llama.cpp/ggml/src/ggml-qnn.cpp

470 lines
18 KiB
C++

#include "ggml-qnn.h"
#include <stdatomic.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <time.h>
#include <unistd.h>
#include <cassert>
#include <chrono>
#include <condition_variable>
#include <fstream>
#include <functional>
#include <iostream>
#include <list>
#include <memory>
#include <mutex>
#include <queue>
#include <random>
#include <regex>
#include <set>
#include <sstream>
#include <thread>
#include <tuple>
#include <unordered_set>
#include <utility>
#include <vector>
#include "ggml-backend-impl.h"
#include "ggml-qnn/backend-ops.hpp"
#include "ggml-qnn/backend.hpp"
#include "ggml-qnn/logger.hpp"
#include "ggml-qnn/tensor.hpp"
#include "ggml-qnn/utils.hpp"
// =================================================================================================
//
// self-defined macro / data structure
//
// =================================================================================================
#ifdef NDEBUG
#define ENABLE_QNNBACKEND_PERF 0 // enable/disable op's perf info
#else
#define ENABLE_QNNBACKEND_PERF 1 // enable/disable op's perf info
#endif
#define QNN_BACKEND_NAME "qnn"
// according to the QNN SDK Reference Guide,
// CPU - Choose a non-quantized model.Quantized models are currently incompatible with the CPU backend
// GPU - Choose a non-quantized model.Quantized models are currently incompatible with the GPU backend
// HTP - Choose a quantized model. Quantized models are required when running on the HTP backend
// DSP - Choose a quantized model. Quantized models are required when running on the DSP backend
// HTA - Choose a quantized model. Quantized models are required when running on the HTA backend
//
// only focus on Qualcomm CPU/GPU/NPU backend in this implementation of QNN backend for ggml currently,
// CPU: Qualcomm Kryo CPU
// GPU: Qualcomm Adreno GPU
// NPU: Qualcomm NPU: aka HTP(Hexagon Tensor Processor), ~= cDSP(Compute DSP) +
// HMX(Hexagon Matrix eXtensions)/HTA(Hexagon Tensor Accelerator)
static struct ggml_backend_qnn_context g_qnn_mgr[GGML_QNN_MAX_DEVICES] = {
ggml_backend_qnn_context(QNN_BACKEND_CPU, 1, "qnn-cpu", "libQnnCpu.so"), /* QNN_BACKEND_CPU */
ggml_backend_qnn_context(QNN_BACKEND_GPU, 1, "qnn-gpu", "libQnnGpu.so"), /* QNN_BACKEND_GPU */
ggml_backend_qnn_context(QNN_BACKEND_NPU, 1, "qnn-npu", "libQnnHtp.so"), /* QNN_BACKEND_NPU */
};
class ggml_backend_qnn_buffer_context {
public:
ggml_backend_qnn_buffer_context(QNNBackend device, std::shared_ptr<qnn::qnn_instance> instance, size_t size) :
_instance(instance), _name(QNN_BACKEND_NAME + std::to_string(device)) {
size_t size_page = sysconf(_SC_PAGESIZE);
// TODO: for qnn npu, a better way here is to reuse the buffer allocated by qnn rpc, will save an extra copy
_buffer = qnn::align_alloc(size_page, size);
if (!_buffer) {
QNN_LOG_WARN("failed to allocate %.2f MiB\n", float(size / (1 << 20)));
return;
}
_buffer_size = size;
}
~ggml_backend_qnn_buffer_context() {
// the free will do nothing if the _buffer is nullptr
qnn::align_free(_buffer);
}
bool is_valid() const { return _buffer != nullptr; }
void *get_buffer() { return _buffer; }
size_t get_buffer_size() { return _buffer_size; }
private:
std::shared_ptr<qnn::qnn_instance> _instance;
std::string _name;
void *_buffer = nullptr;
size_t _buffer_size = 0;
};
struct ggml_backend_qnn_buffer_type_context {
size_t device;
std::string name;
};
// =================================================================================================
//
// implementation of QNN backend for GGML
//
// =================================================================================================
static bool ggml_qnn_compute_forward(ggml_backend_qnn_context *ctx, struct ggml_tensor *tensor) {
return qnn::ggml_qnn_forward(ctx, tensor);
}
static const char *ggml_backend_qnn_buffer_get_name(ggml_backend_buffer_t buffer) {
GGML_UNUSED(buffer);
return "QNN";
}
GGML_CALL static bool ggml_backend_buffer_is_qnn(ggml_backend_buffer_t buffer) {
return buffer->iface.get_name == ggml_backend_qnn_buffer_get_name;
}
GGML_CALL static void ggml_backend_qnn_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_qnn_buffer_context *ctx = (ggml_backend_qnn_buffer_context *)buffer->context;
delete ctx;
}
GGML_CALL static void *ggml_backend_qnn_buffer_get_base(ggml_backend_buffer_t buffer) {
ggml_backend_qnn_buffer_context *ctx = (ggml_backend_qnn_buffer_context *)buffer->context;
return ctx->get_buffer();
}
GGML_CALL static void ggml_backend_qnn_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor *tensor) {
// Do nothing here, the qnn tensor will be create along with the graph.
