llama.cpp/tools/mtmd/models/deepseekocr.cpp

325 lines
14 KiB
C++

#include "models.h"
// Implementation based on approach suggested by Acly
// See: https://github.com/ggml-org/llama.cpp/pull/17383#issuecomment-3554227091
static ggml_tensor * window_partition(ggml_context * ctx0, ggml_tensor * x, const int window) {
auto [c, w, h, b] = x->ne;
// same as
// x = ggml_win_part(m, x, window);
// x = ggml_reshape_3d(m, x, c, window * window, x->ne[3]);
const int64_t px = (window - w % window) % window;
const int64_t py = (window - h % window) % window;
const int64_t npw = (w + px) / window;
const int64_t nph = (h + py) / window;
ggml_tensor * cur = x;
if (px > 0 || py > 0) {
cur = ggml_pad(ctx0, cur, 0, static_cast<int>(px), static_cast<int>(py), 0);
}
cur = ggml_reshape_4d(ctx0, cur, c * window, npw, window, nph * b);
cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 0, 2, 1, 3));
cur = ggml_reshape_4d(ctx0, cur, c, window, window, npw * nph * b);
return cur;
}
// Implementation based on approach suggested by Acly
// See: https://github.com/ggml-org/llama.cpp/pull/17383#issuecomment-3554227091
static ggml_tensor * window_unpartition(ggml_context * ctx0,
ggml_tensor * x,
const int w,
const int h,
const int window) {
const int64_t c = x->ne[0];
// same as
// x = ggml_reshape_4d(m, x, c, window, window, x->ne[2]);
// x = ggml_win_unpart(m, x, w, h, window);
const int64_t px = (window - w % window) % window;
const int64_t py = (window - h % window) % window;
const int64_t npw = (w + px) / window;
const int64_t nph = (h + py) / window;
const int64_t b = x->ne[3] / (npw * nph);
ggml_tensor * cur = x;
cur = ggml_reshape_4d(ctx0, cur, c * window, window, npw, nph * b);
cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 0, 2, 1, 3));
cur = ggml_reshape_4d(ctx0, cur, c, w + px, h + py, b);
cur = ggml_view_4d(ctx0, cur, cur->ne[0], w, h, cur->ne[3], cur->nb[1], cur->nb[2], cur->nb[3], 0);
cur = ggml_cont(ctx0, cur);
return cur;
}
static ggml_tensor * get_rel_pos(ggml_context * ctx0,
ggml_tensor * rel_pos, // [L, C]
ggml_tensor * indices, // [q_size, k_size]
const int q_size,
const int k_size) {
const int64_t C = rel_pos->ne[0]; // channels
const int64_t L = rel_pos->ne[1]; // length
GGML_ASSERT(indices != nullptr);
GGML_ASSERT(indices->type == GGML_TYPE_I32);
GGML_ASSERT(indices->ne[0] == k_size);
GGML_ASSERT(indices->ne[1] == q_size);
const auto max_rel_dist = 2 * std::max(q_size, k_size) - 1;
ggml_tensor * cur = rel_pos;
if (max_rel_dist != L) {
// Linear interpolation
const int64_t ne0 = cur->ne[0];
const int64_t ne1 = cur->ne[1];
const int64_t ne2 = cur->ne[2];
const int64_t ne3 = cur->ne[3];
cur = ggml_reshape_3d(ctx0, ggml_cont(ctx0, ggml_permute(ctx0, cur, 1, 0, 2, 3)), ne1, 1, ne0 * ne2 * ne3);
cur = ggml_reshape_4d(
ctx0, ggml_interpolate(ctx0, cur, max_rel_dist, 1, ne0 * ne2 * ne3, 1, GGML_SCALE_MODE_BILINEAR),
