llama.cpp/ggml-qnn.cpp

3337 lines
129 KiB
C++

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdatomic.h>
#include <string.h>
#include <stddef.h>
#include <inttypes.h>
#include <math.h>
#include <time.h>
#include <unistd.h>
#include <dlfcn.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <string>
#include <vector>
#include <thread>
#include <mutex>
#include <map>
#include <set>
#include <tuple>
#include <queue>
#include <fstream>
#include <iostream>
#include <sstream>
#include <chrono>
#include <memory>
#include <regex>
#include <random>
#include <functional>
#include <unordered_map>
#include <condition_variable>
#include <cassert>
#include <unordered_set>
#include <utility>
#if (defined __ANDROID__) || (defined ANDROID)
#include <android/log.h>
#endif
#include "ggml-qnn.h"
#include "ggml-backend-impl.h"
// header file of Qualcomm QNN(Qualcomm Neural Network, aka Qualcomm AI Engine Direct) SDK
// https://qpm.qualcomm.com/#/main/tools/details/qualcomm_ai_engine_direct
#include "QnnTypes.h"
#include "QnnCommon.h"
#include "QnnContext.h"
#include "QnnBackend.h"
#include "QnnGraph.h"
#include "QnnProperty.h"
#include "QnnTensor.h"
#include "QnnInterface.h"
#include "Saver/QnnSaver.h"
#include "System/QnnSystemInterface.h"
#include "HTP/QnnHtpDevice.h"
#include <HTP/QnnHtpGraph.h>
// =================================================================================================
//
// forward declaration
//
// =================================================================================================
class qnn_instance;
struct ggml_backend_qnn_context;
static int free_qnn_tensor(Qnn_Tensor_t & tensor);
// =================================================================================================
//
// self-defined macro / data structure
//
// =================================================================================================
#ifdef NDEBUG
#define ENABLE_QNNBACKEND_DEBUG 0 // for troubleshooting QNN backend
#define ENABLE_QNNSDK_LOG 0 // enable/disable QNN SDK's internal log
#define ENABLE_QNNBACKEND_PERF 0 // enable/disable op's perf info
#else
#define ENABLE_QNNBACKEND_DEBUG 1 // for troubleshooting QNN backend
#define ENABLE_QNNSDK_LOG 1 // enable/disable QNN SDK's internal log
#define ENABLE_QNNBACKEND_PERF 1 // enable/disable op's perf info
#endif
#define QNN_LOGBUF_LEN 4096
#define QNN_BACKEND_NAME "qnn"
typedef void (*ggml_qnn_func_t)(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0,
const ggml_tensor * src1,
ggml_tensor * dst);
typedef void (*ggml_qnn_func_common_t)(ggml_backend_qnn_context * ctx,
const ggml_op ggml_op,
const ggml_tensor * src0,
const ggml_tensor * src1,
ggml_tensor * dst);
enum qcom_htp_arch {
NONE = 0,
V68 = 68,
V69 = 69,
V73 = 73,
V75 = 75,
};
enum qcom_chipset {
UNKNOWN_SM = 0,
SM8450 = 36, // v69
SM8475 = 42, // v69
SM8550 = 43, // v73
SM8650 = 57, // v75
};
struct qcom_socinfo {
uint32_t soc_model;
size_t htp_arch;
size_t vtcm_size_in_mb;
};
static struct qcom_socinfo g_qnn_soc_info_table[] = {
/* Qualcomm SnapDragon 8 Gen 1 */
[SM8450] = {
.soc_model = SM8450,
.htp_arch = V69,
.vtcm_size_in_mb = 8},
/* Qualcomm SnapDragon 8 Gen 1+ */
[SM8475] = {
.soc_model = SM8475,
.htp_arch = V69,
.vtcm_size_in_mb = 8},
/* Qualcomm SnapDragon 8 Gen 2 */
[SM8550] = {
.soc_model = SM8550,
.htp_arch = V73,
.vtcm_size_in_mb = 8},
/* Qualcomm SnapDragon 8 Gen 3 */
[SM8650] = {
.soc_model = SM8650,
.htp_arch = V75,
.vtcm_size_in_mb = 8},
};
struct ggml_backend_qnn_context {
int device;
int threads;
char name[GGML_MAX_NAME];
char lib[GGML_MAX_NAME];
qnn_instance * instance;
struct ggml_backend * backend;
QNN_INTERFACE_VER_TYPE raw_interface;
QNN_SYSTEM_INTERFACE_VER_TYPE raw_system_interface;
struct qcom_socinfo socinfo;
};
// according to the QNN SDK Reference Guide,
// CPU - Choose a non-quantized model.Quantized models are currently incompatible with the CPU backend
// GPU - Choose a non-quantized model.Quantized models are currently incompatible with the GPU backend
// HTP - Choose a quantized model. Quantized models are required when running on the HTP backend
// DSP - Choose a quantized model. Quantized models are required when running on the DSP backend
// HTA - Choose a quantized model. Quantized models are required when running on the HTA backend
//
// only focus on Qualcomm CPU/GPU/NPU backend in this implementation of QNN backend for ggml currently,
// CPU: Qualcomm Kryo CPU
// GPU: Qualcomm Adreno GPU
// NPU: Qualcomm NPU: aka HTP(Hexagon Tensor Processor), ~= cDSP(Compute DSP) +
// HMX(Hexagon Matrix eXtensions)/HTA(Hexagon Tensor Accelerator)
static struct ggml_backend_qnn_context g_qnn_mgr[GGML_QNN_MAX_DEVICES] = {
[QNN_BACKEND_CPU] = {.device = 0,
.threads = 1,
.name = "qnn-cpu",
.lib = "libQnnCpu.so",
.instance = nullptr,
.backend = nullptr,
.raw_interface = {},
.raw_system_interface = {},
.socinfo = {}},
[QNN_BACKEND_GPU] = {.device = 1,
.threads = 1,
.name = "qnn-gpu",
.lib = "libQnnGpu.so",
.instance = nullptr,
.backend = nullptr,
.raw_interface = {},
.raw_system_interface = {},
.socinfo = {}},
[QNN_BACKEND_NPU] = {.device = 2,
.threads = 1,
.name = "qnn-npu",
.lib = "libQnnHtp.so",
.instance = nullptr,
.backend = nullptr,
.raw_interface = {},
.raw_system_interface = {},
.socinfo = {}},
};
struct ggml_backend_qnn_buffer_context {
ggml_backend_qnn_buffer_context(size_t device)
: device(device)
, name(QNN_BACKEND_NAME + std::to_string(device)) {}
~ggml_backend_qnn_buffer_context() {
if (buffer) {
free(buffer);
}
for (auto * sub_buffer : sub_buffers) {
free(sub_buffer);
}
for (auto * qnn_tensor : qnn_tensors) {
free_qnn_tensor(*qnn_tensor);
free(qnn_tensor);
}
sub_buffers.clear();
qnn_tensors.clear();
}
void * buffer = nullptr;
struct ggml_backend_qnn_context * backend_ctx = nullptr;
size_t buffer_size = 0;
std::vector<void *> sub_buffers;
std::vector<Qnn_Tensor_t *> qnn_tensors;
size_t device;
std::string name;
};
struct ggml_backend_qnn_buffer_type_context {
size_t device;
std::string name;
};
// =================================================================================================
//
// QNN backend internal log function
//
// =================================================================================================
static void qnn_internal_log(ggml_log_level level, const char * file,
const char * func, int line,
const char * format, ...);
#define QNN_LOG_ERROR(...) \
qnn_internal_log(GGML_LOG_LEVEL_DEBUG, __FILE__, __FUNCTION__, __LINE__, __VA_ARGS__)
#define QNN_LOG_WARN(...) \
qnn_internal_log(GGML_LOG_LEVEL_DEBUG, __FILE__, __FUNCTION__, __LINE__, __VA_ARGS__)
#define QNN_LOG_INFO(...) \
qnn_internal_log(GGML_LOG_LEVEL_DEBUG, __FILE__, __FUNCTION__, __LINE__, __VA_ARGS__)
#if ENABLE_QNNBACKEND_DEBUG
#define QNN_LOG_DEBUG(...) \
qnn_internal_log(GGML_LOG_LEVEL_DEBUG, __FILE__, __FUNCTION__, __LINE__, __VA_ARGS__)
#else
#define QNN_LOG_DEBUG(...)
