llama.cpp/examples/model-conversion/scripts/utils/common.py

246 lines
8.4 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
import os
import sys
import torch
import numpy as np
from pathlib import Path
def get_model_name_from_env_path(env_path_name):
model_path = os.getenv(env_path_name)
if not model_path:
print(f"Error: {env_path_name} environment variable not set")
sys.exit(1)
if not os.path.exists(model_path):
print(f"Error: Model file not found: {model_path}")
sys.exit(1)
name = os.path.basename(os.path.normpath(model_path))
if name.endswith(".gguf"):
name = name[:-5]
return name
def summarize(tensor: torch.Tensor, name: str, max_seq: int = 3, max_vals: int = 3):
"""
Print a tensor in llama.cpp debug style.
Supports:
- 2D tensors (seq, hidden)
- 3D tensors (batch, seq, hidden)
- 4D tensors (batch, seq, heads, dim_per_head) via flattening heads × dim_per_head
Shows first and last max_vals of each vector per sequence position.
"""
t = tensor.detach().to(torch.float32).cpu()
# Determine dimensions
if t.ndim == 3:
_, s, _ = t.shape
elif t.ndim == 2:
_, s = 1, t.shape[0]
t = t.unsqueeze(0)
elif t.ndim == 4:
_, s, _, _ = t.shape
else:
print(f"Skipping tensor due to unsupported dimensions: {t.ndim}")
return
ten_shape = t.shape
print(f"ggml_debug: {name} = (f32) ... = {{{ten_shape}}}")
print(" [")
print(" [")
# Determine indices for first and last sequences
first_indices = list(range(min(s, max_seq)))
last_indices = list(range(max(0, s - max_seq), s))
# Check if there's an overlap between first and last indices or if we're at the edge case of s = 2 * max_seq
has_overlap = bool(set(first_indices) & set(last_indices)) or (max_seq * 2 == s)
# Combine indices
if has_overlap:
# If there's overlap, just use the combined unique indices
indices = sorted(list(set(first_indices + last_indices)))
separator_index = None
else:
# If no overlap, we'll add a separator between first and last sequences
indices = first_indices + last_indices
separator_index = len(first_indices)
for i, si in enumerate(indices):
# Add separator if needed
if separator_index is not None and i == separator_index:
print(" ...")
# Extract appropriate slice
vec = t[0, si]
if vec.ndim == 2: # 4D case: flatten heads × dim_per_head
flat = vec.flatten().tolist()
else: # 2D or 3D case
flat = vec.tolist()
# First and last slices
first = flat[:max_vals]
last = flat[-max_vals:] if len(flat) >= max_vals else flat
first_str = ", ".join(f"{v:12.4f}" for v in first)
last_str = ", ".join(f"{v:12.4f}" for v in last)
print(f" [{first_str}, ..., {last_str}]")
print(" ],")
print(" ]")
print(f" sum = {t.sum().item():.6f}\n")
def debug_hook(name):
def fn(_m, input, output):
if isinstance(input, torch.Tensor):
summarize(input, name + "_in")
elif isinstance(input, (tuple, list)) and len(input) > 0 and isinstance(input[0], torch.Tensor):
summarize(input[0], name + "_in")
if isinstance(output, torch.Tensor):
summarize(output, name + "_out")
elif isinstance(output, (tuple, list)) and len(output) > 0 and isinstance(output[0], torch.Tensor):
summarize(output[0], name + "_out")
return fn
def setup_rope_debug(model_module_path: str, function_name: str = "apply_rotary_pos_emb"):
"""
Apply monkey patch to dump RoPE activations for debugging.
