444 lines
14 KiB
C++
444 lines
14 KiB
C++
#include "ggml.h"
|
|
#include "ggml-alloc.h"
|
|
#include "ggml-cpu.h"
|
|
#include "ggml-backend.h"
|
|
|
|
#ifdef GGML_USE_CUDA
|
|
#include "ggml-cuda.h"
|
|
//#include <cuda_runtime.h>
|
|
#endif
|
|
|
|
#ifdef GGML_USE_METAL
|
|
#include "ggml-metal.h"
|
|
#endif
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <fstream>
|
|
#include <map>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
static void ggml_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
|
|
(void) level;
|
|
(void) user_data;
|
|
fputs(text, stderr);
|
|
fflush(stderr);
|
|
}
|
|
|
|
|
|
struct test_model {
|
|
struct ggml_tensor * a;
|
|
struct ggml_tensor * b;
|
|
ggml_backend_t backend = NULL;
|
|
ggml_backend_buffer_t buffer;
|
|
struct ggml_context * ctx;
|
|
};
|
|
|
|
void load_model(test_model & model, int ic, int oc, int iw, int ih, int id,
|
|
int kw, int kh, int kd,
|
|
bool use_fp16, bool use_gpu);
|
|
struct ggml_cgraph * build_graph_0(const test_model& model, const int64_t ic, const int64_t n, const int64_t oc);
|
|
struct ggml_cgraph * build_graph_1(const test_model& model, const int64_t ic, const int64_t n, const int64_t oc);
|
|
typedef struct ggml_cgraph* (*build_graph_t)(const test_model& model,
|
|
const int64_t i0, const int64_t i1, const int64_t i2);
|
|
|
|
std::vector<float> compute_graph(const test_model & model, ggml_gallocr_t allocr,
|
|
build_graph_t build_graph, int iters,
|
|
const int64_t ic, const int64_t n, const int64_t oc, double *t);
|
|
|
|
|
|
void load_model(test_model & model, int ic, int oc, int iw, int ih, int id,
|
|
int kw = 3, int kh = 3, int kd = 3,
|
|
bool use_fp16 = true, bool use_gpu = false ) {
|
|
// create data
|
|
int KW = kw, KH = kh, KD = kd;
|
|
int IC = ic, OC = oc;
|
|
int IW = iw, IH = ih, ID = id, N = 1;
|
|
srand(time(NULL));
|
|
|
|
// printf(" input: IC = %d, OC = %d, IW = %d, IH = %d \n ", IC, OC, IW, IH);
|
|
|
|
// Initialize adata
|
|
std::vector<float> adata(KW * KH * KD * IC * OC);
|
|
for (int i = 0; i < KW * KH * KD * IC * OC; i++) {
|
|
// adata[i] = 2.f;
|
|
// adata[i] = (float)(i%KW)-1.f;
|
|
// adata[i] = (rand() % 255) / 255.0;
|
|
float r = -1.f + static_cast <float> (rand()) /( static_cast <float> (RAND_MAX/(1.f-(-1.f))));
|
|
adata[i] = r;
|
|
}
|
|
|
|
// Convert adata to fp16 format
|
|
std::vector<ggml_fp16_t> hadata(KW * KH * KD * IC * OC);
|
|
ggml_fp32_to_fp16_row(adata.data(), hadata.data(), KW * KH * KD * IC * OC);
|
|
|
|
// Initialize bdata
|
|
std::vector<float> bdata(IW * IH * ID * IC * N);
|
|
for (int i = 0; i < IW * IH * ID * IC * N; i++) {
|
|
// bdata[i] = (float)(i%IW)/10.f;
|
|
// bdata[i] = 1.5f;
|
|
// bdata[i] = (rand() % 255) / 255.0;
|
|
float r = -1.f + static_cast <float> (rand()) /( static_cast <float> (RAND_MAX/(1.f-(-1.f))));