#endif
// =================================================================================================
//
// QNN backend internal helper functions
//
// =================================================================================================
static uint32_t qnn_get_ggml_tensor_rank(const ggml_tensor * tensor) {
uint32_t rank = 0;
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if ((0 != tensor->ne[i]) && (1 != tensor->ne[i])) {
rank++;
}
}
return rank;
}
// TODO: mapping more ggml data type to QNN data type
// ref:explanation of k-quants, https://github.com/ggerganov/llama.cpp/pull/1684
static Qnn_DataType_t qnn_datatype_from_ggml_datatype(enum ggml_type ggmltype) {
switch (ggmltype) {
case GGML_TYPE_F16:
return QNN_DATATYPE_FLOAT_16;
case GGML_TYPE_F32:
return QNN_DATATYPE_FLOAT_32;
case GGML_TYPE_I8:
return QNN_DATATYPE_INT_8;
case GGML_TYPE_Q8_0:
return QNN_DATATYPE_SFIXED_POINT_8;
case GGML_TYPE_Q4_0:
return QNN_DATATYPE_SFIXED_POINT_4;
default:
break;
}
return QNN_DATATYPE_UNDEFINED;
}
// TODO: only support GGML_OP_ADD/GGML_OP_MUL/GGML_OP_MUL_MAT
static const char * qnn_opname_from_ggmlop(enum ggml_op ggmlop) {
switch (ggmlop) {
case GGML_OP_ADD:
return QNN_OP_ELEMENT_WISE_ADD;
case GGML_OP_MUL:
return QNN_OP_ELEMENT_WISE_MULTIPLY;
case GGML_OP_MUL_MAT:
return QNN_OP_MAT_MUL;
default:
break;
}
return nullptr;
}
static uint32_t qnn_get_ggml_tensor_data_size(const ggml_tensor * tensor) {
/*
size_t data_size = ggml_row_size(tensor->type, tensor->ne[0]);
size_t n_dims = qnn_get_ggml_tensor_rank(tensor);
for (int i = 1; i < n_dims; i++) {
data_size *= tensor->ne[i];
}
return data_size;
*/
return ggml_nbytes(tensor);
}
static const char * qnn_get_backend_name(int n_backend_type) {
switch (n_backend_type) {
case QNN_BACKEND_CPU:
return "QNN-CPU";
case QNN_BACKEND_GPU:
return "QNN-GPU";
case QNN_BACKEND_NPU:
return "QNN-NPU";
case QNN_BACKEND_GGML:
return "ggml"; //"fake" QNN backend, used for compare performance between QNN backend and original GGML
default:
return "unknown";
}
}
static const char * qnn_get_chipset_desc(uint32_t chipset_id) {
switch (chipset_id) {
case SM8450:
return "SM8450";
case SM8475:
return "SM8475";
case SM8550:
return "SM8550";
case SM8650:
return "SM8650";
default:
return "unknown";
}
}
static const char * qnn_get_htparch_desc(size_t htp_arch) {
switch (htp_arch) {
case V68:
return "QCOM_HTP_V68";
case V69:
return "QCOM_HTP_V69";
case V73:
return "QCOM_HTP_V73";
case V75:
return "QCOM_HTP_V75";
default:
return "unknown";
}
}
static void qnn_internal_log(ggml_log_level level, const char * file,
const char * func, int line,
const char * format, ...) {
static std::mutex qnn_internal_log_mutex;
static char s_qnn_internal_log_buf[QNN_LOGBUF_LEN];
{
std::lock_guard<std::mutex> lock(qnn_internal_log_mutex);
va_list args;
va_start(args, format);
int len_prefix =
snprintf(s_qnn_internal_log_buf, QNN_LOGBUF_LEN,
"[%s, %d]: ", func, line);
int len = vsnprintf(s_qnn_internal_log_buf + len_prefix,
QNN_LOGBUF_LEN - len_prefix, format, args);
if (len < (QNN_LOGBUF_LEN - len_prefix)) {
#if (defined __ANDROID__) || (defined ANDROID)
// for Android APK
__android_log_print(level, "ggml-qnn", "%s\n", s_qnn_internal_log_buf);
#endif
// for Android command line application or WoA(Windows on ARM)
printf("%s\n", s_qnn_internal_log_buf);
}
va_end(args);
}
}
static bool qnn_is_valid_params(ggml_backend_qnn_context * ctx, const ggml_tensor * src0,
const ggml_tensor * src1, ggml_tensor * dst) {
if ((nullptr == ctx) || (nullptr == src0) || (nullptr == src1) || (nullptr == dst)) {
QNN_LOG_WARN("invalid params\n");
return false;
}
qnn_instance * instance = nullptr;
Qnn_Tensor_t * tensor_0 = nullptr;
Qnn_Tensor_t * tensor_1 = nullptr;
Qnn_Tensor_t * tensor_2 = nullptr;
tensor_0 = (Qnn_Tensor_t *) src0->extra;
tensor_1 = (Qnn_Tensor_t *) src1->extra;
tensor_2 = (Qnn_Tensor_t *) dst->extra;
instance = ctx->instance;
if ((nullptr == instance) || (nullptr == tensor_0) || (nullptr == tensor_1) || (nullptr == tensor_2)) {
QNN_LOG_WARN("invalid params\n");
return false;
}
return true;
}
#define CHECK_PARAMS(ctx, src0, src1, dst) \
do { \
if (!qnn_is_valid_params((ctx), (src0), (src1), (dst))) { \
return; \
} \
} while (0)
#if ENABLE_QNNBACKEND_PERF
class qnn_perf {
public:
qnn_perf(const std::string & perf_name) : _perf_name(std::move(perf_name)) {};
qnn_perf() = delete;
qnn_perf(const qnn_perf & ) = delete;
qnn_perf & operator= (const qnn_perf & ) = delete;
void start() {
_begin_time = ggml_time_us();
}
void info() {
_end_time = ggml_time_us();
_duration = (_end_time - _begin_time);
QNN_LOG_DEBUG("duration of %s : %lld microseconds\n", _perf_name.c_str(), _duration);
}
private:
int64_t _begin_time = 0LL;
int64_t _end_time = 0LL;
int64_t _duration = 0LL;
std::string _perf_name;
};
#else
class qnn_perf {
public:
qnn_perf(const std::string & perf_name) {}
qnn_perf() = delete;
qnn_perf(const qnn_perf & ) = delete;
qnn_perf & operator= (const qnn_perf & ) = delete;
void start() {}
void info() {}
};
#endif
// =================================================================================================
//
// helper data type / data structure / macros / functions of
// Qualcomm QNN(Qualcomm Neural Network, aka Qualcomm AI Engine Direct) SDK
// ref:https://github.com/pytorch/executorch/tree/main/backends/qualcomm
// =================================================================================================
enum qnn_sdk_profile_level {
profile_off = 0,
profile_basic = 1,
profile_detail = 2
};
using pfn_rpc_mem_init = void (*)(void);
using pfn_rpc_mem_deinit = void (*)(void);
using pfn_rpc_mem_alloc = void *(*) (int, uint32_t, int);
using pfn_rpc_mem_free = void (*)(void *);
using pfn_rpc_mem_to_fd = int (*)(void *);
using pfn_qnnsaver_initialize = decltype(QnnSaver_initialize);
using pfn_qnninterface_getproviders = decltype(QnnInterface_getProviders);
using pfn_qnnsysteminterface_getproviders = decltype(QnnSystemInterface_getProviders);
#define QNN_VER_PTR(x) (&((x).v1))
#define RPCMEM_DEFAULT_FLAGS 1
#define RPCMEM_HEAP_ID_SYSTEM 25
#define VALIDATE(value, status) \
do { \
status = value; \
if (status != QNN_SUCCESS) { \
QNN_LOG_WARN("%s expected QNN_SUCCESS\n", #value); \
return status; \
} \
} while (0)
#define QNN_TENSOR_GET_ID(tensor) get_qnn_tensorid(tensor)
#define QNN_TENSOR_GET_NAME(tensor) get_qnn_tensorname(tensor)
#define QNN_TENSOR_GET_TYPE(tensor) get_qnn_tensortype(tensor)
#define QNN_TENSOR_GET_DATA_FORMAT(tensor) get_qnn_tensor_dataformat(tensor)
#define QNN_TENSOR_GET_DATA_TYPE(tensor) get_qnn_tensor_datatype(tensor)
#define QNN_TENSOR_GET_QUANT_PARAMS(tensor) get_qnn_tensor_quantparams(tensor)
#define QNN_TENSOR_GET_RANK(tensor) get_qnn_tensor_rank(tensor)
#define QNN_TENSOR_GET_DIMENSIONS(tensor) get_qnn_tensor_dimensions(tensor)
#define QNN_TENSOR_GET_MEM_TYPE(tensor) get_qnn_tensor_memtype(tensor)
#define QNN_TENSOR_SET_ID(tensor, value) set_qnn_tensor_id(tensor, value)
#define QNN_TENSOR_SET_NAME(tensor, value) set_qnn_tensor_name(tensor, value)
#define QNN_TENSOR_SET_TYPE(tensor, value) set_qnn_tensor_type(tensor, value)
#define QNN_TENSOR_SET_DATA_FORMAT(tensor, value) set_qnn_tensor_dataformat(tensor, value)
#define QNN_TENSOR_SET_DATA_TYPE(tensor, value) set_qnn_tensor_datatype(tensor, value)
#define QNN_TENSOR_SET_QUANT_PARAMS(tensor, value) set_qnn_tensor_quantparams(tensor, value)
#define QNN_TENSOR_SET_RANK(tensor, value) set_qnn_tensor_rank(tensor, value)
#define QNN_TENSOR_SET_DIMENSIONS(tensor, value) set_qnn_tensor_dimensions(tensor, value)
#define QNN_TENSOR_SET_MEM_TYPE(tensor, value) set_qnn_tensor_memtype(tensor, value)
#define QNN_TENSOR_SET_CLIENT_BUF(tensor, value) set_qnn_tensor_clientbuf(tensor, value)
#define QNN_TENSOR_SET_MEM_HANDLE(tensor, value) set_qnn_tensor_memhandle(tensor, value)
#define VALIDATE_TENSOR_VERSION(tensor, err) VALIDATE(validate_tensor_version(tensor), err)
static inline int validate_tensor_version(Qnn_Tensor_t tensor) {
if (tensor.version != QNN_TENSOR_VERSION_1) {
QNN_LOG_WARN(
"validate_tensor_version() tensor %s, got unsupported version %d\n",
tensor.v1.name, tensor.version);
return 1;
}
return 0;
}
static inline uint32_t get_qnn_tensorid(const Qnn_Tensor_t & tensor) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
return tensor.v1.id;
}
return 0u;
}
static inline const char * get_qnn_tensorname(const Qnn_Tensor_t & tensor) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