GGML_UNUSED(buffer);
GGML_UNUSED(tensor);
}
GGML_CALL static void ggml_backend_qnn_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor *tensor,
const void *data, size_t offset, size_t size) {
GGML_UNUSED(buffer);
memcpy((char *)tensor->data + offset, data, size);
}
GGML_CALL static void ggml_backend_qnn_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor *tensor,
void *data, size_t offset, size_t size) {
GGML_UNUSED(buffer);
memcpy(data, (const char *)tensor->data + offset, size);
}
GGML_CALL static bool ggml_backend_qnn_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor *src,
struct ggml_tensor *dst) {
GGML_UNUSED(buffer);
if (ggml_backend_buffer_is_host(src->buffer)) {
memcpy(dst->data, src->data, ggml_nbytes(src));
return true;
}
return false;
}
GGML_CALL static void ggml_backend_qnn_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_qnn_buffer_context *ctx = (ggml_backend_qnn_buffer_context *)buffer->context;
memset(ctx->get_buffer(), value, ctx->get_buffer_size());
}
static ggml_backend_buffer_i ggml_backend_qnn_buffer_interface = {
/* .get_name = */ ggml_backend_qnn_buffer_get_name,
/* .free_buffer = */ ggml_backend_qnn_buffer_free_buffer,
/* .get_base = */ ggml_backend_qnn_buffer_get_base,
/* .init_tensor = */ ggml_backend_qnn_buffer_init_tensor,
/* .set_tensor = */ ggml_backend_qnn_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_qnn_buffer_get_tensor,
/* .cpy_tensor = */ ggml_backend_qnn_buffer_cpy_tensor,
/* .clear = */ ggml_backend_qnn_buffer_clear,
/* .reset = */ nullptr,
};
GGML_CALL static const char *ggml_backend_qnn_buffer_type_name(ggml_backend_buffer_type_t buft) {
GGML_UNUSED(buft);
return "QNN";
}
GGML_CALL static ggml_backend_buffer_t ggml_backend_qnn_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft,
size_t size) {
ggml_backend_qnn_buffer_type_context *buft_ctx = (ggml_backend_qnn_buffer_type_context *)buft->context;
ggml_backend_qnn_buffer_context *ctx =
new ggml_backend_qnn_buffer_context((QNNBackend)buft_ctx->device, g_qnn_mgr[buft_ctx->device].instance, size);
if (!ctx->is_valid()) {
return nullptr;
}
return ggml_backend_buffer_init(buft, ggml_backend_qnn_buffer_interface, ctx, size);
}
GGML_CALL static size_t ggml_backend_qnn_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
GGML_UNUSED(buft);
return 32;
}
// TODO: this value is an experimental value, works fine with whisper/llm/minicpm-v inference on Android
GGML_CALL static size_t ggml_backend_qnn_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
GGML_UNUSED(buft);
return (96 * 1024 * 1024);
}
GGML_CALL static bool ggml_backend_qnn_buffer_is_host(ggml_backend_buffer_type_t buft) {
GGML_UNUSED(buft);
return true;
}
GGML_CALL static const char *ggml_backend_qnn_name(ggml_backend_t backend) {
ggml_backend_qnn_context *ctx = (ggml_backend_qnn_context *)backend->context;
return g_qnn_mgr[ctx->device].name;
}
GGML_CALL static void ggml_backend_qnn_free(ggml_backend_t backend) {
QNN_LOG_INFO("enter %s", __func__);
ggml_backend_qnn_context *ctx = (ggml_backend_qnn_context *)backend->context;
QNN_LOG_INFO("idx %d, name:%s", ctx->device, g_qnn_mgr[ctx->device].name);
auto instance = g_qnn_mgr[ctx->device].instance;
if (instance) {
ctx->qnn_graph_cache.clear();
instance->qnn_finalize();
g_qnn_mgr[ctx->device].instance.reset();
}
if (g_qnn_mgr[ctx->device].backend != nullptr) {
delete backend;
g_qnn_mgr[ctx->device].backend = nullptr;
}
QNN_LOG_INFO("leave %s", __func__);
}
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_qnn_get_default_buffer_type(ggml_backend_t backend) {
ggml_backend_qnn_context *ctx = (ggml_backend_qnn_context *)backend->context;
