float));
|
|
return result;
|
|
#endif // CUDART_VERSION >= 12050
|
|
}
|
|
|
|
// See https://gmplib.org/~tege/divcnst-pldi94.pdf figure 4.1.
|
|
// Precompute mp (m' in the paper) and L such that division
|
|
// can be computed using a multiply (high 32b of 64b result)
|
|
// and a shift:
|
|
//
|
|
// n/d = (mulhi(n, mp) + n) >> L;
|
|
static const uint3 init_fastdiv_values(uint64_t d_64) {
|
|
GGML_ASSERT(d_64 != 0);
|
|
GGML_ASSERT(d_64 <= std::numeric_limits<uint32_t>::max());
|
|
|
|
uint32_t d = (uint32_t)d_64;
|
|
|
|
// compute L = ceil(log2(d));
|
|
uint32_t L = 0;
|
|
while (L < 32 && (uint32_t{ 1 } << L) < d) {
|
|
L++;
|
|
}
|
|
|
|
uint32_t mp = (uint32_t) ((uint64_t{ 1 } << 32) * ((uint64_t{ 1 } << L) - d) / d + 1);
|
|
// pack divisor as well to reduce error surface
|
|
return make_uint3(mp, L, d);
|
|
}
|
|
|
|
static __device__ __forceinline__ uint32_t fastdiv(uint32_t n, const uint3 fastdiv_values) {
|
|
// expects fastdiv_values to contain <mp, L, divisor> in <x, y, z>
|
|
// fastdiv_values.z is unused and optimized away by the compiler.
|
|
// Compute high 32 bits of n * mp
|
|
const uint32_t hi = __umulhi(n, fastdiv_values.x);
|
|
// add n, apply bit shift
|
|
return (hi + n) >> fastdiv_values.y;
|
|
}
|
|
|
|
static __device__ __forceinline__ uint32_t fastmodulo(uint32_t n, const uint3 fastdiv_values) {
|
|
// expects fastdiv_values to contain <mp, L, divisor> in <x, y, z> (see init_fastdiv_values)
|
|
return n - fastdiv(n, fastdiv_values) * fastdiv_values.z;
|
|
}
|
|
|
|
// Calculate both division and modulo at once, returns <n/divisor, n%divisor>
|
|
static __device__ __forceinline__ uint2 fast_div_modulo(uint32_t n, const uint3 fastdiv_values) {
|
|
// expects fastdiv_values to contain <mp, L, divisor> in <x, y, z> (see init_fastdiv_values)
|
|
const uint32_t div_val = fastdiv(n, fastdiv_values);
|
|
const uint32_t mod_val = n - div_val * fastdiv_values.z;
|
|
return make_uint2(div_val, mod_val);
|
|
}
|
|
|
|
typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, float2 & v);
|
|
|
|
static __device__ __forceinline__ float get_alibi_slope(
|
|
const float max_bias, const uint32_t h, const uint32_t n_head_log2, const float m0, const float m1
|
|
) {
|
|
if (max_bias <= 0.0f) {
|
|
return 1.0f;
|
|
}
|
|
const float base = h < n_head_log2 ? m0 : m1;
|
|
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
|
|
|
return powf(base, exph);
|
|
}
|
|
|
|
template <ggml_type type>
|
|
struct ggml_cuda_type_traits;
|
|
|
|
template<>
|
|
struct ggml_cuda_type_traits<GGML_TYPE_F16> {
|
|
static constexpr int qk = 1;
|
|
static constexpr int qr = 1;
|
|
};
|
|
|
|
template<>
|
|
struct ggml_cuda_type_traits<GGML_TYPE_Q4_0> {
|
|
static constexpr int qk = QK4_0;
|
|
static constexpr int qr = QR4_0;
|
|
static constexpr int qi = QI4_0;
|
|
};
|
|
|
|
template<>
|
|
struct ggml_cuda_type_traits<GGML_TYPE_Q4_1> {
|
|
static constexpr int qk = QK4_1;
|
|
static constexpr int qr = QR4_1;