return tensor.v1.name;
}
return nullptr;
}
static inline Qnn_TensorType_t get_qnn_tensortype(const Qnn_Tensor_t & tensor) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
return tensor.v1.type;
}
return QNN_TENSOR_TYPE_UNDEFINED;
}
static inline Qnn_TensorDataFormat_t
get_qnn_tensor_dataformat(const Qnn_Tensor_t & tensor) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
return tensor.v1.dataFormat;
}
return QNN_TENSOR_DATA_FORMAT_FLAT_BUFFER;
}
static inline Qnn_DataType_t
get_qnn_tensor_datatype(const Qnn_Tensor_t & tensor) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
return tensor.v1.dataType;
}
return QNN_DATATYPE_UNDEFINED;
}
static inline Qnn_QuantizeParams_t
get_qnn_tensor_quantparams(const Qnn_Tensor_t & tensor) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
return tensor.v1.quantizeParams;
}
return QNN_QUANTIZE_PARAMS_INIT;
}
static inline uint32_t get_qnn_tensor_rank(const Qnn_Tensor_t & tensor) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
return tensor.v1.rank;
}
return 0u;
}
static inline uint32_t * get_qnn_tensor_dimensions(const Qnn_Tensor_t & tensor) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
return tensor.v1.dimensions;
}
return nullptr;
}
static inline Qnn_TensorMemType_t get_qnn_tensor_memtype(const Qnn_Tensor_t & tensor) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
return tensor.v1.memType;
}
return QNN_TENSORMEMTYPE_UNDEFINED;
}
static inline void set_qnn_tensor_id(Qnn_Tensor_t & tensor, uint32_t id) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
tensor.v1.id = id;
}
}
static inline void set_qnn_tensor_name(Qnn_Tensor_t & tensor, const char * name) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
tensor.v1.name = name;
}
}
static inline void set_qnn_tensor_type(Qnn_Tensor_t & tensor, Qnn_TensorType_t type) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
tensor.v1.type = type;
}
}
static inline void set_qnn_tensor_dataformat(Qnn_Tensor_t & tensor, Qnn_TensorDataFormat_t format) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
tensor.v1.dataFormat = format;
}
}
static inline void set_qnn_tensor_datatype(Qnn_Tensor_t & tensor, Qnn_DataType_t dataType) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
tensor.v1.dataType = dataType;
}
}
static inline void set_qnn_tensor_quantparams(Qnn_Tensor_t & tensor, Qnn_QuantizeParams_t params) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
tensor.v1.quantizeParams = params;
}
}
static inline void set_qnn_tensor_rank(Qnn_Tensor_t & tensor, uint32_t rank) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
tensor.v1.rank = rank;
}
}
static inline void set_qnn_tensor_dimensions(Qnn_Tensor_t & tensor, uint32_t * dims) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
tensor.v1.dimensions = dims;
}
}
static inline void set_qnn_tensor_memtype(Qnn_Tensor_t & tensor, Qnn_TensorMemType_t mem_type) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
tensor.v1.memType = mem_type;
}
}
static inline void set_qnn_tensor_clientbuf(Qnn_Tensor_t & tensor, Qnn_ClientBuffer_t client_buf) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
tensor.v1.clientBuf = client_buf;
}
}
static inline void set_qnn_tensor_memhandle(Qnn_Tensor_t & tensor, Qnn_MemHandle_t handle) {
if (tensor.version == QNN_TENSOR_VERSION_1) {
tensor.v1.memHandle = handle;
}
}
static size_t memscpy(void * dst, size_t dst_size, const void * src, size_t copy_size) {
if (!dst || !src || !dst_size || !copy_size) return 0;
size_t min_size = dst_size < copy_size ? dst_size : copy_size;
memcpy(dst, src, min_size);
return min_size;
}
static int deep_copy_qnn_tensors(Qnn_Tensor_t & src, Qnn_Tensor_t & dst) {
int err = 0;
VALIDATE_TENSOR_VERSION(src, err);
dst.version = src.version;
QNN_TENSOR_SET_NAME(
dst, ::strndup(QNN_TENSOR_GET_NAME(src),std::string(QNN_TENSOR_GET_NAME(src)).size()));
if (nullptr == QNN_TENSOR_GET_NAME(dst)) {
return 1;
}
QNN_TENSOR_SET_ID(dst, QNN_TENSOR_GET_ID(src));
QNN_TENSOR_SET_TYPE(dst, QNN_TENSOR_GET_TYPE(src));
QNN_TENSOR_SET_DATA_FORMAT(dst, QNN_TENSOR_GET_DATA_FORMAT(src));
QNN_TENSOR_SET_DATA_TYPE(dst, QNN_TENSOR_GET_DATA_TYPE(src));
QNN_TENSOR_SET_MEM_TYPE(dst, QNN_TENSOR_GET_MEM_TYPE(src));
if (QNN_TENSOR_GET_MEM_TYPE(src) == QNN_TENSORMEMTYPE_RAW) {
Qnn_ClientBuffer_t client_buf = {nullptr, 0};
QNN_TENSOR_SET_CLIENT_BUF(dst, client_buf);
} else if (QNN_TENSOR_GET_MEM_TYPE(src) == QNN_TENSORMEMTYPE_MEMHANDLE) {
QNN_TENSOR_SET_MEM_HANDLE(dst, nullptr);
} else {
return 1;
}
Qnn_QuantizeParams_t src_qparam = QNN_TENSOR_GET_QUANT_PARAMS(src);
Qnn_QuantizationEncoding_t encoding = src_qparam.quantizationEncoding;
if (encoding == QNN_QUANTIZATION_ENCODING_AXIS_SCALE_OFFSET) {
Qnn_QuantizeParams_t src_qparam_cpy = src_qparam;
Qnn_AxisScaleOffset_t & axis_scale_offset = src_qparam_cpy.axisScaleOffsetEncoding;
Qnn_ScaleOffset_t ** scaleOffset = & axis_scale_offset.scaleOffset;
size_t scaleOffsetSize = axis_scale_offset.numScaleOffsets * sizeof(Qnn_ScaleOffset_t);
*scaleOffset = (Qnn_ScaleOffset_t *) malloc(scaleOffsetSize);
memscpy(*scaleOffset, scaleOffsetSize,
src_qparam.axisScaleOffsetEncoding.scaleOffset,
scaleOffsetSize);
QNN_TENSOR_SET_QUANT_PARAMS(dst, src_qparam_cpy);
} else if (encoding == QNN_QUANTIZATION_ENCODING_BW_AXIS_SCALE_OFFSET) {
Qnn_QuantizeParams_t src_qparam_cpy = src_qparam;
Qnn_BwAxisScaleOffset_t & bwaxis_scale_offset = src_qparam_cpy.bwAxisScaleOffsetEncoding;
size_t scaleSize = bwaxis_scale_offset.numElements * sizeof(float);
float ** scales = &bwaxis_scale_offset.scales;
int32_t ** offsets = &bwaxis_scale_offset.offsets;
*scales = (float *) malloc(scaleSize);
memscpy(*scales, scaleSize, src_qparam.bwAxisScaleOffsetEncoding.scales,
scaleSize);
if (bwaxis_scale_offset.offsets != nullptr) {
size_t offsetSize = bwaxis_scale_offset.numElements * sizeof(int32_t);
*offsets = (int32_t *) malloc(offsetSize);
memscpy(*offsets, offsetSize,
src_qparam.bwAxisScaleOffsetEncoding.offsets, offsetSize);
}
QNN_TENSOR_SET_QUANT_PARAMS(dst, src_qparam_cpy);
} else {
QNN_TENSOR_SET_QUANT_PARAMS(dst, src_qparam);
}
uint32_t rank = QNN_TENSOR_GET_RANK(src);
QNN_TENSOR_SET_RANK(dst, rank);
size_t dim_size = rank * sizeof(uint32_t);
uint32_t * dimensions = (uint32_t *) malloc(dim_size);
if (dimensions == nullptr) {
QNN_LOG_WARN("deep_copy_qnn_tensors() allocation error while copying "
"tensor %s\n",
QNN_TENSOR_GET_NAME(src));
return 1;
}
memscpy(dimensions, dim_size, QNN_TENSOR_GET_DIMENSIONS(src), dim_size);
QNN_TENSOR_SET_DIMENSIONS(dst, dimensions);
return err;
}
static int free_qnn_tensor(Qnn_Tensor_t & tensor) {
int err = 0;
VALIDATE_TENSOR_VERSION(tensor, err);
free((void *) QNN_TENSOR_GET_NAME(tensor));
free(QNN_TENSOR_GET_DIMENSIONS(tensor));
return err;
}
template <typename Fn> Fn load_qnn_functionpointers(void * handle, const char * function_name) {
return reinterpret_cast<Fn>(dlsym(handle, function_name));
}
static intptr_t align_to(size_t alignment, intptr_t offset) {
return offset % alignment == 0
? offset
: offset + (static_cast<intptr_t>(alignment) -
offset % static_cast<intptr_t>(alignment));
}
static void qnn_sdk_logcallback(const char * fmt, QnnLog_Level_t level,
uint64_t timestamp, va_list argp) {
#if ENABLE_QNNSDK_LOG
static std::mutex log_mutex;
static unsigned char s_ggml_qnn_logbuf[QNN_LOGBUF_LEN];
const char * log_level_desc = "";
switch (level) {
case QNN_LOG_LEVEL_ERROR:
log_level_desc = "ERROR";
break;
case QNN_LOG_LEVEL_WARN:
log_level_desc = "WARNING";
break;
case QNN_LOG_LEVEL_INFO:
log_level_desc = "INFO";
break;
case QNN_LOG_LEVEL_DEBUG:
log_level_desc = "DEBUG";
break;
case QNN_LOG_LEVEL_VERBOSE:
log_level_desc = "VERBOSE";
break;
case QNN_LOG_LEVEL_MAX:
log_level_desc = "UNKNOWN";
break;
}
double ms = (double) timestamp / 1000000.0;
{
std::lock_guard<std::mutex> lock(log_mutex);
memset(s_ggml_qnn_logbuf, 0, QNN_LOGBUF_LEN);
vsnprintf(reinterpret_cast<char *const>(s_ggml_qnn_logbuf), QNN_LOGBUF_LEN, fmt, argp);
QNN_LOG_DEBUG("%8.1fms [%-7s] %s\n", ms, log_level_desc, s_ggml_qnn_logbuf);
}
#endif
}
// =================================================================================================
//
// wrapper class of Qualcomm QNN(Qualcomm Neural Network, aka Qualcomm AI Engine Direct) SDK
// ref:https://github.com/pytorch/executorch/tree/main/backends/qualcomm
// =================================================================================================
class qnn_interface {
