llama.cpp/ggml/src/ggml-qnn/backend-ops.cpp

650 lines
23 KiB
C++

#include "backend-ops.hpp"
#include <memory>
#include "graph.hpp"
#include "logger.hpp"
#include "op-config.hpp"
#include "tensor.hpp"
#include "utils.hpp"
#ifndef NDEBUG
namespace {
bool qnn_is_valid_params(ggml_backend_qnn_device_context *ctx, const ggml_tensor *src, ggml_tensor *dst) {
if (!ctx || !src || !dst) {
QNN_LOG_WARN("invalid params\n");
return false;
}
auto instance = ctx->instance;
if (!instance) {
QNN_LOG_WARN("invalid instance\n");
return false;
}
return true;
}
bool qnn_is_valid_params(ggml_backend_qnn_device_context *ctx, const ggml_tensor *src0, const ggml_tensor *src1,
ggml_tensor *dst) {
if (!ctx || !src0 || !src1 || !dst) {
QNN_LOG_WARN("invalid params\n");
return false;
}
auto instance = ctx->instance;
if (!instance) {
QNN_LOG_WARN("invalid instance\n");
return false;
}
return true;
}
bool is_tensor_dimensions_equal(const ggml_tensor *l, const ggml_tensor *r) {
const auto dim_l = ggml_n_dims(l);
if (dim_l != ggml_n_dims(r)) {
return false;
}
for (int i = 0; i < dim_l; i++) {
if (l->ne[i] != r->ne[i]) {
return false;
}
}
return true;
}
void print_ggml_tensor(const ggml_tensor *tensor) {
QNN_LOG_DEBUG("%s: type:%s ne: %ldx%ldx%ldx%ld, nb: %ldx%ldx%ldx%ld\n", tensor->name, ggml_type_name(tensor->type),
(long)tensor->ne[0], (long)tensor->ne[1], (long)tensor->ne[2], (long)tensor->ne[3],
(long)tensor->nb[0], (long)tensor->nb[1], (long)tensor->nb[2], (long)tensor->nb[3]);
}
} // namespace
#define CHECK_PARAMS(ctx, ...) \
if (!qnn_is_valid_params((ctx), __VA_ARGS__)) { \
return false; \
}
#else
#define CHECK_PARAMS(ctx, ...)
#endif
namespace {
typedef bool (*ggml_qnn_unary_op_t)(ggml_backend_qnn_device_context *ctx, ggml_tensor *src, ggml_tensor *dst);
typedef bool (*ggml_qnn_binary_op_t)(ggml_backend_qnn_device_context *ctx, ggml_tensor *src0, ggml_tensor *src1,
ggml_tensor *dst);
typedef const ggml_qnn_unary_op_t (&ggml_qnn_unary_op_array_t)[GGML_OP_COUNT + GGML_UNARY_OP_COUNT];
typedef const ggml_qnn_binary_op_t (&ggml_qnn_binary_op_array_t)[GGML_OP_COUNT];
constexpr const size_t kGgmlUnaryOpStart = GGML_OP_COUNT;
template <size_t _Size>
qnn::ggml_tensor_array_t to_ggml_tensor_array(const std::array<ggml_tensor *, _Size> &array) {
return qnn::ggml_tensor_array_t(array.data(), array.data() + _Size);
}
template <size_t _InputSize, size_t _OutputSize>
bool execute_graph(qnn::ggml_qnn_graph *graph, const std::array<ggml_tensor *, _InputSize> &inputs,
const std::array<ggml_tensor *, _OutputSize> &outputs) {
if (!graph->execute(to_ggml_tensor_array<_InputSize>(inputs), to_ggml_tensor_array<_OutputSize>(outputs))) {
