llama.cpp/tools/server/server-common.h

363 lines
12 KiB
C++

#pragma once
#include "common.h"
#include "log.h"
#include "llama.h"
#include "chat.h"
#include "mtmd.h"
#include "mtmd-helper.h"
#define JSON_ASSERT GGML_ASSERT
#include <nlohmann/json.hpp>
#include <random>
#include <sstream>
#include <string>
#include <vector>
#include <memory>
#include <cinttypes>
// fix problem with std::min and std::max
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
# define NOMINMAX
#endif
#include <windows.h>
#endif
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo"
const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT);
using json = nlohmann::ordered_json;
#define SLT_INF(slot, fmt, ...) LOG_INF("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, ((slot).task ? (slot).task->id : -1), __VA_ARGS__)
#define SLT_WRN(slot, fmt, ...) LOG_WRN("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, ((slot).task ? (slot).task->id : -1), __VA_ARGS__)
#define SLT_ERR(slot, fmt, ...) LOG_ERR("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, ((slot).task ? (slot).task->id : -1), __VA_ARGS__)
#define SLT_DBG(slot, fmt, ...) LOG_DBG("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, ((slot).task ? (slot).task->id : -1), __VA_ARGS__)
#define SRV_INF(fmt, ...) LOG_INF("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define SRV_WRN(fmt, ...) LOG_WRN("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define SRV_ERR(fmt, ...) LOG_ERR("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define SRV_DBG(fmt, ...) LOG_DBG("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
using raw_buffer = std::vector<uint8_t>;
template <typename T>
static T json_value(const json & body, const std::string & key, const T & default_value) {
// Fallback null to default value
if (body.contains(key) && !body.at(key).is_null()) {
try {
return body.at(key);
} catch (NLOHMANN_JSON_NAMESPACE::detail::type_error const & err) {
LOG_WRN("Wrong type supplied for parameter '%s'. Expected '%s', using default value: %s\n", key.c_str(), json(default_value).type_name(), err.what());
return default_value;
}
} else {
return default_value;
}
}
// https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
enum error_type {
ERROR_TYPE_INVALID_REQUEST,
ERROR_TYPE_AUTHENTICATION,
ERROR_TYPE_SERVER,
ERROR_TYPE_NOT_FOUND,
ERROR_TYPE_PERMISSION,
ERROR_TYPE_UNAVAILABLE, // custom error
ERROR_TYPE_NOT_SUPPORTED, // custom error
ERROR_TYPE_EXCEED_CONTEXT_SIZE, // custom error
};
// thin wrapper around common_grammar_trigger with (de)serialization functions
struct server_grammar_trigger {
common_grammar_trigger value;
server_grammar_trigger() = default;
server_grammar_trigger(const common_grammar_trigger & value) : value(value) {}
server_grammar_trigger(const json & in) {
value.type = (common_grammar_trigger_type) in.at("type").get<int>();
value.value = in.at("value").get<std::string>();
if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
value.token = (llama_token) in.at("token").get<int>();
}
}
json to_json() const {
json out {
{"type", (int) value.type},
{"value", value.value},
};
if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
out["token"] = (int) value.token;
}
return out;
}
};
json format_error_response(const std::string & message, const enum error_type type);
//
// random string / id
//
std::string random_string();
std::string gen_chatcmplid();
std::string gen_tool_call_id();
//
// lora utils
//
// check whether the given lora set has only aloras activated (empty => false)
bool lora_all_alora(const std::vector<common_adapter_lora_info> & loras);
// if the two sets of loras are different, they require a cache clear unless the
// change is only from aloras to aloras.
bool lora_should_clear_cache(
const std::vector<common_adapter_lora_info> & current,
const std::vector<common_adapter_lora_info> & next);
std::vector<common_adapter_lora_info> parse_lora_request(
const std::vector<common_adapter_lora_info> & lora_base,
const json & data);
bool are_lora_equal(
const std::vector<common_adapter_lora_info> & l1,
const std::vector<common_adapter_lora_info> & l2);
// get the ids of all enabled loras
std::vector<size_t> lora_get_enabled_ids(const std::vector<common_adapter_lora_info> & loras);
//
// server_tokens
//
/**
* server_tokens is a helper to manage the input tokens and image for the server.
* it is made this way to simplify the logic of KV cache management.
*/
struct server_tokens {
bool has_mtmd = false;
private: // disallow accessing these members directly, risking out-of-sync
// map a **start** index in tokens to the image chunk
// note: the order need to be in-sync with tokens
std::map<size_t, mtmd::input_chunk_ptr> map_idx_to_media;
// list of tokens
// if the token is LLAMA_TOKEN_NULL, it indicates that this position is occupied by media chunk
// otherwise, it is a normal text token
// note: a non-text chunk can occupy multiple tokens (aka memory cells) in the token list
// note(2): for M-RoPE, an image can occupy different number of pos; do not assume 1-to-1 mapping tokens <-> pos
llama_tokens tokens;
// for ex. with input of 5 text tokens and 2 images (each image occupies 3 tokens and 2 pos):
// [0] [1] [2] [3] [4] [img0] [img0] [img0] [img1] [img1] [img1]
// idx 0 1 2 3 4 5 6 7 8 9 10
// pos 0 1 2 3 4 5 5 5 7 7 7
// map_idx_to_media will contain: {5, img0}, {8, img1}
public:
server_tokens() = default;
~server_tokens() = default;
// Prevent copying
// TODO: server_tokens should be copyable - remove this:
server_tokens(const server_tokens&) = delete;
server_tokens& operator=(const server_tokens&) = delete;
// Allow moving (usually implicitly generated if members are movable)
server_tokens(server_tokens&&) = default;
server_tokens& operator=(server_tokens&&) = default;
// Allow accessing elements using [] operator
llama_token operator[](size_t index) { return tokens[index]; }
const llama_token& operator[](size_t index) const { return tokens[index]; }
server_tokens(mtmd::input_chunks & mtmd_chunks, bool has_mtmd);
server_tokens(const llama_tokens & tokens, bool has_mtmd);
// for debugging
std::string str() const;
llama_pos pos_next() const;
const mtmd::input_chunk_ptr & find_chunk(size_t idx) const;
void push_back(llama_token tok);
// will create a copy of the chunk if it contains non-text data
void push_back(const mtmd_input_chunk * chunk);
// appends server tokens, updates the media map. copies media chunks.