|
|
static constexpr int qi = QI4_1;
|
|
};
|
|
|
|
template<>
|
|
struct ggml_cuda_type_traits<GGML_TYPE_Q5_0> {
|
|
static constexpr int qk = QK5_0;
|
|
static constexpr int qr = QR5_0;
|
|
static constexpr int qi = QI5_0;
|
|
};
|
|
|
|
template<>
|
|
struct ggml_cuda_type_traits<GGML_TYPE_Q5_1> {
|
|
static constexpr int qk = QK5_1;
|
|
static constexpr int qr = QR5_1;
|
|
static constexpr int qi = QI5_1;
|
|
};
|
|
|
|
template<>
|
|
struct ggml_cuda_type_traits<GGML_TYPE_Q8_0> {
|
|
static constexpr int qk = QK8_0;
|
|
static constexpr int qr = QR8_0;
|
|
static constexpr int qi = QI8_0;
|
|
};
|
|
|
|
template<>
|
|
struct ggml_cuda_type_traits<GGML_TYPE_MXFP4> {
|
|
static constexpr int qk = QK_MXFP4;
|
|
static constexpr int qr = QR_MXFP4;
|
|
static constexpr int qi = QI_MXFP4;
|
|
};
|
|
|
|
template<>
|
|
struct ggml_cuda_type_traits<GGML_TYPE_Q2_K> {
|
|
static constexpr int qk = QK_K;
|
|
static constexpr int qr = QR2_K;
|
|
static constexpr int qi = QI2_K;
|
|
};
|
|
|
|
template<>
|
|
struct ggml_cuda_type_traits<GGML_TYPE_Q3_K> {
|
|
static constexpr int qk = QK_K;
|
|
static constexpr int qr = QR3_K;
|
|
static constexpr int qi = QI3_K;
|
|
};
|
|
|
|
template<>
|
|
struct ggml_cuda_type_traits<GGML_TYPE_Q4_K> {
|
|
static constexpr int qk = QK_K;
|
|
static constexpr int qr = QR4_K;
|
|
static constexpr int qi = QI4_K;
|
|
};
|
|
|
|
template<>
|
|
struct ggml_cuda_type_traits<GGML_TYPE_Q5_K> {
|
|
static constexpr int qk = QK_K;
|
|
static constexpr int qr = QR5_K;
|
|
static constexpr int qi = QI5_K;
|
|
};
|
|
|
|
template<>
|
|
struct ggml_cuda_type_traits<GGML_TYPE_Q6_K> {
|
|
static constexpr int qk = QK_K;
|
|
static constexpr int qr = QR6_K;
|
|
static constexpr int qi = QI6_K;
|
|
};
|
|
|
|
template<>
|
|
struct ggml_cuda_type_traits<GGML_TYPE_IQ2_XXS> {
|
|
static constexpr int qk = QK_K;
|
|
static constexpr int qr = QR2_XXS;
|
|
static constexpr int qi = QI2_XXS;
|
|
};
|
|
|
|
template<>
|
|
struct ggml_cuda_type_traits<GGML_TYPE_IQ2_XS> {
|
|
static constexpr int qk = QK_K;
|
|
static constexpr int qr = QR2_XS;
|
|
static constexpr int qi = QI2_XS;
|
|
};
|
|
|
|
template<>
|
|
struct ggml_cuda_type_traits<GGML_TYPE_IQ2_S> {
|
|
static constexpr int qk = QK_K;
|
|
static constexpr int qr = QR2_S;
|
|
static constexpr int qi = QI2_S;
|
|
};
|
|
|
|
template<>
|
|
struct ggml_cuda_type_traits<GGML_TYPE_IQ3_XXS> {
|
|
static constexpr int qk = QK_K;
|
|
static constexpr int qr = QR3_XXS;
|
|
static constexpr int qi = QI3_XXS;
|
|
};
|
|
|
|
template<>
|
|
struct ggml_cuda_type_traits<GGML_TYPE_IQ1_S> {
|
|
static constexpr int qk = QK_K;
|
|
static constexpr int qr = QR1_S;
|
|
static constexpr int qi = QI1_S;
|
|
};
|
|
|
|
template<>
|
|
struct ggml_cuda_type_traits<GGML_TYPE_IQ1_M> {
|
|
static constexpr int qk = QK_K;
|
|
static constexpr int qr = QR1_M;
|
|
static constexpr int qi = QI1_M;
|
|
};
|
|
|
|
template<>
|
|
struct ggml_cuda_type_traits<GGML_TYPE_IQ4_NL> {