QNN_LOG_WARN("execute failed\n");
return false;
}
return true;
}
template <size_t _InputSize, size_t _OutputSize>
std::string get_graph_key(const std::string &op_name, const std::array<ggml_tensor *, _InputSize> &inputs,
const std::array<ggml_tensor *, _OutputSize> &outputs) {
constexpr static const auto append_dimensions = [](std::string &key, const ggml_tensor *tensor) {
char buffer[256] = {};
snprintf(buffer, sizeof(buffer), "_%ldx%ldx%ldx%ld%s", (long)tensor->ne[0], (long)tensor->ne[1],
(long)tensor->ne[2], (long)tensor->ne[3], qnn::get_ggml_type_name(tensor->type));
key += buffer;
};
std::string graph_key(op_name);
for (auto &input : inputs) {
append_dimensions(graph_key, input);
}
graph_key += qnn::get_ggml_type_name(outputs.front()->type);
return graph_key;
}
constexpr const char *kGgmlOpToQnnOp[] = {
nullptr, // GGML_OP_NONE
nullptr, // GGML_OP_DUP
QNN_OP_ELEMENT_WISE_ADD, // GGML_OP_ADD
nullptr, // GGML_OP_ADD1
nullptr, // GGML_OP_ACC
QNN_OP_ELEMENT_WISE_SUBTRACT, // GGML_OP_SUB
QNN_OP_ELEMENT_WISE_MULTIPLY, // GGML_OP_MUL
QNN_OP_ELEMENT_WISE_DIVIDE, // GGML_OP_DIV
nullptr, // GGML_OP_SQR
QNN_OP_ELEMENT_WISE_SQUARE_ROOT, // GGML_OP_SQRT
QNN_OP_ELEMENT_WISE_LOG, // GGML_OP_LOG
nullptr, // GGML_OP_SIN
nullptr, // GGML_OP_COS
nullptr, // GGML_OP_SUM
nullptr, // GGML_OP_SUM_ROWS
nullptr, // GGML_OP_MEAN
nullptr, // GGML_OP_ARGMAX
nullptr, // GGML_OP_COUNT_EQUAL
nullptr, // GGML_OP_REPEAT
nullptr, // GGML_OP_REPEAT_BACK
nullptr, // GGML_OP_CONCAT
nullptr, // GGML_OP_SILU_BACK
nullptr, // GGML_OP_NORM
nullptr, // GGML_OP_RMS_NORM
nullptr, // GGML_OP_RMS_NORM_BACK
nullptr, // GGML_OP_GROUP_NORM
QNN_OP_MAT_MUL, // GGML_OP_MUL_MAT
nullptr, // GGML_OP_MUL_MAT_ID
nullptr, // GGML_OP_OUT_PROD
nullptr, // GGML_OP_SCALE
nullptr, // GGML_OP_SET
nullptr, // GGML_OP_CPY
nullptr, // GGML_OP_CONT
nullptr, // GGML_OP_RESHAPE
nullptr, // GGML_OP_VIEW
nullptr, // GGML_OP_PERMUTE
nullptr, // GGML_OP_TRANSPOSE
nullptr, // GGML_OP_GET_ROWS
nullptr, // GGML_OP_GET_ROWS_BACK
nullptr, // GGML_OP_DIAG
nullptr, // GGML_OP_DIAG_MASK_INF
nullptr, // GGML_OP_DIAG_MASK_ZERO
nullptr, // GGML_OP_SOFT_MAX
nullptr, // GGML_OP_SOFT_MAX_BACK
nullptr, // GGML_OP_ROPE
nullptr, // GGML_OP_ROPE_BACK
nullptr, // GGML_OP_CLAMP
nullptr, // GGML_OP_CONV_TRANSPOSE_1D
nullptr, // GGML_OP_IM2COL
nullptr, // GGML_OP_IM2COL_BACK
nullptr, // GGML_OP_CONV_TRANSPOSE_2D
nullptr, // GGML_OP_POOL_1D
nullptr, // GGML_OP_POOL_2D
nullptr, // GGML_OP_POOL_2D_BACK
nullptr, // GGML_OP_UPSCALE
nullptr, // GGML_OP_PAD
nullptr, // GGML_OP_ARANGE
nullptr, // GGML_OP_TIMESTEP_EMBEDDING