#define DEFINE_SHIM_FUNCTION_INTERFACE(F, pointer_name) \
template <typename... Args> inline auto qnn_##F(Args... args) const { \
return (_qnn_interface->QNN_INTERFACE_VER_NAME.pointer_name)( \
std::forward<Args>(args)...); \
}
#define DEFINE_SHIM_FUNCTION_SYS_INTERFACE(F, pointer_name) \
template <typename... Args> inline auto qnn_##F(Args... args) const { \
return ( \
_qnn_sys_interface->QNN_SYSTEM_INTERFACE_VER_NAME.pointer_name)( \
std::forward<Args>(args)...); \
}
friend class qnn_instance;
public:
qnn_interface() = default;
// QnnBackend
DEFINE_SHIM_FUNCTION_INTERFACE(backend_create, backendCreate);
DEFINE_SHIM_FUNCTION_INTERFACE(backend_free, backendFree);
DEFINE_SHIM_FUNCTION_INTERFACE(backend_register_op_package,
backendRegisterOpPackage);
DEFINE_SHIM_FUNCTION_INTERFACE(backend_validate_op_config,
backendValidateOpConfig);
DEFINE_SHIM_FUNCTION_INTERFACE(backend_get_api_version,
backendGetApiVersion);
// QnnDevice
DEFINE_SHIM_FUNCTION_INTERFACE(device_create, deviceCreate);
DEFINE_SHIM_FUNCTION_INTERFACE(device_free, deviceFree);
DEFINE_SHIM_FUNCTION_INTERFACE(device_get_infrastructure,
deviceGetInfrastructure);
DEFINE_SHIM_FUNCTION_INTERFACE(device_get_platform_info,
deviceGetPlatformInfo);
DEFINE_SHIM_FUNCTION_INTERFACE(device_get_info, deviceGetInfo);
// QnnContext
DEFINE_SHIM_FUNCTION_INTERFACE(context_create, contextCreate);
DEFINE_SHIM_FUNCTION_INTERFACE(context_get_binary_size,
contextGetBinarySize);
DEFINE_SHIM_FUNCTION_INTERFACE(context_get_binary, contextGetBinary);
DEFINE_SHIM_FUNCTION_INTERFACE(context_create_from_binary,
contextCreateFromBinary);
DEFINE_SHIM_FUNCTION_INTERFACE(context_free, contextFree);
// QnnGraph
DEFINE_SHIM_FUNCTION_INTERFACE(graph_create, graphCreate);
DEFINE_SHIM_FUNCTION_INTERFACE(graph_add_node, graphAddNode);
DEFINE_SHIM_FUNCTION_INTERFACE(graph_finalize, graphFinalize);
DEFINE_SHIM_FUNCTION_INTERFACE(graph_execute, graphExecute);
DEFINE_SHIM_FUNCTION_INTERFACE(graph_retrieve, graphRetrieve);
// QnnLog
DEFINE_SHIM_FUNCTION_INTERFACE(log_create, logCreate);
DEFINE_SHIM_FUNCTION_INTERFACE(log_free, logFree);
DEFINE_SHIM_FUNCTION_INTERFACE(log_set_log_level, logSetLogLevel);
// QnnProfile
DEFINE_SHIM_FUNCTION_INTERFACE(profile_create, profileCreate);
DEFINE_SHIM_FUNCTION_INTERFACE(profile_get_events, profileGetEvents);
DEFINE_SHIM_FUNCTION_INTERFACE(profile_get_sub_events, profileGetSubEvents);
DEFINE_SHIM_FUNCTION_INTERFACE(profile_get_event_data, profileGetEventData);
DEFINE_SHIM_FUNCTION_INTERFACE(profile_free, profileFree);
// QnnMem
DEFINE_SHIM_FUNCTION_INTERFACE(mem_register, memRegister);
DEFINE_SHIM_FUNCTION_INTERFACE(mem_de_register, memDeRegister);
// QnnProperty
DEFINE_SHIM_FUNCTION_INTERFACE(property_has_capability,
propertyHasCapability);
// QnnTensor
DEFINE_SHIM_FUNCTION_INTERFACE(tensor_create_context_tensor,
tensorCreateContextTensor);
DEFINE_SHIM_FUNCTION_INTERFACE(tensor_create_graph_tensor,
tensorCreateGraphTensor);
// QnnSystem
DEFINE_SHIM_FUNCTION_SYS_INTERFACE(system_context_create,
systemContextCreate);
DEFINE_SHIM_FUNCTION_SYS_INTERFACE(system_context_get_binary_info,
systemContextGetBinaryInfo);
DEFINE_SHIM_FUNCTION_SYS_INTERFACE(system_context_free, systemContextFree);
void set_qnn_interface(const QnnInterface_t * qnn_interface) {
_qnn_interface = qnn_interface;
}
void set_qnn_system_interface(
const QnnSystemInterface_t * qnn_sys_interface) {
_qnn_sys_interface = qnn_sys_interface;
}
uint32_t get_backend_id() const { return _qnn_interface->backendId; }
bool is_loaded() const {
return ((_qnn_sys_interface != nullptr) && (_qnn_interface != nullptr));
}
private:
const QnnInterface_t * _qnn_interface = nullptr;
const QnnSystemInterface_t * _qnn_sys_interface = nullptr;
};
class qnn_instance {
public:
using BackendIdType = decltype(QnnInterface_t{}.backendId);
explicit qnn_instance(const std::string & lib_path,
const std::string & backend_name,
const std::string & model_name)
: _lib_path(std::move(lib_path))
, _backend_name(std::move(backend_name))
, _model_name(std::move(model_name)){};
~qnn_instance() {}
int qnn_init(const QnnSaver_Config_t ** saver_config) {
BackendIdType backend_id = QNN_BACKEND_ID_NULL;
QNN_LOG_DEBUG("enter qni_init\n");
std::lock_guard<std::mutex> lock(_init_mutex);
if (0 != load_system()) {
QNN_LOG_WARN("can not load QNN system lib, pls check why?\n");
return 1;
} else {
QNN_LOG_DEBUG("load QNN system lib successfully\n");
}
std::string backend_lib_path = _lib_path + _backend_name;
if (0 == _lib_path_to_backend_id.count(backend_lib_path)) {
int is_load_ok = load_backend(backend_lib_path, saver_config);
if (0 != is_load_ok) {
QNN_LOG_WARN("failed to load QNN backend\n");
return 2;
}
}
backend_id = _lib_path_to_backend_id[backend_lib_path];
if (0 == _loaded_backend.count(backend_id) ||
0 == _loaded_lib_handle.count(backend_id)) {
QNN_LOG_WARN("library %s is loaded but loaded backend count=%zu, "
"loaded lib_handle count=%zu\n",
backend_lib_path.c_str(), _loaded_backend.count(backend_id),
_loaded_lib_handle.count(backend_id));
return 3;
}
_qnn_interface.set_qnn_interface(_loaded_backend[backend_id]);
_qnn_interface.qnn_log_create(qnn_sdk_logcallback, _qnn_log_level,
&_qnn_log_handle);
if (nullptr == _qnn_log_handle) {
QNN_LOG_WARN(
"why failed to initialize qnn log\n"); // NPU backend not work on
// Qualcomm SoC equipped low-end phone
return 4;
} else {
QNN_LOG_DEBUG("initialize qnn log successfully\n");
}
std::vector<const QnnBackend_Config_t *> temp_backend_config;
_qnn_interface.qnn_backend_create(
_qnn_log_handle,
temp_backend_config.empty() ? nullptr : temp_backend_config.data(),
&_qnn_backend_handle);
if (nullptr == _qnn_backend_handle) {
QNN_LOG_WARN("why failed to initialize qnn backend\n");
return 5;
} else {
QNN_LOG_DEBUG("initialize qnn backend successfully\n");
}
if (nullptr != _qnn_raw_interface.propertyHasCapability) {
auto qnnStatus =
_qnn_raw_interface.propertyHasCapability(QNN_PROPERTY_GROUP_DEVICE);
if (QNN_PROPERTY_NOT_SUPPORTED == qnnStatus) {
QNN_LOG_WARN("device property is not supported\n");
}
if (QNN_PROPERTY_ERROR_UNKNOWN_KEY == qnnStatus) {
QNN_LOG_WARN("device property is not known to backend\n");
}
}
Qnn_ErrorHandle_t qnn_status = _qnn_raw_interface.deviceCreate(_qnn_log_handle, nullptr,
&_qnn_device_handle);
if (QNN_SUCCESS != qnn_status &&
QNN_DEVICE_ERROR_UNSUPPORTED_FEATURE != qnn_status) {
QNN_LOG_WARN("failed to create QNN device\n");
} else {
QNN_LOG_INFO("create device successfully\n");
}
if (qnn_sdk_profile_level::profile_off != _profile_level) {
QNN_LOG_INFO("profiling turned on; level = %d", _profile_level);
if (qnn_sdk_profile_level::profile_basic == _profile_level) {
QNN_LOG_INFO("basic profiling requested. creating Qnn Profile object\n");
if (QNN_PROFILE_NO_ERROR !=
_qnn_raw_interface.profileCreate(_qnn_backend_handle,
QNN_PROFILE_LEVEL_BASIC,
&_qnn_profile_handle)) {
QNN_LOG_WARN("unable to create profile handle in the backend\n");
return 6;
} else {
QNN_LOG_DEBUG("initialize qnn profile successfully\n");
}
} else if (qnn_sdk_profile_level::profile_detail == _profile_level) {
QNN_LOG_INFO("detailed profiling requested. Creating Qnn Profile object\n");
if (QNN_PROFILE_NO_ERROR !=
_qnn_raw_interface.profileCreate(_qnn_backend_handle,
QNN_PROFILE_LEVEL_DETAILED,
&_qnn_profile_handle)) {
QNN_LOG_WARN("unable to create profile handle in the backend\n");
return 7;
} else {
QNN_LOG_DEBUG("initialize qnn profile successfully\n");
}
}
}
_rpc_lib_handle = dlopen("libcdsprpc.so", RTLD_NOW | RTLD_LOCAL);
if (nullptr == _rpc_lib_handle) {
QNN_LOG_WARN("failed to load qualcomm's rpc lib, error:%s\n", dlerror());
return 8;
} else {
QNN_LOG_DEBUG("load rpcmem lib successfully\n");
set_rpcmem_initialized(true);
}
_pfn_rpc_mem_init = reinterpret_cast<pfn_rpc_mem_init>(
dlsym(_rpc_lib_handle, "rpcmem_init"));
_pfn_rpc_mem_deinit = reinterpret_cast<pfn_rpc_mem_deinit>(
dlsym(_rpc_lib_handle, "rpcmem_deinit"));
_pfn_rpc_mem_alloc = reinterpret_cast<pfn_rpc_mem_alloc>(
dlsym(_rpc_lib_handle, "rpcmem_alloc"));
_pfn_rpc_mem_free = reinterpret_cast<pfn_rpc_mem_free>(
dlsym(_rpc_lib_handle, "rpcmem_free"));
_pfn_rpc_mem_to_fd = reinterpret_cast<pfn_rpc_mem_to_fd>(
dlsym(_rpc_lib_handle, "rpcmem_to_fd"));
if (nullptr == _pfn_rpc_mem_alloc || nullptr == _pfn_rpc_mem_free ||
nullptr == _pfn_rpc_mem_to_fd) {
QNN_LOG_WARN("unable to access symbols in QNN RPC lib. dlerror(): %s", dlerror());
dlclose(_rpc_lib_handle);
return 9;
}