|
|
static constexpr int qk = QK4_NL;
|
|
static constexpr int qr = QR4_NL;
|
|
static constexpr int qi = QI4_NL;
|
|
};
|
|
|
|
template<>
|
|
struct ggml_cuda_type_traits<GGML_TYPE_IQ4_XS> {
|
|
static constexpr int qk = QK_K;
|
|
static constexpr int qr = QR4_XS;
|
|
static constexpr int qi = QI4_XS;
|
|
};
|
|
|
|
template<>
|
|
struct ggml_cuda_type_traits<GGML_TYPE_IQ3_S> {
|
|
static constexpr int qk = QK_K;
|
|
static constexpr int qr = QR3_S;
|
|
static constexpr int qi = QI3_S;
|
|
};
|
|
|
|
//////////////////////
|
|
|
|
struct ggml_cuda_device_info {
|
|
int device_count;
|
|
|
|
struct cuda_device_info {
|
|
int cc; // compute capability
|
|
int nsm; // number of streaming multiprocessors
|
|
size_t smpb; // max. shared memory per block
|
|
size_t smpbo; // max. shared memory per block (with opt-in)
|
|
bool integrated; // Device is integrated as opposed to discrete
|
|
bool vmm; // virtual memory support
|
|
size_t vmm_granularity; // granularity of virtual memory
|
|
size_t total_vram;
|
|
int warp_size; // Number of threads in a dispatch
|
|
};
|
|
|
|
cuda_device_info devices[GGML_CUDA_MAX_DEVICES] = {};
|
|
|
|
std::array<float, GGML_CUDA_MAX_DEVICES> default_tensor_split = {};
|
|
};
|
|
|
|
const ggml_cuda_device_info & ggml_cuda_info();
|
|
|
|
void ggml_cuda_set_device(int device);
|
|
int ggml_cuda_get_device();
|
|
|
|
struct ggml_cuda_pool {
|
|
virtual ~ggml_cuda_pool() = default;
|
|
|
|
virtual void * alloc(size_t size, size_t * actual_size) = 0;
|
|
virtual void free(void * ptr, size_t size) = 0;
|
|
};
|
|
|
|
template<typename T>
|
|
struct ggml_cuda_pool_alloc {
|
|
ggml_cuda_pool * pool = nullptr;
|
|
T * ptr = nullptr;
|
|
size_t actual_size = 0;
|
|
|
|
ggml_cuda_pool_alloc() = default;
|
|
|
|
explicit ggml_cuda_pool_alloc(ggml_cuda_pool & pool) : pool(&pool) {
|
|
}
|
|
|
|
ggml_cuda_pool_alloc(ggml_cuda_pool & pool, size_t size) : pool(&pool) {
|
|
alloc(size);
|
|
}
|
|
|
|
~ggml_cuda_pool_alloc() {
|
|
if (ptr != nullptr) {
|
|
pool->free(ptr, actual_size);
|
|
}
|
|
}
|
|
|
|
// size is in number of elements
|
|
T * alloc(size_t size) {
|
|
GGML_ASSERT(pool != nullptr);
|
|
GGML_ASSERT(ptr == nullptr);
|
|
ptr = (T *) pool->alloc(size * sizeof(T), &this->actual_size);
|
|
return ptr;
|
|
}
|
|
|
|
T * alloc(ggml_cuda_pool & pool, size_t size) {
|
|
this->pool = &pool;
|
|
return alloc(size);
|
|
}
|
|
|
|
T * get() {
|
|
return ptr;
|
|
}
|
|
|
|
ggml_cuda_pool_alloc(const ggml_cuda_pool_alloc &) = delete;
|
|
ggml_cuda_pool_alloc(ggml_cuda_pool_alloc &&) = delete;
|
|
ggml_cuda_pool_alloc& operator=(const ggml_cuda_pool_alloc &) = delete;
|
|
ggml_cuda_pool_alloc& operator=(ggml_cuda_pool_alloc &&) = delete;
|
|
};
|
|
|
|
|
|
// backend interface
|
|
|
|
struct ggml_tensor_extra_gpu {
|
|
void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
|
|
cudaEvent_t events[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS]; // events for synchronizing multiple GPUs