nullptr, // GGML_OP_ARGSORT
nullptr, // GGML_OP_LEAKY_RELU
nullptr, // GGML_OP_FLASH_ATTN_EXT
nullptr, // GGML_OP_FLASH_ATTN_BACK
nullptr, // GGML_OP_SSM_CONV
nullptr, // GGML_OP_SSM_SCAN
nullptr, // GGML_OP_WIN_PART
nullptr, // GGML_OP_WIN_UNPART
nullptr, // GGML_OP_GET_REL_POS
nullptr, // GGML_OP_ADD_REL_POS
nullptr, // GGML_OP_RWKV_WKV
nullptr, // GGML_OP_UNARY
nullptr, // GGML_OP_MAP_UNARY
nullptr, // GGML_OP_MAP_BINARY
nullptr, // GGML_OP_MAP_CUSTOM1_F32
nullptr, // GGML_OP_MAP_CUSTOM2_F32
nullptr, // GGML_OP_MAP_CUSTOM3_F32
nullptr, // GGML_OP_MAP_CUSTOM1
nullptr, // GGML_OP_MAP_CUSTOM2
nullptr, // GGML_OP_MAP_CUSTOM3
nullptr, // GGML_OP_CROSS_ENTROPY_LOSS
nullptr, // GGML_OP_CROSS_ENTROPY_LOSS_BACK
nullptr, // GGML_OP_OPT_STEP_ADAMW
// ggml_unary_op
nullptr, // GGML_UNARY_OP_ABS
nullptr, // GGML_UNARY_OP_SGN
nullptr, // GGML_UNARY_OP_NEG
nullptr, // GGML_UNARY_OP_STEP
nullptr, // GGML_UNARY_OP_TANH
nullptr, // GGML_UNARY_OP_ELU
nullptr, // GGML_UNARY_OP_RELU
nullptr, // GGML_UNARY_OP_SIGMOID
QNN_OP_GELU, // GGML_UNARY_OP_GELU
nullptr, // GGML_UNARY_OP_GELU_QUICK
nullptr, // GGML_UNARY_OP_SILU
nullptr, // GGML_UNARY_OP_HARDSWISH
nullptr, // GGML_UNARY_OP_HARDSIGMOID
nullptr, // GGML_UNARY_OP_EXP
};
static_assert(sizeof(kGgmlOpToQnnOp) / sizeof(kGgmlOpToQnnOp[0]) == (GGML_OP_COUNT + GGML_UNARY_OP_COUNT),
"GGML_OP_COUNT does not match the size of the kGgmlOpToQnnOp table");
static_assert(kGgmlOpToQnnOp[GGML_UNARY_OP_GELU + kGgmlUnaryOpStart] != nullptr,
"GGML_UNARY_OP_GELU does not correspond to QNN_OP_GELU");
template <size_t _InputSize, size_t _OutputSize>
qnn::ggml_qnn_graph *get_qnn_graph_from_cache(ggml_backend_qnn_device_context *ctx, size_t op,
const std::array<ggml_tensor *, _InputSize> &inputs,
const std::array<ggml_tensor *, _OutputSize> &outputs) {
GGML_ASSERT(op < (GGML_OP_COUNT + GGML_UNARY_OP_COUNT));
auto &graph_cache = ctx->qnn_graph_cache;
const auto *op_name =
op < kGgmlUnaryOpStart ? ggml_op_name(ggml_op(op)) : ggml_unary_op_name(ggml_unary_op(op - kGgmlUnaryOpStart));
auto graph_key = get_graph_key<_InputSize, _OutputSize>(op_name, inputs, outputs);
auto it = graph_cache.find(graph_key);
qnn::ggml_qnn_graph *graph_ptr = nullptr;
if (it != graph_cache.end()) {
QNN_LOG_DEBUG("found graph %s in cache\n", graph_key.c_str());
graph_ptr = it->second.get();
} else {
auto graph =
std::make_unique<qnn::ggml_qnn_graph>(graph_key, ctx->device, ctx->instance, ctx->socinfo.vtcm_size_in_mb);
if (!graph->is_valid()) {
return nullptr;
}
auto op_constructor = qnn::create_op_constructor(kGgmlOpToQnnOp[op]);