return ggml_backend_qnn_buffer_type(ctx->device);
}
GGML_CALL static ggml_status ggml_backend_qnn_graph_compute(ggml_backend_t backend, ggml_cgraph *cgraph) {
enum ggml_status result = GGML_STATUS_SUCCESS;
ggml_backend_qnn_context *ctx = (ggml_backend_qnn_context *)backend->context;
GGML_UNUSED(ctx);
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor *node = cgraph->nodes[i];
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE ||
node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
continue;
}
bool ok = ggml_qnn_compute_forward(ctx, node);
if (!ok) {
QNN_LOG_DEBUG("error: op not supported %s (%s)\n", node->name, ggml_op_name(node->op));
}
}
return result;
}
GGML_CALL static bool ggml_backend_qnn_supports_op(ggml_backend_t backend, const ggml_tensor *op) {
GGML_UNUSED(backend);
return qnn::ggml_qnn_supports_op(op);
}
GGML_CALL static bool ggml_backend_qnn_offload_op(ggml_backend_t backend, const ggml_tensor *op) {
GGML_UNUSED(backend);
size_t dims = ggml_n_dims(op);
bool can_offload = false;
for (size_t i = 0; i < dims; i++) {
if (op->ne[i] > 1) {
can_offload = true;
break;
}
}
return can_offload;
}
static ggml_backend_i ggml_backend_qnn_interface = {
/* .get_name = */ ggml_backend_qnn_name,
/* .free = */ ggml_backend_qnn_free,
/* .get_default_buffer_type = */ ggml_backend_qnn_get_default_buffer_type,
/* .set_tensor_async = */ nullptr,
/* .get_tensor_async = */ nullptr,
/* .cpy_tensor_async = */ nullptr,
/* .synchronize = */ nullptr,
/* .graph_plan_create = */ nullptr,
/* .graph_plan_free = */ nullptr,
/* .graph_plan_update = */ nullptr,
/* .graph_plan_compute = */ nullptr,
/* .graph_compute = */ ggml_backend_qnn_graph_compute,
/* .supports_op = */ ggml_backend_qnn_supports_op,
/* .supports_buft = */ nullptr,
/* .offload_op = */ ggml_backend_qnn_offload_op,
/* .event_new = */ nullptr,
/* .event_free = */ nullptr,
/* .event_record = */ nullptr,
/* .event_wait = */ nullptr,
/* .event_synchronize = */ nullptr,
};
static ggml_guid_t ggml_backend_qnn_guid() {
static ggml_guid guid = { 0x1a, 0x2b, 0x3c, 0x4d, 0x5e, 0x6f, 0x70, 0x81,
0x92, 0xa3, 0xb4, 0xc5, 0xd6, 0xe7, 0xf8, 0x09 };
return &guid;
}
static ggml_backend_t ggml_backend_qnn_reg_init(const char *extend_lib_search_path, void *user_data) {
ggml_backend_t qnn_backend = ggml_backend_qnn_init((int)(intptr_t)user_data, extend_lib_search_path);
return qnn_backend;
}
bool ggml_backend_is_qnn(ggml_backend_t backend) {
return backend != nullptr && ggml_guid_matches(backend->guid, ggml_backend_qnn_guid());
}
void ggml_backend_qnn_set_n_threads(ggml_backend_t backend, int n_threads) {
GGML_ASSERT(ggml_backend_is_qnn(backend));
auto *ctx = (ggml_backend_qnn_context *)backend->context;
ctx->threads = n_threads;
}
int ggml_backend_qnn_get_device_count() { return GGML_QNN_MAX_DEVICES; }
void ggml_backend_qnn_get_device_description(size_t dev_num, char *description, size_t description_size) {
if (nullptr == description || 0 == description_size) {
QNN_LOG_WARN("invalid param");
return;
}
if (dev_num >= GGML_QNN_MAX_DEVICES) {
QNN_LOG_WARN("invalid param");
return;
}
snprintf(description, description_size, "%s", g_qnn_mgr[dev_num].name);
}
ggml_backend_buffer_type_t ggml_backend_qnn_buffer_type(size_t device) {
if (device >= GGML_QNN_MAX_DEVICES) {
QNN_LOG_DEBUG(
"ggml_backend_qnn_buffer_type error: device_index:%d is "
"out of range [0, %d]\n",
device, GGML_QNN_MAX_DEVICES - 1);
return nullptr;
}
static ggml_backend_qnn_buffer_type_context ggml_backend_qnn_buffer_type_contexts[GGML_QNN_MAX_DEVICES];
static ggml_backend_buffer_type ggml_backend_qnn_buffer_types[GGML_QNN_MAX_DEVICES];