if (nullptr !=
_pfn_rpc_mem_init) // make Qualcomm's SoC equipped low-end phone happy
_pfn_rpc_mem_init();
std::vector<const QnnContext_Config_t *> temp_context_config;
_qnn_interface.qnn_context_create(
_qnn_backend_handle, _qnn_device_handle,
temp_context_config.empty() ? nullptr : temp_context_config.data(),
&_qnn_context_handle);
if (nullptr == _qnn_context_handle) {
QNN_LOG_WARN("why failed to initialize qnn context\n");
return 10;
} else {
QNN_LOG_DEBUG("initialize qnn context successfully\n");
}
if (_backend_name.find("Htp") != std::variant_npos) {
const QnnDevice_PlatformInfo_t * p_info = nullptr;
_qnn_raw_interface.deviceGetPlatformInfo(nullptr, &p_info);
QNN_LOG_INFO("device counts %d", p_info->v1.numHwDevices);
QnnDevice_HardwareDeviceInfo_t * infos = p_info->v1.hwDevices;
for (int i = 0; i < p_info->v1.numHwDevices; i++) {
QNN_LOG_INFO("deviceID:%d, deviceType:%d, numCores %d", infos[i].v1.deviceId,
infos[i].v1.deviceType, infos[i].v1.numCores);
QnnDevice_DeviceInfoExtension_t devinfo = infos[i].v1.deviceInfoExtension;
QnnHtpDevice_OnChipDeviceInfoExtension_t chipinfo = devinfo->onChipDevice;
QnnHtpDevice_Arch_t htp_arch = chipinfo.arch;
QNN_LOG_INFO("htp_type:%d(%s)", devinfo->devType, (devinfo->devType == QNN_HTP_DEVICE_TYPE_ON_CHIP) ? "ON_CHIP" : "");
QNN_LOG_INFO("qualcomm soc_model:%d(%s), htp_arch:%d(%s), vtcm_size:%d MB", \
chipinfo.socModel, qnn_get_chipset_desc(chipinfo.socModel), \
htp_arch, qnn_get_htparch_desc(htp_arch), chipinfo.vtcmSize);
g_qnn_mgr[QNN_BACKEND_NPU].socinfo = { chipinfo.socModel, htp_arch, chipinfo.vtcmSize };
}
_qnn_raw_interface.deviceFreePlatformInfo(nullptr, p_info);
//TODO: faster approach to probe the accurate capacity of rpc ion memory
size_t candidate_size = 0;
uint8_t * rpc_buffer = nullptr;
const int SIZE_IN_MB = (1 << 20);
size_t probe_slots[] = {1024, 1536, 2048 - 48, 2048};
size_t probe_counts = sizeof(probe_slots) / sizeof(size_t);
for (size_t idx = 0; idx < probe_counts; idx++) {
rpc_buffer = static_cast<uint8_t *>(alloc_rpcmem(probe_slots[idx] * SIZE_IN_MB, 4));
if (nullptr == rpc_buffer) {
QNN_LOG_INFO("alloc rpcmem %d (MB) failure, %s\n", probe_slots[idx], strerror(errno));
break;
} else {
candidate_size = probe_slots[idx];
free_rpcmem(rpc_buffer);
rpc_buffer = nullptr;
}
}
if (candidate_size > _rpcmem_capacity)
_rpcmem_capacity = candidate_size;
QNN_LOG_INFO("capacity of rpc ion memory %d MB\n", _rpcmem_capacity);
if (0 != init_htp_perfinfra()) {
QNN_LOG_WARN("initialize HTP performance failure");
}
if (0 != set_rpc_polling()) {
QNN_LOG_WARN("set RPC polling failure");
}
if (0 != set_high_performance_mode()) {
QNN_LOG_WARN("set HTP high performance mode failure");
}
}
QNN_LOG_DEBUG("leave qni_init\n");
return 0;
}
int qnn_finalize() {
int ret_status = 0;
Qnn_ErrorHandle_t error = QNN_SUCCESS;
if (nullptr != _pfn_rpc_mem_deinit) // make Qualcomm's SoC equipped low-end phone happy
_pfn_rpc_mem_deinit();
if (dlclose(_rpc_lib_handle) != 0) {
QNN_LOG_WARN("failed to unload qualcomm's rpc lib, error:%s\n", dlerror());
} else {
QNN_LOG_DEBUG("succeed to close rpcmem lib\n");
}
if (nullptr != _qnn_context_handle) {
error = _qnn_interface.qnn_context_free(_qnn_context_handle,
_qnn_profile_handle);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to free QNN context_handle: ID %u, error %d\n",
_qnn_interface.get_backend_id(),
QNN_GET_ERROR_CODE(error));
}
_qnn_context_handle = nullptr;
}
if (nullptr != _qnn_profile_handle) {
error = _qnn_interface.qnn_profile_free(_qnn_profile_handle);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to free QNN profile_handle: ID %u, error %d\n",
_qnn_interface.get_backend_id(),
QNN_GET_ERROR_CODE(error));
}
_qnn_profile_handle = nullptr;
}
if (nullptr != _qnn_device_handle) {
error = _qnn_interface.qnn_device_free(_qnn_device_handle);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to free QNN device_handle: ID %u, error %d\n",
_qnn_interface.get_backend_id(),
QNN_GET_ERROR_CODE(error));
}
_qnn_device_handle = nullptr;
}
if (nullptr != _qnn_backend_handle) {
error = _qnn_interface.qnn_backend_free(_qnn_backend_handle);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to free QNN backend_handle: ID %u, error %d\n",
_qnn_interface.get_backend_id(),
QNN_GET_ERROR_CODE(error));
}
_qnn_backend_handle = nullptr;
}
if (nullptr != _qnn_log_handle) {
error = _qnn_interface.qnn_log_free(_qnn_log_handle);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to free QNN log_handle: ID %u, error %d\n",
_qnn_interface.get_backend_id(),
QNN_GET_ERROR_CODE(error));
}
_qnn_log_handle = nullptr;
}
unload_backend();
unload_system();
return ret_status;
}
int init_qnn_graph(const char * graph_name, bool debug,
uint8_t do_node_validation = true,
const QnnGraph_Config_t ** graph_configs = nullptr) {
int result = 0;
if (nullptr == graph_name) {
QNN_LOG_WARN("graph name is null\n");
return 1;
}
if (!_graph_name.empty()) {
QNN_LOG_WARN("qnn model for graph %s already initialized\n", graph_name);
return 2;
}
if (!do_node_validation) {
QNN_LOG_WARN("node validation disabled, backend will not perform op "
"validation prior to adding node\n");
}
_graph_name = graph_name;
_debug_tensor = debug;
_do_node_validations = do_node_validation;
result = _qnn_raw_interface.graphCreate(_qnn_context_handle, graph_name,
graph_configs, &_qnn_graph_handle);
if (result != QNN_GRAPH_NO_ERROR || nullptr == _qnn_graph_handle) {
QNN_LOG_WARN("failed to create graph in qnn context\n");
return 3;
} else {
QNN_LOG_INFO("succeed to create graph %s, %p\n", graph_name, _qnn_graph_handle);
}
return 0;
}
int finalize_qnn_graph() {
if (nullptr != _qnn_graph_handle) {
if (_qnn_raw_interface.graphFinalize(_qnn_graph_handle,
_qnn_profile_handle,
nullptr) != QNN_GRAPH_NO_ERROR) {
QNN_LOG_WARN("finalizing graph failure\n");
}
} else {
QNN_LOG_DEBUG("qnn graph handle is null\n");
}
return 0;
}
const qnn_interface & get_qnn_interface() {
if (!_qnn_interface.is_loaded()) {
QNN_LOG_WARN("pls check why _qnn_interface is not loaded\n");
}
return _qnn_interface;
}
const QNN_INTERFACE_VER_TYPE & get_qnn_raw_interface() {
if (!_qnn_interface.is_loaded()) {
QNN_LOG_WARN("pls check why _qnn_interface is not loaded\n");
}
return _qnn_raw_interface;
}
const QNN_SYSTEM_INTERFACE_VER_TYPE & get_qnn_raw_system_interface() {
if (!_qnn_interface.is_loaded()) {
QNN_LOG_WARN("pls check why _qnn_interface is not loaded\n");
}
return _qnn_raw_system_interface;
}
const Qnn_LogHandle_t get_qnn_log_handle() { return _qnn_log_handle; }
const Qnn_ProfileHandle_t get_qnn_profile_handle() {
return _qnn_profile_handle;
}
const Qnn_DeviceHandle_t get_qnn_device_handle() {
return _qnn_device_handle;
}
const Qnn_BackendHandle_t get_qnn_backend_handle() {
return _qnn_backend_handle;
}
const Qnn_ContextHandle_t get_qnn_context_handle() {
return _qnn_context_handle;
}
const QnnSystemContext_Handle_t get_qnn_system_handle() {
return _qnn_system_handle;
}
const Qnn_GraphHandle_t get_qnn_graph_handle() { return _qnn_graph_handle; }
int init_htp_perfinfra() {
QnnDevice_Infrastructure_t device_infra = nullptr;
int error = _qnn_raw_interface.deviceGetInfrastructure(&device_infra);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to get qnn device infra\n");
return 1;
} else {
QNN_LOG_INFO("HTP backend perf_infrastructure creation ok\n");
}
QnnHtpDevice_Infrastructure_t * htp_infra = static_cast<QnnHtpDevice_Infrastructure_t *>(device_infra);
QnnHtpDevice_PerfInfrastructure_t * htp_perfinfra = &htp_infra->perfInfra;
uint32_t power_configid = 1;
uint32_t device_id = 0;
uint32_t core_id = 0;
htp_perfinfra->createPowerConfigId(device_id, core_id, &power_configid);
if (htp_infra->infraType != QNN_HTP_DEVICE_INFRASTRUCTURE_TYPE_PERF) {
QNN_LOG_INFO("HTP infra type = %d, which is not perf infra type", htp_infra->infraType);
} else {
QNN_LOG_INFO("HTP infra type = %d, which is perf infra type\n", htp_infra->infraType);
}
_qnn_htp_perfinfra = htp_perfinfra;
_qnn_power_configid = power_configid;
return 0;
}
int set_rpc_polling() {
if (_qnn_rpc_pollingtime > 0) {
QnnHtpPerfInfrastructure_PowerConfig_t rpc_pollingTime;
memset(&rpc_pollingTime, 0, sizeof(rpc_pollingTime));
rpc_pollingTime.option = QNN_HTP_PERF_INFRASTRUCTURE_POWER_CONFIGOPTION_RPC_POLLING_TIME;
rpc_pollingTime.rpcPollingTimeConfig = _qnn_rpc_pollingtime;
QnnHtpPerfInfrastructure_PowerConfig_t rpc_ControlLatency;
memset(&rpc_ControlLatency, 0, sizeof(rpc_ControlLatency));