if (!graph->build_graph(op_constructor, to_ggml_tensor_array<_InputSize>(inputs),
to_ggml_tensor_array<_OutputSize>(outputs))) {
QNN_LOG_ERROR("build_graph failed\n");
return nullptr;
}
graph_ptr = graph.get();
graph_cache[graph_key] = std::move(graph);
}
return graph_ptr;
}
template <ggml_op _GgmlOp>
bool qnn_binary_op_impl(ggml_backend_qnn_device_context *ctx, ggml_tensor *src0, ggml_tensor *src1, ggml_tensor *dst) {
static_assert(kGgmlOpToQnnOp[_GgmlOp] != nullptr, "GGML_OP does not have a corresponding QNN_OP");
CHECK_PARAMS(ctx, src0, src1, dst);
bool succeed = false;
auto *graph_ptr = get_qnn_graph_from_cache<2, 1>(ctx, _GgmlOp, { src0, src1 }, { dst });
if (graph_ptr) {
succeed = execute_graph<2, 1>(graph_ptr, { src0, src1 }, { dst });
}
#ifndef NDEBUG
if (!succeed) {
print_ggml_tensor(src0);
print_ggml_tensor(src1);
print_ggml_tensor(dst);
}
#endif
return succeed;
}
template <size_t _GgmlOp>
bool qnn_unary_op_impl(ggml_backend_qnn_device_context *ctx, ggml_tensor *src, ggml_tensor *dst) {
static_assert(kGgmlOpToQnnOp[_GgmlOp] != nullptr, "GGML_OP does not have a corresponding QNN_OP");
CHECK_PARAMS(ctx, src, dst);
bool succeed = false;
auto *graph_ptr = get_qnn_graph_from_cache<1, 1>(ctx, _GgmlOp, { src }, { dst });
if (graph_ptr) {
succeed = execute_graph<1, 1>(graph_ptr, { src }, { dst });
}
#ifndef NDEBUG
if (!succeed) {
print_ggml_tensor(src);
print_ggml_tensor(dst);
}
#endif
return succeed;
}
constexpr const ggml_qnn_unary_op_t kQnnUnaryOpsTable[] = {
nullptr, // GGML_OP_NONE
nullptr, // GGML_OP_DUP
nullptr, // GGML_OP_ADD
nullptr, // GGML_OP_ADD1
nullptr, // GGML_OP_ACC
nullptr, // GGML_OP_SUB
nullptr, // GGML_OP_MUL
nullptr, // GGML_OP_DIV
nullptr, // GGML_OP_SQR
qnn_unary_op_impl<GGML_OP_SQRT>, // GGML_OP_SQRT
qnn_unary_op_impl<GGML_OP_LOG>, // GGML_OP_LOG
nullptr, // GGML_OP_SIN
nullptr, // GGML_OP_COS
nullptr, // GGML_OP_SUM
nullptr, // GGML_OP_SUM_ROWS
nullptr, // GGML_OP_MEAN
nullptr, // GGML_OP_ARGMAX
nullptr, // GGML_OP_COUNT_EQUAL
nullptr, // GGML_OP_REPEAT
nullptr, // GGML_OP_REPEAT_BACK
nullptr, // GGML_OP_CONCAT
nullptr, // GGML_OP_SILU_BACK
nullptr, // GGML_OP_NORM
nullptr, // GGML_OP_RMS_NORM
nullptr, // GGML_OP_RMS_NORM_BACK
nullptr, // GGML_OP_GROUP_NORM
nullptr, // GGML_OP_MUL_MAT
nullptr, // GGML_OP_MUL_MAT_ID
nullptr, // GGML_OP_OUT_PROD
nullptr, // GGML_OP_SCALE
nullptr, // GGML_OP_SET
nullptr, // GGML_OP_CPY
nullptr, // GGML_OP_CONT
nullptr, // GGML_OP_RESHAPE
nullptr, // GGML_OP_VIEW
nullptr, // GGML_OP_PERMUTE
nullptr, // GGML_OP_TRANSPOSE
nullptr, // GGML_OP_GET_ROWS
nullptr, // GGML_OP_GET_ROWS_BACK
nullptr, // GGML_OP_DIAG