|
|
bdata[i] = r;
|
|
}
|
|
|
|
size_t buffer_size = 0;
|
|
{ if(use_fp16)
|
|
buffer_size += KW * KH * KD * IC * OC * ggml_type_size(GGML_TYPE_F16); // tensor a
|
|
else
|
|
buffer_size += KW * KH * KD * IC * OC * ggml_type_size(GGML_TYPE_F32); // tensor a
|
|
buffer_size += IW * IH * ID * IC * N * ggml_type_size(GGML_TYPE_F32); // tensor b
|
|
buffer_size += 1024; // overhead
|
|
}
|
|
|
|
// printf("%s: ggml tensor size = %d bytes\n", __func__, (int) sizeof(ggml_tensor));
|
|
// printf("%s: backend buffer size = %0.2f MB\n", __func__, (buffer_size/ 1024.f/ 1024.f));
|
|
|
|
int num_tensors = 2;
|
|
struct ggml_init_params params {
|
|
/*.mem_size =*/ ggml_tensor_overhead() * num_tensors,
|
|
/*.mem_buffer =*/ NULL,
|
|
/*.no_alloc =*/ true,
|
|
};
|
|
|
|
// initialize the backend
|
|
#ifdef GGML_USE_CUDA
|
|
if (use_gpu) {
|
|
// fprintf(stderr, "%s: using CUDA backend\n", __func__);
|
|
model.backend = ggml_backend_cuda_init(0);
|
|
if (!model.backend) {
|
|
fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
|
|
}
|
|
}
|
|
#else
|
|
GGML_UNUSED(use_gpu);
|
|
#endif
|
|
|
|
#ifdef GGML_USE_METAL
|
|
if (use_gpu) {
|
|
fprintf(stderr, "%s: using Metal backend\n", __func__);
|
|
model.backend = ggml_backend_metal_init();
|
|
if (!model.backend) {
|
|
fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
|
|
}
|
|
}
|
|
#else
|
|
GGML_UNUSED(use_gpu);
|
|
#endif
|
|
|
|
if(!model.backend) {
|
|
// fallback to CPU backend
|
|
model.backend = ggml_backend_cpu_init();
|
|
}
|
|
|
|
model.buffer = ggml_backend_alloc_buffer(model.backend, buffer_size);
|
|
|
|
// create context
|
|
model.ctx = ggml_init(params);
|
|
|
|
// create tensors
|
|
if(use_fp16)
|
|
model.a = ggml_new_tensor_4d(model.ctx, GGML_TYPE_F16, KW, KH, KD, IC*OC);
|
|
else
|
|
model.a = ggml_new_tensor_4d(model.ctx, GGML_TYPE_F32, KW, KH, KD, IC*OC);
|
|
model.b = ggml_new_tensor_4d(model.ctx, GGML_TYPE_F32, IW, IH, ID, IC*N);
|
|
|
|
// create a allocator
|
|
struct ggml_tallocr alloc = ggml_tallocr_new(model.buffer);
|
|
|
|
// alloc memory
|
|
ggml_tallocr_alloc(&alloc, model.a);
|
|
|
|
// load data to buffer
|
|
if(ggml_backend_is_cpu(model.backend)) {
|
|
if(use_fp16)
|
|
memcpy(model.a->data, hadata.data(), ggml_nbytes(model.a));
|
|
else
|
|
memcpy(model.a->data, adata.data(), ggml_nbytes(model.a));
|
|
} else {
|
|
if(use_fp16)
|
|
ggml_backend_tensor_set(model.a, hadata.data(), 0, ggml_nbytes(model.a));
|
|
else
|
|
ggml_backend_tensor_set(model.a, adata.data(), 0, ggml_nbytes(model.a));
|
|
}
|
|
|
|
// alloc memory
|
|
ggml_tallocr_alloc(&alloc, model.b);
|
|
|
|
if(ggml_backend_is_cpu(model.backend)
|
|
#ifdef GGML_USE_METAL
|
|
|| ggml_backend_is_metal(model.backend)
|
|
#endif
|
|
) {
|
|
memcpy(model.b->data, bdata.data(), ggml_nbytes(model.b));
|
|
} else {