rpc_ControlLatency.option = QNN_HTP_PERF_INFRASTRUCTURE_POWER_CONFIGOPTION_RPC_CONTROL_LATENCY;
rpc_ControlLatency.rpcControlLatencyConfig = 40;
const QnnHtpPerfInfrastructure_PowerConfig_t * powerConfigs[] = {&rpc_pollingTime, &rpc_ControlLatency, nullptr};
if (_qnn_htp_perfinfra) {
_qnn_htp_perfinfra->setPowerConfig(_qnn_power_configid, powerConfigs);
}
}
return 0;
}
int set_high_performance_mode() {
if (nullptr == _qnn_htp_perfinfra) {
QNN_LOG_DEBUG("perf intra is null\n");
return 1;
}
QnnHtpPerfInfrastructure_PowerConfig_t powerConfig;
memset(&powerConfig, 0, sizeof(powerConfig));
powerConfig.option = QNN_HTP_PERF_INFRASTRUCTURE_POWER_CONFIGOPTION_DCVS_V3;
powerConfig.dcvsV3Config.dcvsEnable = 0;
powerConfig.dcvsV3Config.setDcvsEnable = 1;
powerConfig.dcvsV3Config.contextId = _qnn_power_configid;
powerConfig.dcvsV3Config.powerMode = QNN_HTP_PERF_INFRASTRUCTURE_POWERMODE_PERFORMANCE_MODE;
powerConfig.dcvsV3Config.setSleepLatency =
1; // true to consider Latency parameter otherwise False
powerConfig.dcvsV3Config.setBusParams =
1; // true to consider Bus parameter otherwise False
powerConfig.dcvsV3Config.setCoreParams =
1; // true to consider Core parameter otherwise False
powerConfig.dcvsV3Config.sleepDisable =
0; // true to consider sleep/LPM modes, False to enable
powerConfig.dcvsV3Config.setSleepDisable =
0; // true to consider sleep disable/enable parameter otherwise False set sleep latency parameter
uint32_t latencyValue = 40;
powerConfig.dcvsV3Config.sleepLatency =
latencyValue; // range 40-2000 micro sec
// set Bus Clock Parameters
powerConfig.dcvsV3Config.busVoltageCornerMin =
DCVS_VOLTAGE_VCORNER_MAX_VOLTAGE_CORNER;
powerConfig.dcvsV3Config.busVoltageCornerTarget =
DCVS_VOLTAGE_VCORNER_MAX_VOLTAGE_CORNER;
powerConfig.dcvsV3Config.busVoltageCornerMax =
DCVS_VOLTAGE_VCORNER_MAX_VOLTAGE_CORNER;
// set Core Clock Parameters
powerConfig.dcvsV3Config.coreVoltageCornerMin =
DCVS_VOLTAGE_VCORNER_MAX_VOLTAGE_CORNER;
powerConfig.dcvsV3Config.coreVoltageCornerTarget =
DCVS_VOLTAGE_VCORNER_MAX_VOLTAGE_CORNER;
powerConfig.dcvsV3Config.coreVoltageCornerMax =
DCVS_VOLTAGE_VCORNER_MAX_VOLTAGE_CORNER;
// set power config with different performance parameters
const QnnHtpPerfInfrastructure_PowerConfig_t *powerConfigs[] = {
&powerConfig, nullptr};
_qnn_htp_perfinfra->setPowerConfig(_qnn_power_configid, powerConfigs);
return 0;
}
std::string & get_qnn_graph_name() { return _graph_name; }
bool is_rpcmem_initialized() { return _rpcmem_initialized; }
void set_rpcmem_initialized(bool initialized) {
_rpcmem_initialized = initialized;
}
size_t get_rpcmem_capacity() { return _rpcmem_capacity; }
bool is_rpcmem_registered(Qnn_MemHandle_t handle) {
return _qnn_mem_set.count(handle) != 0U;
}
void * alloc_rpcmem(size_t bytes, size_t alignment) {
if (!_rpcmem_initialized) {
QNN_LOG_WARN("rpc memory not initialized\n");
return nullptr;
}
auto allocate_bytes = static_cast<int32_t>(bytes + alignment);
void * buf = _pfn_rpc_mem_alloc(RPCMEM_HEAP_ID_SYSTEM, RPCMEM_DEFAULT_FLAGS,
allocate_bytes);
if (buf == nullptr) {
QNN_LOG_WARN("failed to allocate rpc memory\n");
return nullptr;
}
auto aligned_buf = reinterpret_cast<void *>(
align_to(alignment, reinterpret_cast<intptr_t>(buf)));
bool status =
_rpcmem_store_map.insert(std::pair<void *, void *>(aligned_buf, buf)).second;
if (!status) {
QNN_LOG_WARN("failed to allocate rpc memory\n");
_pfn_rpc_mem_free(buf);
}
return aligned_buf;
}
void free_rpcmem(void * buf) {
if (!_rpcmem_initialized) {
QNN_LOG_WARN("rpc memory not initialized\n");
} else if (0 == _rpcmem_store_map.count(buf)) {
QNN_LOG_WARN("no allocated tensor\n");
} else {
_pfn_rpc_mem_free(_rpcmem_store_map[buf]);
_rpcmem_store_map.erase(buf);
}
}
int32_t rpcmem_to_fd(void * buf) {
int32_t mem_fd = -1;
if (!is_rpcmem_initialized()) {
QNN_LOG_WARN("rpc memory not initialized\n");
} else {
mem_fd = _pfn_rpc_mem_to_fd(buf);
}
return mem_fd;
}
int register_rpcmem(void * p_data, Qnn_Tensor_t * p_tensor) {
if (nullptr == p_data || (nullptr == p_tensor)) {
QNN_LOG_WARN("invalid param\n");
return 1;
}
if (!is_rpcmem_initialized()) {
QNN_LOG_WARN("rpc memory not initialized\n");
return 2;
}
if (is_rpcmem_allocated(p_data)) {
QNN_LOG_WARN("rpc memory already allocated\n");
// return 3;
}
if (is_rpcmem_registered((QNN_VER_PTR(*p_tensor)->memHandle))) {
QNN_LOG_WARN("tensor %s has been registered shared memory\n",
(QNN_VER_PTR(*p_tensor)->name));
return 4;
}
int32_t mem_fd = rpcmem_to_fd(p_data);
if (-1 == mem_fd) {
QNN_LOG_WARN("failed to get file descriptor\n");
return 5;
}
QNN_LOG_DEBUG("mem_fd %d\n", mem_fd);
Qnn_MemDescriptor_t descriptor = {{QNN_VER_PTR(*p_tensor)->rank,
QNN_VER_PTR(*p_tensor)->dimensions,
nullptr},
QNN_VER_PTR(*p_tensor)->dataType,
QNN_MEM_TYPE_ION,
{{mem_fd}}};
Qnn_MemHandle_t handle = nullptr;
int error = QNN_SUCCESS;
error = _qnn_interface.qnn_mem_register(_qnn_context_handle, &descriptor,
/*numDescriptors=*/1, &handle);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to register shared memory, error %d, %s\n",
QNN_GET_ERROR_CODE(error), strerror(error));
return 6;
} else {
QNN_LOG_INFO("tensor %s successfully register shared memory\n",
(QNN_VER_PTR(*p_tensor)->name));
}
QNN_VER_PTR(*p_tensor)->memHandle = handle;
_qnn_mem_set.insert(handle);
return 0;
}
void unregister_rpcmem() {
Qnn_ErrorHandle_t error = QNN_SUCCESS;
if (_qnn_mem_set.empty()) {
QNN_LOG_WARN("no rpcmem registered\n");
}
for (auto & mem_handle : _qnn_mem_set) {
error = _qnn_interface.qnn_mem_de_register(&mem_handle, 1);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to unregister shared memory, error %d\n",
QNN_GET_ERROR_CODE(error));
}
}
_qnn_mem_set.clear();
}
bool is_rpcmem_allocated(void * buf) {
return _rpcmem_store_map.count(buf) != 0U;
}
public:
std::map<std::string, std::tuple<Qnn_GraphHandle_t, Qnn_Tensor_t *,
Qnn_Tensor_t *, Qnn_Tensor_t *>>
_qnn_graph_map;
private:
int load_system() {
Qnn_ErrorHandle_t error = QNN_SUCCESS;
std::string system_lib_path = _lib_path + "libQnnSystem.so";
QNN_LOG_DEBUG("system_lib_path:%s\n", system_lib_path.c_str());
_system_lib_handle = dlopen(system_lib_path.c_str(), RTLD_NOW | RTLD_LOCAL);
if (nullptr == _system_lib_handle) {
QNN_LOG_WARN("can not open QNN library %s, error: %s\n",
system_lib_path.c_str(), dlerror());
return 1;
}
auto * get_providers =
reinterpret_cast<pfn_qnnsysteminterface_getproviders *>(
dlsym(_system_lib_handle, "QnnSystemInterface_getProviders"));
if (nullptr == get_providers) {
QNN_LOG_WARN(
"can not load QNN symbol QnnSystemInterface_getProviders: %s\n",
dlerror());
return 2;
}
uint32_t num_providers = 0;
const QnnSystemInterface_t ** provider_list = nullptr;
error = get_providers(&provider_list, &num_providers);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to get providers, error %d\n",
QNN_GET_ERROR_CODE(error));
return 3;
}
if (num_providers != _required_num_providers) {
QNN_LOG_WARN("providers is %d instead of required %d\n", num_providers,
_required_num_providers);
return 4;
}
if (nullptr == provider_list) {
QNN_LOG_WARN("can not get providers\n");
return 5;
}
QNN_SYSTEM_INTERFACE_VER_TYPE qnn_system_interface;
bool found_valid_system_interface = false;
for (size_t idx = 0; idx < num_providers; idx++) {
if (QNN_SYSTEM_API_VERSION_MAJOR ==
provider_list[idx]->systemApiVersion.major &&
QNN_SYSTEM_API_VERSION_MINOR <=
provider_list[idx]->systemApiVersion.minor) {
found_valid_system_interface = true;
qnn_system_interface =
provider_list[idx]->QNN_SYSTEM_INTERFACE_VER_NAME;
break;
}
}
if (!found_valid_system_interface) {
QNN_LOG_WARN("unable to find a valid qnn system interface\n");
return 6;
} else {
QNN_LOG_INFO("find a valid qnn system interface\n");
}
set_qnn_raw_system_interface(qnn_system_interface);
_qnn_interface.set_qnn_system_interface(provider_list[0]);
_qnn_interface.qnn_system_context_create(&_qnn_system_handle);
if (nullptr == _qnn_system_handle) {
QNN_LOG_WARN("can not create QNN system contenxt\n");
} else {
QNN_LOG_INFO("initialize qnn system successfully\n");
}
return 0;
}
int unload_system() {
int result = 0;
if (nullptr == _system_lib_handle) {
QNN_LOG_DEBUG("system lib handle is null\n");
return 1;
}
if (nullptr != _qnn_system_handle) {
result = _qnn_interface.qnn_system_context_free(_qnn_system_handle);
if (result != QNN_SUCCESS) {
QNN_LOG_WARN("failed to free QNN system context\n");
}
_qnn_system_handle = nullptr;
}
int dlclose_error = dlclose(_system_lib_handle);
if (dlclose_error != 0) {