nullptr, // GGML_OP_DIAG_MASK_INF
nullptr, // GGML_OP_DIAG_MASK_ZERO
nullptr, // GGML_OP_SOFT_MAX
nullptr, // GGML_OP_SOFT_MAX_BACK
nullptr, // GGML_OP_ROPE
nullptr, // GGML_OP_ROPE_BACK
nullptr, // GGML_OP_CLAMP
nullptr, // GGML_OP_CONV_TRANSPOSE_1D
nullptr, // GGML_OP_IM2COL
nullptr, // GGML_OP_IM2COL_BACK
nullptr, // GGML_OP_CONV_TRANSPOSE_2D
nullptr, // GGML_OP_POOL_1D
nullptr, // GGML_OP_POOL_2D
nullptr, // GGML_OP_POOL_2D_BACK
nullptr, // GGML_OP_UPSCALE
nullptr, // GGML_OP_PAD
nullptr, // GGML_OP_ARANGE
nullptr, // GGML_OP_TIMESTEP_EMBEDDING
nullptr, // GGML_OP_ARGSORT
nullptr, // GGML_OP_LEAKY_RELU
nullptr, // GGML_OP_FLASH_ATTN_EXT
nullptr, // GGML_OP_FLASH_ATTN_BACK
nullptr, // GGML_OP_SSM_CONV
nullptr, // GGML_OP_SSM_SCAN
nullptr, // GGML_OP_WIN_PART
nullptr, // GGML_OP_WIN_UNPART
nullptr, // GGML_OP_GET_REL_POS
nullptr, // GGML_OP_ADD_REL_POS
nullptr, // GGML_OP_RWKV_WKV
nullptr, // GGML_OP_UNARY
nullptr, // GGML_OP_MAP_UNARY
nullptr, // GGML_OP_MAP_BINARY
nullptr, // GGML_OP_MAP_CUSTOM1_F32
nullptr, // GGML_OP_MAP_CUSTOM2_F32
nullptr, // GGML_OP_MAP_CUSTOM3_F32
nullptr, // GGML_OP_MAP_CUSTOM1
nullptr, // GGML_OP_MAP_CUSTOM2
nullptr, // GGML_OP_MAP_CUSTOM3
nullptr, // GGML_OP_CROSS_ENTROPY_LOSS
nullptr, // GGML_OP_CROSS_ENTROPY_LOSS_BACK
nullptr, // GGML_OP_OPT_STEP_ADAMW
// ggml_unary_op
nullptr, // GGML_UNARY_OP_ABS
nullptr, // GGML_UNARY_OP_SGN
nullptr, // GGML_UNARY_OP_NEG
nullptr, // GGML_UNARY_OP_STEP
nullptr, // GGML_UNARY_OP_TANH
nullptr, // GGML_UNARY_OP_ELU
nullptr, // GGML_UNARY_OP_RELU
nullptr, // GGML_UNARY_OP_SIGMOID
qnn_unary_op_impl<GGML_UNARY_OP_GELU + kGgmlUnaryOpStart>, // GGML_UNARY_OP_GELU
nullptr, // GGML_UNARY_OP_GELU_QUICK
nullptr, // GGML_UNARY_OP_SILU
nullptr, // GGML_UNARY_OP_HARDSWISH
nullptr, // GGML_UNARY_OP_HARDSIGMOID
nullptr, // GGML_UNARY_OP_EXP
};
static_assert(sizeof(kQnnUnaryOpsTable) / sizeof(kQnnUnaryOpsTable[0]) == (GGML_OP_COUNT + GGML_UNARY_OP_COUNT),
"GGML_OP_COUNT does not match the size of the kQnnUnaryOpsTable table");
static constexpr const ggml_qnn_binary_op_t kQnnBinaryOpsTable[] = {
nullptr, // GGML_OP_NONE
nullptr, // GGML_OP_DUP
qnn_binary_op_impl<GGML_OP_ADD>, // GGML_OP_ADD
nullptr, // GGML_OP_ADD1
nullptr, // GGML_OP_ACC
qnn_binary_op_impl<GGML_OP_SUB>, // GGML_OP_SUB
qnn_binary_op_impl<GGML_OP_MUL>, // GGML_OP_MUL
qnn_binary_op_impl<GGML_OP_DIV>, // GGML_OP_DIV
nullptr, // GGML_OP_SQR
nullptr, // GGML_OP_SQRT
nullptr, // GGML_OP_LOG
nullptr, // GGML_OP_SIN
nullptr, // GGML_OP_COS
nullptr, // GGML_OP_SUM
nullptr, // GGML_OP_SUM_ROWS
nullptr, // GGML_OP_MEAN
nullptr, // GGML_OP_ARGMAX