|
|
ggml_backend_tensor_set(model.b, bdata.data(), 0, ggml_nbytes(model.b));
|
|
}
|
|
}
|
|
|
|
struct ggml_cgraph * build_graph_0(const test_model& model, const int64_t ic, const int64_t n, const int64_t oc) {
|
|
|
|
GGML_UNUSED(n);
|
|
GGML_UNUSED(oc);
|
|
|
|
static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
|
|
static std::vector<uint8_t> buf(buf_size);
|
|
|
|
struct ggml_init_params params0 = {
|
|
/*.mem_size =*/ buf_size,
|
|
/*.mem_buffer =*/ buf.data(),
|
|
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph()
|
|
};
|
|
|
|
// create a temporally context to build the graph
|
|
struct ggml_context * ctx0 = ggml_init(params0);
|
|
|
|
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
|
|
|
// int s0 = 2;
|
|
// int s1 = 1;
|
|
// int s2 = 1;
|
|
// int p0 = 2;
|
|
// int p1 = 0;
|
|
// int p2 = 1;
|
|
// int d0 = 1;
|
|
// int d1 = 1;
|
|
// int d2 = 2;
|
|
|
|
int s0 = 1;
|
|
int s1 = 1;
|
|
int s2 = 1;
|
|
int p0 = 1;
|
|
int p1 = 1;
|
|
int p2 = 1;
|
|
|
|
int d0 = 1;
|
|
int d1 = 1;
|
|
int d2 = 1;
|
|
|
|
// recalculate for avoid fragmentation
|
|
struct ggml_tensor* conv2d_res = ggml_conv_3d(ctx0, model.a, model.b, ic, s0, s1, s2, p0, p1, p2, d0, d1, d2);
|
|
ggml_set_name(conv2d_res, "conv2d_res");
|
|
ggml_build_forward_expand(gf, conv2d_res);
|
|
// int64_t *ne = conv2d_res->ne;
|
|
// printf("conv2d: (%zu, %zu, %zu, %zu) \n", ne[0], ne[1], ne[2], ne[3]);
|
|
|
|
|
|
// struct ggml_tensor* wino_res = ggml_conv_2d_3x3(ctx0, model.a, model.b);
|
|
// ggml_set_name(wino_res, "wino_res");
|
|
// ggml_build_forward_expand(gf, wino_res);
|
|
// ne = wino_res->ne;
|
|
// printf("wino: (%zu, %zu, %zu, %zu) \n", ne[0], ne[1], ne[2], ne[3]);
|
|
ggml_free(ctx0);
|
|
return gf;
|
|
}
|
|
|
|
struct ggml_cgraph * build_graph_1(const test_model& model, const int64_t ic, const int64_t n, const int64_t oc) {
|
|
static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
|
|
static std::vector<uint8_t> buf(buf_size);
|
|
|
|
struct ggml_init_params params0 = {
|
|
/*.mem_size =*/ buf_size,
|
|
/*.mem_buffer =*/ buf.data(),
|
|
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph()
|
|
};
|
|
|
|
// create a temporally context to build the graph
|
|
struct ggml_context * ctx0 = ggml_init(params0);
|
|
|
|
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
|
|
|
int s0 = 1;
|
|
int s1 = 1;
|
|
int s2 = 1;
|
|
int p0 = 1;
|
|
int p1 = 1;
|
|
int p2 = 1;
|
|
int d0 = 1;
|
|
int d1 = 1;
|
|
int d2 = 1;
|
|
|
|
// int s0 = 2;
|
|
// int s1 = 1;
|
|
// int s2 = 1;
|
|
// int p0 = 2;
|
|
// int p1 = 0;
|
|
// int p2 = 1;
|
|
// int d0 = 1;
|
|
// int d1 = 1;
|
|
// int d2 = 2;
|
|
|
|
// recalculate for avoid fragmentation
|
|
// struct ggml_tensor* conv2d_res = ggml_conv_2d(ctx0, model.a, model.b, s0, s1, p0, p1, d0, d1);
|
|
