llama.cpp/tools/mtmd/models/glm4v.cpp

121 lines
4.4 KiB
C++

#include "models.h"
ggml_cgraph * clip_graph_glm4v::build() {
GGML_ASSERT(model.patch_bias != nullptr);
GGML_ASSERT(model.position_embeddings != nullptr);
GGML_ASSERT(model.class_embedding == nullptr);
const int batch_size = 1;
norm_type norm_t = NORM_TYPE_RMS;
ggml_tensor * inp_raw = build_inp_raw();
ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches * 4);
ggml_set_name(positions, "positions");
ggml_set_input(positions);
GGML_ASSERT(img.nx % (patch_size * 2) == 0);
GGML_ASSERT(img.ny % (patch_size * 2) == 0);
// second conv dimension
{
auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
inp = ggml_add(ctx0, inp, inp_1);
inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
inp = ggml_cont_4d(
ctx0, inp,
n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
inp = ggml_reshape_4d(
ctx0, inp,
n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
inp = ggml_cont_3d(
ctx0, inp,
n_embd, n_patches_x * n_patches_y, batch_size);
}
// add patch bias
inp = ggml_add(ctx0, inp, model.patch_bias);
cb(inp, "patch_bias", -1);
// pos-conv norm
inp = build_norm(inp, model.norm_embd_w, model.norm_embd_b, norm_t, eps, -1);
// calculate absolute position embedding and apply
ggml_tensor * learned_pos_embd = resize_position_embeddings(GGML_SCALE_MODE_BICUBIC);
learned_pos_embd = ggml_cont_4d(
ctx0, learned_pos_embd,
n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
learned_pos_embd = ggml_reshape_4d(
ctx0, learned_pos_embd,
n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
learned_pos_embd = ggml_permute(ctx0, learned_pos_embd, 0, 2, 1, 3);
learned_pos_embd = ggml_cont_3d(
ctx0, learned_pos_embd,
n_embd, n_patches_x * n_patches_y, batch_size);
cb(learned_pos_embd, "learned_pos_embd", -1);
auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
return ggml_rope_multi(
ctx0, cur, positions, nullptr,
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION,
32768, hparams.rope_theta, 1, 0, 1, 32, 1);
};
ggml_tensor * cur = build_vit(
inp, n_patches,
norm_t,
hparams.ffn_op,
learned_pos_embd,
add_pos);
cb(cur, "vit_out", -1);
// cb(ggml_sum(ctx0, cur), "vit_out_sum", -1);
// GLM4V projector
// ref: https://github.com/huggingface/transformers/blob/40dc11cd3eb4126652aa41ef8272525affd4a636/src/transformers/models/glm4v/modeling_glm4v.py#L116-L130
// patch merger (downsample)
{
int n_merge = hparams.n_merge;
GGML_ASSERT(n_merge > 0);
int n_token_out = n_patches / n_merge / n_merge;
cur = ggml_reshape_4d(ctx0, cur, n_embd, n_merge, n_merge, n_token_out);
cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 2, 0, 1, 3)); // [n_merge, n_merge, n_embd, n_token_out]
cur = ggml_conv_2d(ctx0, model.mm_patch_merger_w, cur, n_merge, n_merge, 0, 0, 1, 1);
cur = ggml_reshape_2d(ctx0, cur, cur->ne[2], n_token_out); // [n_embd_out, n_token_out]
cur = ggml_add(ctx0, cur, model.mm_patch_merger_b);
}
// FC projector
{
cur = ggml_mul_mat(ctx0, model.fc_w, cur);
// default LayerNorm (post_projection_norm)
cur = build_norm(cur, model.mm_post_norm_w, model.mm_post_norm_b, NORM_TYPE_NORMAL, 1e-5, -1);
cur = ggml_gelu_erf(ctx0, cur);
cb(cur, "after_fc_proj", -1);
}
// FFN projector
{
cur = build_ffn(cur,
model.mm_ffn_up_w, model.mm_ffn_up_b,
model.mm_ffn_gate_w, model.mm_ffn_gate_b,
model.mm_ffn_down_w, model.mm_ffn_down_b,
hparams.ffn_op, -1);
cb(cur, "after_ffn_proj", -1);
// cb(ggml_sum(ctx0, cur), "merged_sum", -1);
}
// build the graph
ggml_build_forward_expand(gf, cur);
return gf;
}