max_rel_dist, ne0, ne2, ne3);
cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 1, 0, 2, 3));
}
// Flatten indices to 1D for ggml_get_rows
const int qk = q_size * k_size;
cur = ggml_reshape_3d(ctx0, ggml_get_rows(ctx0, cur, ggml_reshape_1d(ctx0, indices, qk)), C, k_size, q_size);
return cur; // [C, k_size, q_size]
}
ggml_cgraph * clip_graph_deepseekocr::build() {
// patch embedding
ggml_tensor * inp_raw = build_inp_raw();
ggml_tensor * sam_out;
// Building SAM
{
const int n_embd = hparams.sam_n_embd;
const int n_layer = hparams.sam_n_layer;
const int n_heads = hparams.sam_n_head;
const int d_heads = n_embd / n_heads;
const int window = hparams.attn_window_size;
ggml_tensor * inpL;
inpL = ggml_conv_2d_sk_p0(ctx0, model.patch_embed_proj_w, inp_raw);
inpL = ggml_add(ctx0, inpL, ggml_reshape_3d(ctx0, model.patch_embed_proj_b, 1, 1, n_embd));
inpL = ggml_cont(ctx0, ggml_permute(ctx0, inpL, 1, 2, 0, 3));
ggml_tensor * rel_pos_indices_local;
ggml_tensor * rel_pos_indices_global;
rel_pos_indices_local = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, window, window);
rel_pos_indices_global = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, inpL->ne[1], inpL->ne[2]);
ggml_set_name(rel_pos_indices_local, "rel_pos_indices_local");
ggml_set_name(rel_pos_indices_global, "rel_pos_indices_global");
ggml_set_input(rel_pos_indices_local);
ggml_set_input(rel_pos_indices_global);
ggml_tensor * cur;
const auto tgt_size = inpL->ne[1];
const auto str_size = model.pos_embed->ne[1];
if (str_size != tgt_size) {
ggml_tensor * old_pos_embed = nullptr;
old_pos_embed = ggml_cont(ctx0, ggml_permute(ctx0, model.pos_embed, 2, 0, 1, 3));
ggml_tensor * new_pos_embed =
ggml_interpolate(ctx0, old_pos_embed, tgt_size, tgt_size, n_embd, 1, GGML_SCALE_MODE_BICUBIC);
new_pos_embed = ggml_cont(ctx0, ggml_permute(ctx0, new_pos_embed, 1, 2, 0, 3));
cur = ggml_add(ctx0, inpL, new_pos_embed);
} else {
cur = ggml_add(ctx0, inpL, model.pos_embed);
}
// loop over layers
for (int il = 0; il < n_layer; il++) {
auto & layer = model.sam_layers[il];
ggml_tensor * shortcut = cur;
// layernorm1
cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
const int64_t w0 = cur->ne[1];
const int64_t h0 = cur->ne[2];
ggml_tensor * indices;
if (hparams.is_global_attn(il)) {
indices = rel_pos_indices_global;
} else {
// local attention layer - apply window partition
cur = window_partition(ctx0, cur, window);
indices = rel_pos_indices_local;
}
const int64_t W = cur->ne[1];
const int64_t H = cur->ne[2];
// self-attention
{
const int B = cur->ne[3];
cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
cur = ggml_add(ctx0, cur, layer.qkv_b);
cur = ggml_cont(ctx0, cur); // Ensure tensor is contiguous before reshape
cur = ggml_reshape_4d(ctx0, cur, n_embd, 3, W * H, B);
ggml_tensor * Q;
ggml_tensor * K;
ggml_tensor * V;
Q = ggml_view_3d(ctx0, cur, n_embd, W * H, B, cur->nb[2], cur->nb[3], 0 * cur->nb[1]);