// ggml_set_name(conv2d_res, "conv2d_res");
|
|
// ggml_build_forward_expand(gf, conv2d_res);
|
|
// int64_t *ne = conv2d_res->ne;
|
|
// printf("conv2d: (%zu, %zu, %zu, %zu) \n", ne[0], ne[1], ne[2], ne[3]);
|
|
|
|
|
|
// struct ggml_tensor* wino_res = ggml_conv_2d_implicitgemm(ctx0, model.a, model.b, s0, s1, p0, p1, d0, d1);
|
|
struct ggml_tensor* wino_res = ggml_conv_3d_direct(ctx0, model.a, model.b,
|
|
s0, s1, s2, p0, p1, p2, d0, d1, d2,
|
|
ic, n, oc);
|
|
ggml_set_name(wino_res, "wino_res");
|
|
ggml_build_forward_expand(gf, wino_res);
|
|
// int64_t *ne = wino_res->ne;
|
|
// printf("wino: (%zu, %zu, %zu, %zu) \n", ne[0], ne[1], ne[2], ne[3]);
|
|
ggml_free(ctx0);
|
|
return gf;
|
|
}
|
|
|
|
|
|
|
|
|
|
std::vector<float> compute_graph(const test_model & model, ggml_gallocr_t allocr,
|
|
build_graph_t build_graph, int iters,
|
|
const int64_t ic, const int64_t n, const int64_t oc, double *t) {
|
|
|
|
struct ggml_cgraph * gf = build_graph(model, ic, n, oc);
|
|
|
|
|
|
// allocate tensors
|
|
ggml_gallocr_alloc_graph(allocr, gf);
|
|
int n_threads = 1;
|
|
|
|
if (ggml_backend_is_cpu(model.backend)) {
|
|
ggml_backend_cpu_set_n_threads(model.backend, n_threads);
|
|
}
|
|
|
|
ggml_backend_graph_compute(model.backend, gf);
|
|
|
|
ggml_backend_synchronize(model.backend);
|
|
|
|
int64_t start_time = ggml_time_us();
|
|
|
|
for(int iter=0; iter<iters; iter++){
|
|
ggml_backend_graph_compute(model.backend, gf);
|
|
ggml_backend_synchronize(model.backend);
|
|
}
|
|
|
|
// ggml_backend_synchronize(model.backend);
|
|
int64_t end_time = ggml_time_us();
|
|
double time_us = end_time - start_time;
|
|
|
|
time_us = time_us/iters;
|
|
//ggml_graph_print(gf);
|
|
|
|
struct ggml_tensor *res = NULL;
|
|
|
|
for(int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
|
|
if(strcmp(ggml_get_name(ggml_graph_node(gf, i)), "wino_res") == 0) {
|
|
res = ggml_graph_node(gf, i);
|
|
} else if(strcmp(ggml_get_name(ggml_graph_node(gf, i)), "conv2d_res") == 0) {
|
|
res = ggml_graph_node(gf, i);
|
|
}
|
|
}
|
|
|
|
std::vector<float> data(ggml_nelements(res));
|
|
ggml_backend_tensor_get(res, data.data(), 0, ggml_nbytes(res));
|
|
|
|
*t = time_us/1000;
|
|
return data;
|
|
|
|
}
|
|
|
|
|
|
int main(void)
|
|
{
|
|
ggml_time_init();
|
|
std::vector<std::tuple<int, int, int, int, int, int, int, int>> configs = {
|
|
// std::make_tuple(1,2,16,32,4,3,3,3),
|
|
// std::make_tuple(320,1280,26,38,8,3,3,3),
|
|
// std::make_tuple(1280,1280,26,38,8,3,3,3),
|
|
// std::make_tuple(320,1280,52,76,8,3,3,3),
|
|
// std::make_tuple(1280,1280,52,76,8,3,3,3),
|
|
// std::make_tuple(320,1280,104,152,8,3,3,3),
|
|
// std::make_tuple(1280,1280,104,152,8,3,3,3),
|
|
// std::make_tuple(320,1280,208,304,4,3,3,3),
|
|
// std::make_tuple(1024,2048,30,52,3,3,3,3),
|
|