void push_back(server_tokens & tokens);
// for compatibility with context shift and prompt truncation
void insert(const llama_tokens & inp_tokens);
// for compatibility with speculative decoding, ctx shift, slot save/load
const llama_tokens & get_text_tokens() const;
// for compatibility with speculative decoding
void set_token(llama_pos pos, llama_token id);
size_t size() const { return tokens.size(); }
bool empty() const { return tokens.empty(); }
void clear() {
map_idx_to_media.clear();
tokens.clear();
}
void keep_first(size_t n);
std::string detokenize(const llama_context * ctx, bool special) const;
size_t get_common_prefix(const server_tokens & b) const;
// make sure all text tokens are within the vocab range
bool validate(const struct llama_context * ctx) const;
// encode and decode the image chunk
int32_t process_chunk(
llama_context * ctx,
mtmd_context * mctx,
size_t idx,
llama_pos pos,
int32_t seq_id,
size_t & n_tokens_out) const;
};
//
// tokenizer and input processing utils
//
bool json_is_array_of_numbers(const json & data);
// is array having BOTH numbers & strings?
bool json_is_array_of_mixed_numbers_strings(const json & data);
// does array have any individual integers/tokens?
bool json_is_array_and_contains_numbers(const json & data);
// get value by path(key1 / key2)
json json_get_nested_values(const std::vector<std::string> & paths, const json & js);
/**
* this handles 2 cases:
* - only string, example: "string"
* - mixed string and tokens, example: [12, 34, "string", 56, 78]
*/
llama_tokens tokenize_mixed(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special);
// return the last index of character that can form a valid string
// if the last character is potentially cut in half, return the index before the cut
// if validate_utf8(text) == text.size(), then the whole text is valid utf8
size_t validate_utf8(const std::string& text);
// process mtmd prompt, return the server_tokens containing both text tokens and media chunks
server_tokens process_mtmd_prompt(mtmd_context * mctx, std::string prompt, std::vector<raw_buffer> files);
/**
* break the input "prompt" object into multiple prompt if needed, then tokenize them
* this supports these cases:
* - "prompt": "string"
* - "prompt": [12, 34, 56]
* - "prompt": [12, 34, "string", 56, 78]
* - "prompt": { "prompt_string": "string", "multimodal_data": [ "base64" ] }
* and multiple prompts (multi-tasks):
* - "prompt": ["string1", "string2"]
* - "prompt": ["string1", [12, 34, 56]]
* - "prompt": [[12, 34, 56], [78, 90, 12]]
* - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56], { "prompt_string": "string", "multimodal_data": [ "base64" ]}]
*/
std::vector<server_tokens> tokenize_input_prompts(
const llama_vocab * vocab,
mtmd_context * mctx,
const json & json_prompt,
bool add_special,
bool parse_special);
//
// OAI utils
//
// used by /completions endpoint
json oaicompat_completion_params_parse(const json & body);
struct oaicompat_parser_options {
bool use_jinja;
bool prefill_assistant;
common_reasoning_format reasoning_format;
std::map<std::string,std::string> chat_template_kwargs;
common_chat_templates * tmpls;
bool allow_image;
bool allow_audio;
bool enable_thinking = true;
};
// used by /chat/completions endpoint
json oaicompat_chat_params_parse(
json & body, /* openai api json semantics */
const oaicompat_parser_options & opt,
std::vector<raw_buffer> & out_files);
// TODO: move it to server-task.cpp
json format_embeddings_response_oaicompat(const json & request, const json & embeddings, bool use_base64 = false);
// TODO: move it to server-task.cpp
json format_response_rerank(
const json & request,
const json & ranks,
bool is_tei_format,
std::vector<std::string> & texts,
int top_n);
//
// other utils
//
std::vector<llama_token_data> get_token_probabilities(llama_context * ctx, int idx);
std::string safe_json_to_str(const json & data);
std::string tokens_to_str(llama_context * ctx, const llama_tokens & tokens);
// format incomplete utf-8 multibyte character for output
std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token);
// format server-sent event (SSE), return the formatted string to send
// note: if data is a json array, it will be sent as multiple events, one per item
std::string format_sse(const json & data);
bool is_valid_utf8(const std::string & str);
//
// formatting output responses
// TODO: move these to server-task.cpp
//
llama_tokens format_prompt_infill(
const llama_vocab * vocab,
const json & input_prefix,
const json & input_suffix,
const json & input_extra,
const int n_batch,
const int n_predict,
const int n_ctx,
const bool spm_infill,
const llama_tokens & tokens_prompt);
// format rerank task: [BOS]query[EOS][SEP]doc[EOS].
server_tokens format_prompt_rerank(
const struct llama_model * model,
const struct llama_vocab * vocab,
mtmd_context * mctx,
const std::string & query,
const std::string & doc);