|
|
};
|
|
|
|
|
|
#if (defined(GGML_CUDA_USE_GRAPHS) || defined(GGML_HIP_GRAPHS)) || defined(GGML_MUSA_GRAPHS)
|
|
#define USE_CUDA_GRAPH
|
|
#endif
|
|
|
|
struct ggml_graph_node_properties {
|
|
void * node_address;
|
|
ggml_op node_op;
|
|
int64_t ne[GGML_MAX_DIMS];
|
|
size_t nb[GGML_MAX_DIMS];
|
|
void * src_address[GGML_MAX_SRC];
|
|
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
|
|
};
|
|
|
|
struct ggml_cuda_graph {
|
|
#ifdef USE_CUDA_GRAPH
|
|
~ggml_cuda_graph() {
|
|
if (instance != nullptr) {
|
|
CUDA_CHECK(cudaGraphExecDestroy(instance));
|
|
}
|
|
if (graph != nullptr) {
|
|
CUDA_CHECK(cudaGraphDestroy(graph));
|
|
}
|
|
}
|
|
cudaGraph_t graph = nullptr;
|
|
cudaGraphExec_t instance = nullptr;
|
|
const ggml_cgraph * cgraph;
|
|
size_t num_nodes = 0;
|
|
std::vector<cudaGraphNode_t> nodes;
|
|
std::vector<cudaKernelNodeParams> params;
|
|
int number_consecutive_updates = 0;
|
|
int number_consecutive_computes = 0;
|
|
std::vector<ggml_graph_node_properties> ggml_graph_properties;
|
|
#endif
|
|
};
|
|
|
|
struct ggml_cuda_concurrent_event {
|
|
std::vector<cudaEvent_t> join_events;
|
|
cudaEvent_t fork_event = nullptr;
|
|
|
|
int n_streams = 0;
|
|
std::unordered_map<const ggml_tensor *, int> stream_mapping;
|
|
|
|
// Original order of nodes in this concurrent region (before interleaving)
|
|
// Used to restore grouping for fusion within streams
|
|
std::vector<const ggml_tensor *> original_order;
|
|
|
|
const ggml_tensor * join_node;
|
|
|
|
ggml_cuda_concurrent_event() = default;
|
|
|
|
ggml_cuda_concurrent_event(const ggml_cuda_concurrent_event &) = delete;
|
|
ggml_cuda_concurrent_event & operator=(const ggml_cuda_concurrent_event &) = delete;
|
|
|
|
explicit ggml_cuda_concurrent_event(int n_streams) : n_streams(n_streams) {
|
|
join_events.resize(n_streams);
|
|
|
|
for (size_t i = 0; i < join_events.size(); ++i) {
|
|
CUDA_CHECK(cudaEventCreateWithFlags(&join_events[i], cudaEventDisableTiming));
|
|
}
|
|
|
|
CUDA_CHECK(cudaEventCreateWithFlags(&fork_event, cudaEventDisableTiming));
|
|
}
|
|
|
|
ggml_cuda_concurrent_event(ggml_cuda_concurrent_event && other) noexcept
|
|
: join_events(std::move(other.join_events))
|
|
, fork_event(other.fork_event)
|
|
, n_streams(other.n_streams)
|
|
, stream_mapping(std::move(other.stream_mapping))
|
|
, original_order(std::move(other.original_order))
|
|
, join_node(other.join_node) {
|
|
other.fork_event = nullptr;
|
|
}
|
|
|
|
// 1. check if any branches write to overlapping memory ranges (except the join node)
|
|
// 2. check whether all srcs are either within the branch or outside the nodes covered by ggml_cuda_concurrent_event
|
|
// we assume all nodes have the same buffer
|
|
bool is_valid() const {
|
|
std::vector<std::vector<std::pair<int64_t, int64_t>>> write_ranges;
|
|
write_ranges.resize(n_streams);
|
|
|
|
// get join_node's memory range to exclude from overlap checking.