QNN_LOG_WARN("failed to close QnnSystem library, error %s\n",
dlerror());
return 2;
}
_system_lib_handle = nullptr;
return result;
}
int load_backend(std::string & lib_path, const QnnSaver_Config_t ** saver_config) {
Qnn_ErrorHandle_t error = QNN_SUCCESS;
QNN_LOG_DEBUG("lib_path:%s\n", lib_path.c_str());
void * lib_handle = dlopen(lib_path.c_str(), RTLD_NOW | RTLD_GLOBAL);
if (nullptr == lib_handle) {
QNN_LOG_WARN("can not open QNN library %s, with error: %s",
lib_path.c_str(), dlerror());
return 1;
}
auto get_providers = load_qnn_functionpointers<pfn_qnninterface_getproviders *>(
lib_handle, "QnnInterface_getProviders");
if (nullptr == get_providers) {
QNN_LOG_WARN("can not load symbol QnnInterface_getProviders : %s",
dlerror());
return 2;
}
std::uint32_t num_providers = 0;
const QnnInterface_t ** provider_list = nullptr;
error = get_providers(&provider_list, &num_providers);
if (error != QNN_SUCCESS) {
QNN_LOG_WARN("failed to get providers, error %d",
QNN_GET_ERROR_CODE(error));
return 3;
}
QNN_LOG_DEBUG("num_providers=%d\n", num_providers);
if (num_providers != _required_num_providers) {
QNN_LOG_WARN("providers is %d instead of required %d", num_providers,
_required_num_providers);
return 4;
}
if (nullptr == provider_list) {
QNN_LOG_WARN("failed to get qnn interface providers\n");
return 5;
}
bool found_valid_interface = false;
QNN_INTERFACE_VER_TYPE qnn_interface;
for (size_t idx = 0; idx < num_providers; idx++) {
if (QNN_API_VERSION_MAJOR ==
provider_list[idx]->apiVersion.coreApiVersion.major &&
QNN_API_VERSION_MINOR <=
provider_list[idx]->apiVersion.coreApiVersion.minor) {
found_valid_interface = true;
qnn_interface = provider_list[idx]->QNN_INTERFACE_VER_NAME;
break;
}
}
if (!found_valid_interface) {
QNN_LOG_WARN("unable to find a valid qnn interface\n");
return 6;
} else {
QNN_LOG_INFO("find a valid qnn interface\n");
}
set_qnn_raw_interface(qnn_interface);
BackendIdType backend_id = provider_list[0]->backendId;
_lib_path_to_backend_id[lib_path] = backend_id;
if (_loaded_backend.count(backend_id) > 0) {
QNN_LOG_WARN("lib_path %s is loaded, but backend %d already exists\n",
lib_path.c_str(), backend_id);
}
_loaded_backend[backend_id] = provider_list[0];
if (_loaded_lib_handle.count(backend_id) > 0) {
QNN_LOG_WARN("closing %p\n", _loaded_lib_handle[backend_id]);
int dlclose_error = dlclose(_loaded_lib_handle[backend_id]);
if (dlclose_error != 0) {
QNN_LOG_WARN("fail to close %p with error %s\n",
_loaded_lib_handle[backend_id], dlerror());
}
}
_loaded_lib_handle[backend_id] = lib_handle;
_backend_id = backend_id;
return 0;
}
int unload_backend() {
int dlclose_error = 0;
for (auto & it : _loaded_lib_handle) {
dlclose_error = dlclose(it.second);
if (dlclose_error != 0) {
QNN_LOG_WARN("failed to close QNN backend %d, error %s\n", it.first,
dlerror());
}
}
_loaded_lib_handle.clear();
_lib_path_to_backend_id.clear();
_loaded_backend.clear();
return 0;
}
void set_qnn_raw_interface(QNN_INTERFACE_VER_TYPE & raw_interface) {
_qnn_raw_interface = raw_interface;
}
void set_qnn_raw_system_interface(QNN_SYSTEM_INTERFACE_VER_TYPE & raw_interface) {
_qnn_raw_system_interface = raw_interface;
}
private:
static constexpr const int _required_num_providers = 1;
private:
std::string _lib_path;
std::string _backend_name;
std::string _model_name; // prebuilt QNN model name, not used currently
BackendIdType _backend_id;
bool _debug_tensor = false;
bool _do_node_validations = true;
QnnLog_Level_t _qnn_log_level = QNN_LOG_LEVEL_DEBUG;
qnn_sdk_profile_level _profile_level = qnn_sdk_profile_level::profile_detail;
qnn_interface _qnn_interface;
void * _system_lib_handle = nullptr;
Qnn_GraphHandle_t _qnn_graph_handle = nullptr;
Qnn_LogHandle_t _qnn_log_handle = nullptr;
Qnn_ProfileHandle_t _qnn_profile_handle = nullptr;
Qnn_DeviceHandle_t _qnn_device_handle = nullptr;
Qnn_BackendHandle_t _qnn_backend_handle = nullptr;
Qnn_ContextHandle_t _qnn_context_handle = nullptr;
QnnSystemContext_Handle_t _qnn_system_handle = nullptr;
QnnHtpDevice_PerfInfrastructure_t * _qnn_htp_perfinfra = nullptr;
uint32_t _qnn_power_configid = 1;
uint32_t _qnn_rpc_pollingtime = 9999; // 0-10000 us for high performing
QNN_INTERFACE_VER_TYPE _qnn_raw_interface;
QNN_SYSTEM_INTERFACE_VER_TYPE _qnn_raw_system_interface;
std::unordered_set<Qnn_MemHandle_t> _qnn_mem_set;
std::mutex _init_mutex;
std::unordered_map<BackendIdType, void *> _loaded_lib_handle;
std::unordered_map<std::string, BackendIdType> _lib_path_to_backend_id;
std::unordered_map<BackendIdType, const QnnInterface_t *> _loaded_backend;
void * _rpc_lib_handle = nullptr;
std::atomic_bool _rpcmem_initialized{false};
pfn_rpc_mem_alloc _pfn_rpc_mem_alloc;
pfn_rpc_mem_free _pfn_rpc_mem_free;
pfn_rpc_mem_to_fd _pfn_rpc_mem_to_fd;
pfn_rpc_mem_init _pfn_rpc_mem_init;
pfn_rpc_mem_deinit _pfn_rpc_mem_deinit;
std::unordered_map<void *, void *> _rpcmem_store_map;
size_t _rpcmem_capacity = 512;
std::string _graph_name;
};
// =================================================================================================
//
// implementation of QNN backend for GGML
//
// =================================================================================================
static bool ggml_qnn_can_handle_op(ggml_backend_qnn_context * ctx,
const struct ggml_tensor * tensor,
bool b_dump_tensor_info) {
if (ggml_is_empty(tensor) || tensor->op == GGML_OP_RESHAPE ||
tensor->op == GGML_OP_TRANSPOSE || tensor->op == GGML_OP_VIEW ||
tensor->op == GGML_OP_PERMUTE || tensor->op == GGML_OP_NONE) {
return false;
}
const struct ggml_tensor * src0 = tensor->src[0];
const struct ggml_tensor * src1 = tensor->src[1];
if (nullptr == src0 || nullptr == src1) {
return false;
}
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
// make qnn_get_ggml_tensor_rank and QNN SDK happy
if (ne00 <= 1 || ne01 <= 1 || ne10 <= 1 || ne11 <= 1) {
return false;
}
// TODO: support other GGML OPs using QNN API
// a GENERAL approach could fix this problem in a standalone PR of refine ggml backend
// subsystem for mixed inference between CPU&GPU / CPU&NPU easily for ANY ggml backends
// which the backend's ggml_backend_xxx_buffer_is_host return true.
// this approach could be found:
// https://github.com/ggerganov/llama.cpp/pull/7641
bool supported_op = false;
supported_op = (tensor->op == GGML_OP_ADD);
supported_op = ((tensor->op == GGML_OP_ADD) || (tensor->op == GGML_OP_MUL) || (tensor->op == GGML_OP_MUL_MAT));
if (!supported_op) {
return false;
}
//TODO: support other quantized data type
if (ggml_is_quantized(src0->type)) {
if (src0->type != GGML_TYPE_Q8_0 && src0->type != GGML_TYPE_Q4_0) {
return false;
}
}
int qtype = src0->type;
if (tensor->op == GGML_OP_MUL) {
return (qtype == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32);
}
if (tensor->op == GGML_OP_MUL_MAT) {
if (ne00 <= 32 || ne01 <= 32 || ne10 <= 32 || ne11 <= 32) {
return false;
} else {
return true;
}
}
return true;
}
static void ggml_qnn_add(ggml_backend_qnn_context * ctx, const ggml_tensor * src0,
const ggml_tensor * src1, ggml_tensor * dst) {
Qnn_ErrorHandle_t error = QNN_SUCCESS;
bool graph_initialized = false;
qnn_instance * instance = nullptr;
std::string graph_name = "ggml_op_qnn_add";
Qnn_GraphHandle_t graph_handle = nullptr;
Qnn_Tensor_t * tensor_0 = nullptr;
Qnn_Tensor_t * tensor_1 = nullptr;
Qnn_Tensor_t * tensor_2 = nullptr;
Qnn_Param_t qnn_params[] = {};
enum ggml_op ggmlop = GGML_OP_ADD;
Qnn_DataType_t src0_qnn_type = QNN_DATATYPE_FLOAT_32;
Qnn_DataType_t src1_qnn_type = QNN_DATATYPE_FLOAT_32;
Qnn_DataType_t dst_qnn_type = QNN_DATATYPE_FLOAT_32;
CHECK_PARAMS(ctx, src0, src1, dst);
tensor_0 = (Qnn_Tensor_t *) src0->extra;
tensor_1 = (Qnn_Tensor_t *) src1->extra;
tensor_2 = (Qnn_Tensor_t *) dst->extra;
instance = ctx->instance;
qnn_perf perf("ggml_qnn_add");
perf.start();
QNN_INTERFACE_VER_TYPE qnn_raw_interface = ctx->raw_interface;
QNN_VER_PTR(*tensor_0)->type = QNN_TENSOR_TYPE_APP_WRITE;
QNN_VER_PTR(*tensor_1)->type = QNN_TENSOR_TYPE_APP_WRITE;
QNN_VER_PTR(*tensor_2)->type = QNN_TENSOR_TYPE_APP_READ;
src0_qnn_type = qnn_datatype_from_ggml_datatype(src0->type);
src1_qnn_type = qnn_datatype_from_ggml_datatype(src1->type);
dst_qnn_type = qnn_datatype_from_ggml_datatype(dst->type);
uint32_t dimensions_input_0[] = {
(uint32_t) src0->ne[0], (uint32_t) src0->ne[1], (uint32_t) src0->ne[2],
(uint32_t) src0->ne[3]};
uint32_t dimensions_input_1[] = {
(uint32_t) src1->ne[0], (uint32_t) src1->ne[1], (uint32_t) src1->ne[2],