static bool ggml_backend_qnn_buffer_type_initialized = false;
if (!ggml_backend_qnn_buffer_type_initialized) {
for (size_t i = 0; i < GGML_QNN_MAX_DEVICES; i++) {
auto &context = ggml_backend_qnn_buffer_type_contexts[i];
context = { i, std::string(QNN_BACKEND_NAME) + std::to_string(i) };
ggml_backend_qnn_buffer_types[i] = {
/* .iface = */ { /* .get_name = */ ggml_backend_qnn_buffer_type_name,
/* .alloc_buffer = */ ggml_backend_qnn_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_qnn_buffer_type_get_alignment,
/* .get_max_size = */ ggml_backend_qnn_buffer_type_get_max_size,
/* .get_alloc_size = */ nullptr, // defaults to ggml_nbytes
/* .is_host = */ ggml_backend_qnn_buffer_is_host },
/* .context = */ &context,
};
}
ggml_backend_qnn_buffer_type_initialized = true;
}
return &ggml_backend_qnn_buffer_types[device];
}
ggml_backend_t ggml_backend_qnn_init(size_t device, const char *extend_lib_search_path) {
int result = 0;
if (!extend_lib_search_path) {
extend_lib_search_path = GGML_QNN_DEFAULT_LIB_SEARCH_PATH;
QNN_LOG_WARN("extend_lib_search_path is nullptr, will use " GGML_QNN_DEFAULT_LIB_SEARCH_PATH " as default");
}
QNN_LOG_DEBUG("device %d", device);
QNN_LOG_DEBUG("extend_lib_search_path %s", extend_lib_search_path);
if (device >= GGML_QNN_MAX_DEVICES) {
QNN_LOG_ERROR("invalid device %d", device);
return nullptr;
}
std::string path = extend_lib_search_path;
// TODO: Fix this for other platforms
#if defined(__ANDROID__) || defined(ANDROID)
if (QNN_BACKEND_NPU == device) {
if (0 == setenv("LD_LIBRARY_PATH",
(path + ":/vendor/dsp/cdsp:/vendor/lib64:/vendor/dsp/"
"dsp:/vendor/dsp/images")
.c_str(),
1)) {
QNN_LOG_INFO("QNN NPU backend setenv successfully");
} else {
QNN_LOG_ERROR("QNN NPU backend setenv failure");
}
if (0 == setenv("ADSP_LIBRARY_PATH",
(path + ";/vendor/dsp/cdsp;/vendor/lib/rfsa/adsp;/system/lib/"
"rfsa/adsp;/vendor/dsp/dsp;/vendor/dsp/images;/dsp")
.c_str(),
1)) {
QNN_LOG_INFO("QNN NPU backend setenv successfully");
} else {
QNN_LOG_ERROR("QNN NPU backend setenv failure");
}
} else {
if (0 == setenv("LD_LIBRARY_PATH", path.c_str(), 1)) {
QNN_LOG_INFO("%s backend setenv successfully\n", qnn::get_backend_name(device));
} else {
QNN_LOG_ERROR("%s backend setenv failure\n", qnn::get_backend_name(device));
}
}
#endif
auto instance = std::make_shared<qnn::qnn_instance>(extend_lib_search_path, g_qnn_mgr[device].lib, "");
result = instance->qnn_init(nullptr);
if (result != 0) {
QNN_LOG_WARN("init qnn subsystem failed with qnn backend %s, pls check why\n", qnn::get_backend_name(device));
return nullptr;
}
auto qnn_interface = instance->get_qnn_interface();
if (!qnn_interface) {
QNN_LOG_WARN("qnn subsystem failure\n");
return nullptr;
}
std::string device_name = qnn::get_backend_name(device);
QNN_LOG_INFO("qnn device name %s", device_name.c_str());
auto &qnn_device = g_qnn_mgr[device];
qnn_device.instance = instance;
qnn_device.qnn_interface = qnn_interface;
qnn_device.socinfo = instance->get_soc_info();
ggml_backend_t qnn_backend = new ggml_backend{ /* .guid = */ ggml_backend_qnn_guid(),
/* .iface = */ ggml_backend_qnn_interface,
/* .context = */ &g_qnn_mgr[device] };
g_qnn_mgr[device].backend = qnn_backend;
return qnn_backend;
}
extern "C" GGML_CALL void ggml_backend_qnn_reg_devices();
GGML_CALL void ggml_backend_qnn_reg_devices() {
for (size_t idx = 0; idx < GGML_QNN_MAX_DEVICES; idx++) {
char name[GGML_MAX_NAME];
ggml_backend_qnn_get_device_description(idx, name, GGML_MAX_NAME);
ggml_backend_register(name, ggml_backend_qnn_reg_init, ggml_backend_qnn_buffer_type(idx),
(void *)(intptr_t)idx);
}
}