|
|
// multiple nodes can use join_node's buffer; we synchronize on the join node.
|
|
const ggml_tensor * join_t = join_node->view_src ? join_node->view_src : join_node;
|
|
const int64_t join_start = (int64_t) join_t->data;
|
|
const int64_t join_end = join_start + ggml_nbytes(join_t);
|
|
|
|
for (const auto & [tensor, stream] : stream_mapping) {
|
|
const ggml_tensor * t = tensor->view_src ? tensor->view_src : tensor;
|
|
const int64_t t_start = (int64_t) t->data;
|
|
const int64_t t_end = t_start + ggml_nbytes(t);
|
|
|
|
// skip tensors that overlap with join_node's buffer.
|
|
if ((t_start <= join_start && join_start < t_end) || (join_start <= t_start && t_start < join_end)) {
|
|
continue;
|
|
}
|
|
|
|
// concurrent streams begin from 1
|
|
write_ranges[stream - 1].emplace_back(t_start, t_end);
|
|
}
|
|
|
|
for (int i = 0; i < n_streams; ++i) {
|
|
// sorts first by start then by end of write range
|
|
std::sort(write_ranges[i].begin(), write_ranges[i].end());
|
|
}
|
|
|
|
bool writes_overlap = false;
|
|
bool dependent_srcs = false;
|
|
for (const auto & [tensor, stream] : stream_mapping) {
|
|
const ggml_tensor * t = tensor->view_src ? tensor->view_src : tensor;
|
|
const int64_t t_start = (int64_t) t->data;
|
|
const int64_t t_end = t_start + ggml_nbytes(t);
|
|
|
|
// skip tensors that overlap with join_node's buffer
|
|
if ((t_start <= join_start && join_start < t_end) || (join_start <= t_start && t_start < join_end)) {
|
|
continue;
|
|
}
|
|
|
|
// check if this buffer's write data overlaps with another stream's
|
|
std::pair<int64_t, int64_t> data_range = std::make_pair(t_start, t_end);
|
|
for (int i = 0; i < n_streams; ++i) {
|
|
if (i == stream - 1) {
|
|
continue;
|
|
}
|
|
auto it = std::lower_bound(write_ranges[i].begin(), write_ranges[i].end(), data_range);
|
|
|
|
if (it != write_ranges[i].end()) {
|
|
const std::pair<int64_t, int64_t> & other = *it;
|
|
|
|
// std::lower_bound returns the first element where other >= data_range (lexicographically).
|
|
// This guarantees other.first >= data_range.first.
|
|
// Therefore, overlap occurs iff other.first < data_range.second
|
|
// (i.e., the other range starts before this range ends).