// std::make_tuple(1024,2048,52,76,4,3,3,3),
|
|
// std::make_tuple(1024,2048,52,76,6,3,3,3),
|
|
// std::make_tuple(48,3072,64,64,9,2,2,1),
|
|
// std::make_tuple(48,3072,64,64,17,2,2,1),
|
|
// std::make_tuple(48,3072,64,64,33,2,2,1),
|
|
std::make_tuple(320,320,104,158,8,3,3,3),
|
|
};
|
|
|
|
int k = 0;
|
|
|
|
for (auto c : configs){
|
|
test_model model;
|
|
load_model(model, std::get<0>(c), std::get<1>(c), std::get<2>(c),
|
|
std::get<3>(c), std::get<4>(c), std::get<5>(c), std::get<6>(c), std::get<7>(c), true, true);
|
|
|
|
ggml_gallocr_t allocr = NULL;
|
|
allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));
|
|
|
|
//create the worst case graph for memory usage estimation
|
|
struct ggml_cgraph * gf = build_graph_0(model, std::get<0>(c), 0, 0);
|
|
|
|
// compute the required memory
|
|
ggml_gallocr_reserve(allocr, gf);
|
|
size_t mem_size0 = ggml_gallocr_get_buffer_size(allocr, 0);
|
|
// fprintf(stderr, "%s: compute buffer size: %.2f MB\n", __func__, mem_size/1024.0f/1024.0f);
|
|
|
|
|
|
int iterations = 20;
|
|
|
|
double run_time0;
|
|
std::vector<float> im2col_data = compute_graph(model, allocr, build_graph_0, iterations,
|
|
std::get<0>(c), 1, std::get<1>(c), &run_time0);
|
|
|
|
ggml_gallocr_free(allocr);
|
|
|
|
allocr = NULL;
|
|
|
|
allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(model.backend));
|
|
|
|
//create the worst case graph for memory usage estimation
|
|
gf = build_graph_1(model, std::get<0>(c), 1, std::get<1>(c));
|
|
|
|
// compute the required memory
|
|
ggml_gallocr_reserve(allocr, gf);
|
|
size_t mem_size1 = ggml_gallocr_get_buffer_size(allocr, 0);
|
|
|
|
double run_time1;
|
|
std::vector<float> conv2d_data = compute_graph(model, allocr, build_graph_1, iterations,
|
|
std::get<0>(c), 1, std::get<1>(c), &run_time1);
|
|
|
|
if(k==0) {
|
|
k = 1;
|
|
fprintf(stderr, "| (IC, OC, IW, IH, ID, KW, KH, KD) | im2col+GEMM TIME | im2col+GEMM VRAM | implicit GEMM TIME | implicit GEMM VRAM \n");
|
|
fprintf(stderr, "| --- | --- | --- | --- | --- \n");
|
|
}
|
|
|
|
fprintf(stderr, " | (%d, %d, %d, %d, %d, %d, %d, %d) | %.2f ms | %.2f MB | %.2f ms | %.2f MB\n",
|
|
std::get<0>(c), std::get<1>(c), std::get<2>(c),
|
|
std::get<3>(c), std::get<4>(c), std::get<5>(c),
|
|
std::get<6>(c), std::get<7>(c),
|
|
run_time0, mem_size0/1024.0f/1024.0f,
|
|
run_time1, mem_size1/1024.0f/1024.0f);
|
|
|
|
|
|
// for(int i = 0; i < conv2d_data.size(); i++) {
|
|
// float diff = fabs(im2col_data[i] - conv2d_data[i]);
|
|
// // if(diff > 0.5) {
|
|
// printf("(%7.3f, %7.3f, %f, %d) \n",
|
|
// im2col_data[i], conv2d_data[i],
|
|
// diff, i);
|
|
// // break;
|
|
// // }
|
|
// }
|
|
|
|
ggml_free(model.ctx);
|
|
ggml_backend_buffer_free(model.buffer);
|
|
ggml_backend_free(model.backend);
|
|
ggml_gallocr_free(allocr);
|
|
|
|
}
|
|
return 0;
|
|
}
|