nullptr, // GGML_OP_COUNT_EQUAL
nullptr, // GGML_OP_REPEAT
nullptr, // GGML_OP_REPEAT_BACK
nullptr, // GGML_OP_CONCAT
nullptr, // GGML_OP_SILU_BACK
nullptr, // GGML_OP_NORM
nullptr, // GGML_OP_RMS_NORM
nullptr, // GGML_OP_RMS_NORM_BACK
nullptr, // GGML_OP_GROUP_NORM
qnn_binary_op_impl<GGML_OP_MUL_MAT>, // GGML_OP_MUL_MAT
nullptr, // GGML_OP_MUL_MAT_ID
nullptr, // GGML_OP_OUT_PROD
nullptr, // GGML_OP_SCALE
nullptr, // GGML_OP_SET
nullptr, // GGML_OP_CPY
nullptr, // GGML_OP_CONT
nullptr, // GGML_OP_RESHAPE
nullptr, // GGML_OP_VIEW
nullptr, // GGML_OP_PERMUTE
nullptr, // GGML_OP_TRANSPOSE
nullptr, // GGML_OP_GET_ROWS
nullptr, // GGML_OP_GET_ROWS_BACK
nullptr, // GGML_OP_DIAG
nullptr, // GGML_OP_DIAG_MASK_INF
nullptr, // GGML_OP_DIAG_MASK_ZERO
nullptr, // GGML_OP_SOFT_MAX
nullptr, // GGML_OP_SOFT_MAX_BACK
nullptr, // GGML_OP_ROPE
nullptr, // GGML_OP_ROPE_BACK
nullptr, // GGML_OP_CLAMP
nullptr, // GGML_OP_CONV_TRANSPOSE_1D
nullptr, // GGML_OP_IM2COL
nullptr, // GGML_OP_IM2COL_BACK
nullptr, // GGML_OP_CONV_TRANSPOSE_2D
nullptr, // GGML_OP_POOL_1D
nullptr, // GGML_OP_POOL_2D
nullptr, // GGML_OP_POOL_2D_BACK
nullptr, // GGML_OP_UPSCALE
nullptr, // GGML_OP_PAD
nullptr, // GGML_OP_ARANGE
nullptr, // GGML_OP_TIMESTEP_EMBEDDING
nullptr, // GGML_OP_ARGSORT
nullptr, // GGML_OP_LEAKY_RELU
nullptr, // GGML_OP_FLASH_ATTN_EXT
nullptr, // GGML_OP_FLASH_ATTN_BACK
nullptr, // GGML_OP_SSM_CONV
nullptr, // GGML_OP_SSM_SCAN
nullptr, // GGML_OP_WIN_PART
nullptr, // GGML_OP_WIN_UNPART
nullptr, // GGML_OP_GET_REL_POS
nullptr, // GGML_OP_ADD_REL_POS
nullptr, // GGML_OP_RWKV_WKV
nullptr, // GGML_OP_UNARY
nullptr, // GGML_OP_MAP_UNARY
nullptr, // GGML_OP_MAP_BINARY
nullptr, // GGML_OP_MAP_CUSTOM1_F32
nullptr, // GGML_OP_MAP_CUSTOM2_F32
nullptr, // GGML_OP_MAP_CUSTOM3_F32
nullptr, // GGML_OP_MAP_CUSTOM1
nullptr, // GGML_OP_MAP_CUSTOM2
nullptr, // GGML_OP_MAP_CUSTOM3
nullptr, // GGML_OP_CROSS_ENTROPY_LOSS
nullptr, // GGML_OP_CROSS_ENTROPY_LOSS_BACK
nullptr, // GGML_OP_OPT_STEP_ADAMW
};
static_assert(sizeof(kQnnBinaryOpsTable) / sizeof(kQnnBinaryOpsTable[0]) == GGML_OP_COUNT,
"GGML_OP_COUNT does not match the size of the kQnnBinaryOpsTable table");
bool ggml_qnn_supports_tensor(ggml_backend_qnn_device_context *ctx, const ggml_tensor *tensor) {
switch (tensor->type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q4_0:
if (ctx->supported_types.find(tensor->type) == ctx->supported_types.end()) {
QNN_LOG_DEBUG("unsupported data type GGML_TYPE_F16 for cpu backend");
return false;
}
break;
default:
QNN_LOG_DEBUG("unsupported data type %d", tensor->type);
return false;
}
return true;
}