|
|
if (other.first < data_range.second) {
|
|
GGML_LOG_DEBUG("Writes overlap for %s", tensor->name);
|
|
writes_overlap = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
//check if all srcs are either in branch or don't have a branch
|
|
for (int i = 0; i < GGML_MAX_SRC; ++i) {
|
|
if (!tensor->src[i]) {
|
|
continue;
|
|
}
|
|
|
|
auto it = stream_mapping.find(tensor->src[i]);
|
|
|
|
if (it == stream_mapping.end()) {
|
|
continue;
|
|
}
|
|
|
|
if (it->second != stream) {
|
|
dependent_srcs = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (dependent_srcs || writes_overlap) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return !writes_overlap && !dependent_srcs;
|
|
}
|
|
|
|
~ggml_cuda_concurrent_event() {
|
|
if (fork_event != nullptr) {
|
|
CUDA_CHECK(cudaEventDestroy(fork_event));
|
|
}
|
|
for (cudaEvent_t e : join_events) {
|
|
if (e != nullptr) {
|
|
CUDA_CHECK(cudaEventDestroy(e));
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
struct ggml_cuda_stream_context {
|
|
std::unordered_map<const ggml_tensor *, ggml_cuda_concurrent_event> concurrent_events;
|
|
|
|
void reset() {
|
|
concurrent_events.clear();
|
|
}
|
|
};
|
|
|
|
struct ggml_backend_cuda_context {
|
|
int device;
|
|
std::string name;
|
|
cudaEvent_t copy_event = nullptr;
|
|
|
|
cudaStream_t streams[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { { nullptr } };
|
|
cublasHandle_t cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
|
|
|
|
#ifdef USE_CUDA_GRAPH
|
|
bool cuda_graph_initialized = false;
|
|
bool disable_graph_due_to_env = false;
|
|
bool disable_graph_due_to_gpu_arch = false;
|
|
bool disable_graph_due_to_too_many_updates = false;
|
|
#endif
|
|
|
|
int curr_stream_no = 0;
|
|
|
|
explicit ggml_backend_cuda_context(int device) :
|
|
device(device),
|
|
name(GGML_CUDA_NAME + std::to_string(device)) {
|
|
}
|
|
|
|
ggml_cuda_stream_context concurrent_stream_context;
|
|
|
|
~ggml_backend_cuda_context();
|
|
|
|
cudaStream_t stream(int device, int stream) {
|
|
if (streams[device][stream] == nullptr) {
|
|
ggml_cuda_set_device(device);
|
|
CUDA_CHECK(cudaStreamCreateWithFlags(&streams[device][stream], cudaStreamNonBlocking));
|
|
}
|
|
return streams[device][stream];
|
|
}
|
|
|
|
cudaStream_t stream() { return stream(device, curr_stream_no); }
|
|
|
|
ggml_cuda_stream_context & stream_context() { return concurrent_stream_context; }
|
|
|
|
cublasHandle_t cublas_handle(int device) {
|
|
if (cublas_handles[device] == nullptr) {
|
|
ggml_cuda_set_device(device);
|
|
CUBLAS_CHECK(cublasCreate(&cublas_handles[device]));
|
|
CUBLAS_CHECK(cublasSetMathMode(cublas_handles[device], CUBLAS_TF32_TENSOR_OP_MATH));
|
|
}
|
|
return cublas_handles[device];
|
|
}
|
|
|
|
cublasHandle_t cublas_handle() {
|
|
return cublas_handle(device);
|
|
}
|
|
|
|
// pool
|
|
std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS];
|
|
|
|
static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device, int stream_no);
|
|
|
|
ggml_cuda_pool & pool(int device) {
|
|
if (pools[device][curr_stream_no] == nullptr) {
|
|
pools[device][curr_stream_no] = new_pool_for_device(device, curr_stream_no);
|
|
}
|
|
return *pools[device][curr_stream_no];
|
|
}
|
|
|
|
ggml_cuda_pool & pool() {
|
|
return pool(device);
|
|
}
|
|
};
|
|
|
|
struct ggml_cuda_mm_fusion_args_host {
|
|
const ggml_tensor * x_bias = nullptr;
|
|
const ggml_tensor * gate = nullptr;
|
|
const ggml_tensor * gate_bias = nullptr;
|
|
ggml_glu_op glu_op;
|
|
};
|
|
struct ggml_cuda_mm_fusion_args_device {
|
|
const void * x_bias = nullptr;
|
|
const void * gate = nullptr;
|
|
const void * gate_bias = nullptr;
|
|
ggml_glu_op glu_op;
|
|
};
|