Args:
model_module_path: Path to the model module (e.g., "transformers.models.apertus.modeling_apertus")
function_name: Name of the RoPE function to patch (default: "apply_rotary_pos_emb")
Example:
from utils.common import setup_rope_debug
setup_rope_debug("transformers.models.apertus.modeling_apertus")
"""
import importlib
# Import the module and get the original function
module = importlib.import_module(model_module_path)
orig_rope = getattr(module, function_name)
# Set torch print options for better debugging
torch.set_printoptions(threshold=float('inf'))
torch.set_printoptions(precision=6, sci_mode=False)
def debug_rope(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
# log inputs
summarize(q, "RoPE.q_in")
summarize(k, "RoPE.k_in")
# call original
q_out, k_out = orig_rope(q, k, cos, sin, position_ids, unsqueeze_dim)
# log outputs
summarize(q_out, "RoPE.q_out")
summarize(k_out, "RoPE.k_out")
return q_out, k_out
# Patch it
setattr(module, function_name, debug_rope)
print(f"RoPE debug patching applied to {model_module_path}.{function_name}")
def save_output_data(data, tokens, prompt, model_name, type_suffix="", output_dir="data"):
"""
Save output data (logits/embeddings), tokens, and prompt to files.
Args:
data: numpy array of floats (logits or embeddings)
tokens: list or array of token IDs
prompt: string containing the input prompt
model_name: name of the model
type_suffix: optional suffix like "-embeddings" (default: "")
output_dir: directory to save files (default: "data")
Creates the following files in output_dir:
- pytorch-{model_name}{type_suffix}.bin
- pytorch-{model_name}{type_suffix}.txt
- pytorch-{model_name}{type_suffix}-prompt.txt
- pytorch-{model_name}{type_suffix}-tokens.bin
"""
data_dir = Path(output_dir)
data_dir.mkdir(exist_ok=True)
base_path = data_dir / f"pytorch-{model_name}{type_suffix}"
# Convert and flatten logits/embeddings
data = data.cpu().numpy() if isinstance(data, torch.Tensor) else np.asarray(data)
data = data.flatten() if data.ndim > 1 else data
# Save logits/embedding files
data.astype(np.float32).tofile(f"{base_path}.bin")
print(f"Data saved to {base_path}.bin")
with open(f"{base_path}.txt", "w") as f:
f.writelines(f"{i}: {value:.6f}\n" for i, value in enumerate(data))
print(f"Data saved to {base_path}.txt")
# Convert and flatten tokens
tokens = tokens.cpu().numpy() if isinstance(tokens, torch.Tensor) else np.asarray(tokens)
tokens = tokens.flatten() if tokens.ndim > 1 else tokens
# Save token binary file
tokens.astype(np.int32).tofile(f"{base_path}-tokens.bin")
print(f"Tokens saved to {base_path}-tokens.bin")
# Save prompt file
with open(f"{base_path}-prompt.txt", "w") as f:
f.write(f"prompt: {prompt}\n")
f.write(f"n_tokens: {len(tokens)}\n")
f.write(f"token ids: {', '.join(str(int(tid)) for tid in tokens)}\n")
print(f"Prompt saved to {base_path}-prompt.txt")
def compare_tokens(original, converted, type_suffix="", output_dir="data"):
data_dir = Path(output_dir)
# Read tokens from both models
tokens1_file = data_dir / f"{original}{type_suffix}-tokens.bin"
tokens2_file = data_dir / f"{converted}{type_suffix}-tokens.bin"
if not tokens1_file.exists():
print(f"Error: Token file not found: {tokens1_file}")
return False
if not tokens2_file.exists():
print(f"Error: Token file not found: {tokens2_file}")
return False
tokens1 = np.fromfile(tokens1_file, dtype=np.int32)
tokens2 = np.fromfile(tokens2_file, dtype=np.int32)
print(f"\nComparing tokens between:")
print(f" Original : {original} ({len(tokens1)} tokens)")
print(f" Converted: {converted} ({len(tokens2)} tokens)")
if len(tokens1) != len(tokens2):
print(f"\n❌ Token count mismatch: {len(tokens1)} vs {len(tokens2)}")
return False
if np.array_equal(tokens1, tokens2):
print(f"\n✅ All {len(tokens1)} tokens match!")
return True
mismatches = np.where(tokens1 != tokens2)[0]
print(f"\n❌ Found {len(mismatches)} mismatched tokens:")
num_to_show = min(len(mismatches), 10)
for idx in mismatches[:num_to_show]:
print(f" Position {idx}: {tokens1[idx]} vs {tokens2[idx]}")
if len(mismatches) > num_to_show:
print(f" ... and {len(mismatches) - num_to_show} more mismatches")
return False