Q = ggml_reshape_4d(ctx0, ggml_cont(ctx0, Q), d_heads, n_heads, W * H, B);
K = ggml_view_3d(ctx0, cur, n_embd, W * H, B, cur->nb[2], cur->nb[3], 1 * cur->nb[1]);
K = ggml_reshape_4d(ctx0, ggml_cont(ctx0, K), d_heads, n_heads, W * H, B);
V = ggml_view_3d(ctx0, cur, n_embd, W * H, B, cur->nb[2], cur->nb[3], 2 * cur->nb[1]);
V = ggml_reshape_4d(ctx0, ggml_cont(ctx0, V), d_heads, n_heads, W * H, B);
ggml_tensor * mask;
ggml_tensor * rw;
ggml_tensor * rh;
ggml_tensor * qr;
rw = get_rel_pos(ctx0, layer.rel_pos_w, indices, W, W); // [W, W, C]
rh = get_rel_pos(ctx0, layer.rel_pos_h, indices, H, H); // [H, H, C]
qr = ggml_permute(ctx0, Q, 0, 2, 1, 3);
qr = ggml_reshape_4d(ctx0, ggml_cont(ctx0, qr), d_heads, W, H, B * n_heads);
rw = ggml_mul_mat(ctx0, rw,
ggml_cont(ctx0, ggml_permute(ctx0, qr, 0, 2, 1, 3))); // [B*n_heads, W, H, W]
rw = ggml_cont(ctx0, ggml_permute(ctx0, rw, 0, 2, 1, 3)); // [B*n_heads, H, W, W]
rw = ggml_reshape_4d(ctx0, rw, W, 1, W * H, n_heads * B);
rw = ggml_repeat_4d(ctx0, rw, W, H, W * H, n_heads * B);
rh = ggml_mul_mat(ctx0, rh, qr); // [B*n_heads, H, W, H]
rh = ggml_reshape_4d(ctx0, rh, 1, H, W * H, n_heads * B);
mask = ggml_add(ctx0, rw, rh); // [B*n_heads, H*W, H, W]
mask = ggml_reshape_4d(ctx0, mask, W * H, W * H, n_heads, B);
mask = ggml_cast(ctx0, mask, GGML_TYPE_F16);
const float scale = 1.0f / sqrtf(static_cast<float>(d_heads));
cur = build_attn(layer.o_w, layer.o_b, Q, K, V, mask, scale,
il); // [B, H*W, n_embd]
cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur), n_embd, W, H, B);
}
if (hparams.is_global_attn(il) == false) {
// local attention layer - reverse window partition
cur = window_unpartition(ctx0, cur, w0, h0, window);
}
// re-add the layer input, e.g., residual
cur = ggml_add(ctx0, cur, shortcut);
ggml_tensor * inpFF = cur;
// layernorm2
cur = build_norm(inpFF, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
// ffn
cur = build_ffn(cur, layer.ff_up_w, layer.ff_up_b, nullptr, nullptr, layer.ff_down_w, layer.ff_down_b,
hparams.ffn_op, il);
// residual 2
cur = ggml_add(ctx0, cur, inpFF);
cb(cur, "sam_layer_out", il);
}
cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 2, 0, 1, 3));
cur = ggml_conv_2d(ctx0, model.neck_0_w, cur, 1, 1, 0, 0, 1, 1);
cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 1, 2, 0, 3));
cur = build_norm(cur, model.neck_1_w, model.neck_1_b, NORM_TYPE_NORMAL, hparams.eps, -1);
cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 2, 0, 1, 3));
cur = ggml_conv_2d(ctx0, model.neck_2_w, cur, 1, 1, 1, 1, 1, 1);
cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 1, 2, 0, 3));
cur = build_norm(cur, model.neck_3_w, model.neck_3_b, NORM_TYPE_NORMAL, hparams.eps, -1);
cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 2, 0, 1, 3));
cur = ggml_conv_2d(ctx0, model.net_2, cur, 2, 2, 1, 1, 1, 1);
cur = ggml_conv_2d(ctx0, model.net_3, cur, 2, 2, 1, 1, 1, 1);
