124 lines
4.2 KiB
C++
124 lines
4.2 KiB
C++
|
|
#include "models.h"
|
|
|
|
llm_build_mimo2_iswa::llm_build_mimo2_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
|
ggml_tensor * cur;
|
|
ggml_tensor * inpL;
|
|
|
|
inpL = build_inp_embd(model.tok_embd);
|
|
|
|
ggml_tensor * inp_pos = build_inp_pos();
|
|
auto * inp_attn = build_attn_inp_kv_iswa();
|
|
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
|
|
for (int il = 0; il < n_layer; ++il) {
|
|
ggml_tensor * inpSA = inpL;
|
|
|
|
uint32_t n_head_l = hparams.n_head(il);
|
|
uint32_t n_head_kv_l = hparams.n_head_kv(il);
|
|
const float freq_base_l = model.get_rope_freq_base(cparams, il);
|
|
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
|
|
|
|
cur = inpL;
|
|
|
|
// self_attention
|
|
{
|
|
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
|
|
cb(cur, "attn_norm", il);
|
|
|
|
// compute Q and K and RoPE them
|
|
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
cb(Qcur, "Qcur", il);
|
|
|
|
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
|
cb(Kcur, "Kcur", il);
|
|
|
|
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
|
cb(Vcur, "Vcur", il);
|
|
|
|
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head_l, n_tokens);
|
|
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv_l, n_tokens);
|
|
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head_v, n_head_kv_l, n_tokens);
|
|
|
|
Qcur = ggml_rope_ext(
|
|
ctx0, Qcur, inp_pos, nullptr,
|
|
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
|
|
ext_factor, attn_factor, beta_fast, beta_slow
|
|
);
|
|
|
|
Kcur = ggml_rope_ext(
|
|
ctx0, Kcur, inp_pos, nullptr,
|
|
n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
|
|
ext_factor, attn_factor, beta_fast, beta_slow
|
|
);
|
|
|
|
cb(Qcur, "Qcur", il);
|
|
cb(Kcur, "Kcur", il);
|
|
cb(Vcur, "Vcur", il);
|
|
|
|
ggml_tensor * sinks = model.layers[il].attn_sinks;
|
|
|
|
cur = build_attn(inp_attn,
|
|
model.layers[il].wo, NULL,
|
|
Qcur, Kcur, Vcur, nullptr, sinks, nullptr, 1.0f/sqrtf(float(n_embd_head_k)), il);
|
|
}
|
|
|
|
if (il == n_layer - 1 && inp_out_ids) {
|
|
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
}
|
|
|
|
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
cb(ffn_inp, "ffn_inp", il);
|
|
|
|
cur = build_norm(ffn_inp,
|
|
model.layers[il].ffn_norm, NULL,
|
|
LLM_NORM_RMS, il);
|
|
cb(cur, "ffn_norm", il);
|
|
|
|
// feed-forward network
|
|
if (model.layers[il].ffn_gate_inp == nullptr) {
|
|
// dense branch
|
|
cur = build_ffn(cur,
|
|
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
|
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
|
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
|
NULL,
|
|
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
|
cb(cur, "ffn_out", il);
|
|
} else {
|
|
// MoE branch
|
|
cur = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps,
|
|
model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps,
|
|
model.layers[il].ffn_exp_probs_b, n_expert, n_expert_used, LLM_FFN_SILU, true, false,
|
|
0.0, LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID, il);
|
|
cb(cur, "ffn_moe_out", il);
|
|
}
|
|
|
|
cur = ggml_add(ctx0, cur, ffn_inp);
|
|
|
|
cur = build_cvec(cur, il);
|
|
cb(cur, "l_out", il);
|
|
|
|
// input for next layer
|
|
inpL = cur;
|
|
}
|
|
|
|
cur = inpL;
|
|
|
|
cur = build_norm(cur,
|
|
model.output_norm, NULL,
|
|
LLM_NORM_RMS, -1);
|
|
|
|
cb(cur, "result_norm", -1);
|
|
res->t_embd = cur;
|
|
|
|
// lm_head
|
|
cur = build_lora_mm(model.output, cur);
|
|
|
|
cb(cur, "result_output", -1);
|
|
res->t_logits = cur;
|
|
|
|
ggml_build_forward_expand(gf, cur);
|
|
}
|