bool ggml_qnn_supports_matmul_op(ggml_backend_qnn_device_context *ctx, const ggml_tensor *op) {
GGML_UNUSED(ctx);
auto *src0 = op->src[0];
auto *src1 = op->src[1];
if (src0->type != src1->type || src0->type != op->type) {
// current qnn implementation only supports the same type for src0 and src1
QNN_LOG_DEBUG("src0 type %d and src1 type %d and op type %d are not equal", src0->type, src1->type, op->type);
return false;
}
if (src0->ne[2] != src1->ne[2] || src0->ne[3] != src1->ne[3]) {
/*
* TODO: remove the blocker here when qnn backend supports mul_mat like this:
* [ne03, ne02, n, k] * [ne03 * x, ne02 * y, m, k] -> [ne03 * x, ne02 * y, m, n]
*/
QNN_LOG_DEBUG("src0 and src1 dimensions are not equal");
return false;
}
return true;
}
} // namespace
namespace qnn {
bool ggml_qnn_supports_op(ggml_backend_qnn_device_context *ctx, const ggml_tensor *op) {
if (op->op == GGML_OP_NONE) {
return true;
}
if (op->op == GGML_OP_UNARY) {
const auto unary_op = ggml_get_unary_op(op);
if (unary_op == GGML_UNARY_OP_GELU && ctx->device == QNN_BACKEND_NPU) {
// TODO: fix this when NPU supports GELU
QNN_LOG_DEBUG("unsupported unary op GGML_UNARY_OP_GELU for NPU");
return false;
}
if (!kQnnUnaryOpsTable[kGgmlUnaryOpStart + unary_op]) {
QNN_LOG_DEBUG("unsupported unary op %d", unary_op);
return false;
}
if (!op->src[0]) {
QNN_LOG_DEBUG("src0 is nullptr");
return false;
}
} else {
if (!kQnnUnaryOpsTable[op->op] && !kQnnBinaryOpsTable[op->op]) {
QNN_LOG_DEBUG("unsupported op %d", op->op);
return false;
}
auto *src0 = op->src[0];
auto *src1 = op->src[1];
if (!src0 || !src1) {
QNN_LOG_DEBUG("src0 or src1 is nullptr");
return false;
}
if (!ggml_qnn_supports_tensor(ctx, src0) || !ggml_qnn_supports_tensor(ctx, src1) ||
!ggml_qnn_supports_tensor(ctx, op)) {
return false;
}
switch (op->op) {
case GGML_OP_ADD:
if (!is_tensor_dimensions_equal(src0, src1)) {
QNN_LOG_DEBUG("src0 and src1 dimensions are not equal");
return false;
}
break;
case GGML_OP_MUL_MAT:
return ggml_qnn_supports_matmul_op(ctx, op);
default:
return false;
}
}
return true;
}
bool ggml_qnn_forward(ggml_backend_qnn_device_context *ctx, struct ggml_tensor *tensor) {
size_t unary_op_idx = tensor->op;
if (tensor->op == GGML_OP_UNARY) {
unary_op_idx = kGgmlUnaryOpStart + ggml_get_unary_op(tensor);
}
auto unary_op = kQnnUnaryOpsTable[unary_op_idx];
if (unary_op) {
return unary_op(ctx, tensor->src[0], tensor);
}
auto binary_op = kQnnBinaryOpsTable[tensor->op];
if (binary_op) {
return binary_op(ctx, tensor->src[0], tensor->src[1], tensor);
}
QNN_LOG_WARN("unsupported op %s", ggml_op_desc(tensor));
return false;
}
} // namespace qnn