cb(cur, "sam_output", -1);
ggml_build_forward_expand(gf, cur);
sam_out = cur;
}
ggml_tensor * clip_out;
// Building DS-OCR CLIP
{
ggml_tensor * inp;
inp = ggml_cpy(ctx0, sam_out, ggml_dup_tensor(ctx0, sam_out));
inp = ggml_reshape_2d(ctx0, inp, inp->ne[0] * inp->ne[1], inp->ne[2]);
inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
ggml_tensor * new_pos_embd =
ggml_cpy(ctx0, model.position_embeddings, ggml_dup_tensor(ctx0, model.position_embeddings));
int n_pos = new_pos_embd->ne[1]; // +1 for [CLS]
const auto tgt_size = static_cast<int>(std::sqrt(inp->ne[1]));
const auto src_size = static_cast<int>(std::sqrt(n_pos - 1));
if (tgt_size != src_size) {
ggml_tensor * old_pos_embd;
ggml_tensor * cls_tok;
old_pos_embd = ggml_view_2d(ctx0, new_pos_embd, new_pos_embd->ne[0], src_size * src_size,
ggml_row_size(new_pos_embd->type, new_pos_embd->ne[0]), 0);
cls_tok = ggml_view_2d(ctx0, new_pos_embd, new_pos_embd->ne[0], 1,
ggml_row_size(new_pos_embd->type, new_pos_embd->ne[0]), src_size * src_size);
new_pos_embd = ggml_interpolate(ctx0, old_pos_embd, tgt_size, tgt_size, new_pos_embd->ne[0], 1,
GGML_SCALE_MODE_BICUBIC);
new_pos_embd = ggml_reshape_3d(ctx0, new_pos_embd, n_embd, tgt_size * tgt_size, 1);
new_pos_embd = ggml_concat(ctx0, new_pos_embd, cls_tok, 1);
n_pos = tgt_size * tgt_size + 1;
}
// add CLS token
inp = ggml_concat(ctx0, model.class_embedding, inp, 1);
// for selecting learned pos embd, used by ViT
ggml_tensor * positions = ggml_cast(ctx0, ggml_arange(ctx0, 0, n_pos, 1), GGML_TYPE_I32);
ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, new_pos_embd, positions);
ggml_tensor * cur = build_vit(inp, n_pos, NORM_TYPE_NORMAL, FFN_GELU_QUICK, learned_pos_embd, nullptr);
ggml_build_forward_expand(gf, cur);
clip_out = cur;
}
const int clip_n_patches = sam_out->ne[0] * sam_out->ne[1];
sam_out = ggml_cont(ctx0, ggml_permute(ctx0, sam_out, 1, 2, 0, 3));
sam_out = ggml_reshape_2d(ctx0, sam_out, sam_out->ne[0], clip_n_patches);
clip_out = ggml_view_2d(ctx0, clip_out, n_embd, clip_n_patches, clip_out->nb[1], clip_out->nb[1]);
ggml_tensor * cur;
cur = ggml_concat(ctx0, clip_out, sam_out, 0);
cur = ggml_reshape_2d(ctx0, cur, 2 * n_embd, clip_n_patches);
cur = ggml_cont(ctx0, cur);
cur = ggml_mul_mat(ctx0, model.fc_w, cur);
cur = ggml_add(ctx0, cur, model.fc_b);
const auto h = static_cast<int>(std::sqrt(static_cast<float>(cur->ne[1])));
const auto w = h;
const auto n_dim = cur->ne[0];
ggml_tensor * imgnl;
ggml_tensor * vs;
imgnl = ggml_repeat_4d(ctx0, model.image_newline, n_dim, 1, h, 1);
vs = ggml_reshape_2d(ctx0, model.view_seperator, n_dim, 1); // (n_dim, 1)
cur = ggml_reshape_3d(ctx0, cur, n_dim, w, h);
cur = ggml_reshape_2d(ctx0, ggml_concat(ctx0, cur, imgnl, 1), n_dim, (w + 1) * h);
cur = ggml_concat(ctx0, cur, vs, 1); // (n_dim, h*(w+1) + 1)
cb(cur, "dsocr_output", -1);
ggml_build_forward_expand(gf, cur);
return gf;
}