(uint32_t) src1->ne[3]};
uint32_t dimensions_output[] = {
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],
(uint32_t) dst->ne[3]};
std::string map_entry = std::string(ggml_op_name(ggmlop));
if (instance->_qnn_graph_map.find(map_entry) !=
instance->_qnn_graph_map.end()) {
graph_initialized = true;
auto & graph_item = instance->_qnn_graph_map[map_entry];
graph_handle = std::get<0>(graph_item);
}
uint32_t * tensor_0_dimensions = QNN_VER_PTR(*tensor_0)->dimensions;
uint32_t * tensor_1_dimensions = QNN_VER_PTR(*tensor_1)->dimensions;
uint32_t * tensor_2_dimensions = QNN_VER_PTR(*tensor_2)->dimensions;
if (!graph_initialized) {
graph_name = graph_name + "_" + std::to_string(ctx->threads) +
src0->name + "_" + src1->name;
QNN_LOG_INFO("graph name %s", graph_name.c_str());
if (ctx->device == QNN_BACKEND_NPU) {
QnnHtpGraph_CustomConfig_t custom_config;
custom_config.option = QNN_HTP_GRAPH_CONFIG_OPTION_NUM_HVX_THREADS;
custom_config.numHvxThreads = 8;
QnnGraph_Config_t graph_config;
graph_config.option = QNN_GRAPH_CONFIG_OPTION_CUSTOM;
graph_config.customConfig = &custom_config;
const QnnGraph_Config_t * p_graphconfig[] = {&graph_config, NULL};
error = qnn_raw_interface.graphCreate(
instance->get_qnn_context_handle(), graph_name.c_str(), p_graphconfig,
&graph_handle);
} else {
error = qnn_raw_interface.graphCreate(
instance->get_qnn_context_handle(), graph_name.c_str(), nullptr,
&graph_handle);
}
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("can't create qnn graph handle with graph name %s, "
"error = %d\n",
graph_name.c_str(), error);
goto failure;
}
error = qnn_raw_interface.tensorCreateGraphTensor(graph_handle, tensor_0);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("error = %d\n", error);
goto failure;
}
error = qnn_raw_interface.tensorCreateGraphTensor(graph_handle, tensor_1);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("error = %d\n", error);
goto failure;
}
error = qnn_raw_interface.tensorCreateGraphTensor(graph_handle, tensor_2);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("error = %d\n", error);
goto failure;
}
QNN_VER_PTR(*tensor_0)->clientBuf = {src0->data,
qnn_get_ggml_tensor_data_size(src0)};
QNN_VER_PTR(*tensor_1)->clientBuf = {src1->data,
qnn_get_ggml_tensor_data_size(src1)};
QNN_VER_PTR(*tensor_2)->clientBuf = {dst->data,
qnn_get_ggml_tensor_data_size(dst)};
QNN_VER_PTR(*tensor_0)->dimensions = dimensions_input_0;
QNN_VER_PTR(*tensor_0)->rank = qnn_get_ggml_tensor_rank(src0);
QNN_VER_PTR(*tensor_0)->dataType = src0_qnn_type;
QNN_VER_PTR(*tensor_1)->dimensions = dimensions_input_1;
QNN_VER_PTR(*tensor_1)->rank = qnn_get_ggml_tensor_rank(src1);
QNN_VER_PTR(*tensor_1)->dataType = src1_qnn_type;
QNN_VER_PTR(*tensor_2)->dimensions = dimensions_output;
QNN_VER_PTR(*tensor_2)->rank = qnn_get_ggml_tensor_rank(dst);
QNN_VER_PTR(*tensor_2)->dataType = dst_qnn_type;
Qnn_Tensor_t tensor_inputs[] = {*tensor_0, *tensor_1};
Qnn_Tensor_t tensor_outputs[] = {*tensor_2};
Qnn_OpConfig_t op_config = {
(Qnn_OpConfigVersion_t) 1,
.v1 = {"ggml_op_add", QNN_OP_PACKAGE_NAME_QTI_AISW,
QNN_OP_ELEMENT_WISE_ADD, 0, qnn_params,
2, tensor_inputs, 1,
tensor_outputs}};
error = qnn_raw_interface.graphAddNode(graph_handle, op_config);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("error = %d\n", error);
goto failure;
}
error = qnn_raw_interface.graphFinalize(graph_handle, nullptr, nullptr);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("error = %d\n", error);
goto failure;
}
error = qnn_raw_interface.graphExecute(graph_handle, tensor_inputs, 2,
tensor_outputs, 1,
nullptr, nullptr);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("error = %d\n", error);
goto failure;
}
auto graph_item = std::make_tuple(graph_handle, tensor_0, tensor_1, tensor_2);
instance->_qnn_graph_map[map_entry] = graph_item;
} else {
auto & graph_item = instance->_qnn_graph_map[map_entry];
graph_handle = std::get<0>(graph_item);
tensor_0 = std::get<1>(graph_item);
tensor_1 = std::get<2>(graph_item);
tensor_2 = std::get<3>(graph_item);
uint32_t dimensions_input_0[] = {
(uint32_t) src0->ne[0], (uint32_t) src0->ne[1],
(uint32_t) src0->ne[2], (uint32_t) src0->ne[3]};
uint32_t dimensions_input_1[] = {
(uint32_t) src1->ne[0], (uint32_t) src1->ne[1],
(uint32_t) src1->ne[2], (uint32_t) src1->ne[3]};
uint32_t dimensions_output[] = {
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],
(uint32_t) dst->ne[3]};
QNN_VER_PTR(*tensor_0)->clientBuf = {src0->data,
qnn_get_ggml_tensor_data_size(src0)};
QNN_VER_PTR(*tensor_1)->clientBuf = {src1->data,
qnn_get_ggml_tensor_data_size(src1)};
QNN_VER_PTR(*tensor_2)->clientBuf = {dst->data,
qnn_get_ggml_tensor_data_size(dst)};
QNN_VER_PTR(*tensor_0)->dimensions = dimensions_input_0;
QNN_VER_PTR(*tensor_0)->rank = qnn_get_ggml_tensor_rank(src0);
QNN_VER_PTR(*tensor_0)->dataType = src0_qnn_type;
QNN_VER_PTR(*tensor_1)->dimensions = dimensions_input_1;
QNN_VER_PTR(*tensor_1)->rank = qnn_get_ggml_tensor_rank(src1);
QNN_VER_PTR(*tensor_1)->dataType = src1_qnn_type;
QNN_VER_PTR(*tensor_2)->dimensions = dimensions_output;
QNN_VER_PTR(*tensor_2)->rank = qnn_get_ggml_tensor_rank(dst);
QNN_VER_PTR(*tensor_2)->dataType = dst_qnn_type;
Qnn_Tensor_t tensor_inputs[] = {*tensor_0, *tensor_1};
Qnn_Tensor_t tensor_outputs[] = {*tensor_2};
error = qnn_raw_interface.graphExecute(graph_handle, tensor_inputs,2,
tensor_outputs,1,
nullptr, nullptr);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("error = %d\n", error);
goto failure;
}
}
failure:
if (QNN_SUCCESS != error) {
QNN_LOG_DEBUG("tensor0 name %s", QNN_TENSOR_GET_NAME(*tensor_0));
QNN_LOG_DEBUG("tensor1 name %s", QNN_TENSOR_GET_NAME(*tensor_1));
QNN_LOG_DEBUG("tensor2 name %s", QNN_TENSOR_GET_NAME(*tensor_2));
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
src0->name, src0->type, ggml_type_name(src0->type),
src0->ne[0], src0->ne[1], src0->ne[2], src0->nb[0],
src0->nb[1], src0->nb[2]);
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
src1->name, src1->type, ggml_type_name(src1->type),
src1->ne[0], src1->ne[1], src1->ne[2], src1->nb[0],
src1->nb[1], src1->nb[2]);
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
dst->name, dst->type, ggml_type_name(dst->type),
dst->ne[0], dst->ne[1], dst->ne[2], dst->nb[0],
dst->nb[1], dst->nb[2]);
}
QNN_VER_PTR(*tensor_0)->dimensions = tensor_0_dimensions;
QNN_VER_PTR(*tensor_1)->dimensions = tensor_1_dimensions;
QNN_VER_PTR(*tensor_2)->dimensions = tensor_2_dimensions;
perf.info();
}
/*
* ggml_qnn_mul_mat was re-added as a standalone function because
* the following comments came from https://github.com/ggerganov/llama.cpp/pull/1632
* MUL_MAT take most of the compute time (about 95%).
* So to speed up llama, we have to focus on MUL_MAT.
*
* We have three kinds of MUL_MAT to compute:
* mul_mat_f32: both src0 and src1 are F32.
* mul_mat_f16_f32: src0 is F16 and src1 is F32.
* mul_mat_q_f32: src0 is quantized (Q4_0, Q4_1, ...), and src1 is F32.
*/
static void ggml_qnn_mul_mat(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0, const ggml_tensor * src1,
ggml_tensor * dst) {
Qnn_ErrorHandle_t error = QNN_SUCCESS;
bool graph_initialized = false;
qnn_instance * instance = nullptr;
std::string graph_name = "ggml_op_qnn_mul_mat";
Qnn_GraphHandle_t graph_handle = nullptr;
Qnn_Tensor_t * tensor_0 = nullptr;
Qnn_Tensor_t * tensor_1 = nullptr;
Qnn_Tensor_t * tensor_2 = nullptr;
Qnn_Param_t qnn_params[] = {};
enum ggml_op ggmlop = GGML_OP_MUL_MAT;
Qnn_DataType_t src0_qnn_type = QNN_DATATYPE_FLOAT_32;
Qnn_DataType_t src1_qnn_type = QNN_DATATYPE_FLOAT_32;
Qnn_DataType_t dst_qnn_type = QNN_DATATYPE_FLOAT_32;
CHECK_PARAMS(ctx, src0, src1, dst);
tensor_0 = (Qnn_Tensor_t *) src0->extra;
tensor_1 = (Qnn_Tensor_t *) src1->extra;
tensor_2 = (Qnn_Tensor_t *) dst->extra;
instance = ctx->instance;
qnn_perf perf("ggml_qnn_mul_mat");
perf.start();
tensor_0 = (Qnn_Tensor_t *) src0->extra;
tensor_1 = (Qnn_Tensor_t *) src1->extra;
tensor_2 = (Qnn_Tensor_t *) dst->extra;
instance = ctx->instance;
QNN_INTERFACE_VER_TYPE qnn_raw_interface = ctx->raw_interface;
QNN_VER_PTR(*tensor_0)->type = QNN_TENSOR_TYPE_APP_WRITE;
QNN_VER_PTR(*tensor_1)->type = QNN_TENSOR_TYPE_APP_WRITE;
QNN_VER_PTR(*tensor_2)->type = QNN_TENSOR_TYPE_APP_READ;
src0_qnn_type = qnn_datatype_from_ggml_datatype(src0->type);
src1_qnn_type = qnn_datatype_from_ggml_datatype(src1->type);
dst_qnn_type = qnn_datatype_from_ggml_datatype(dst->type);
uint32_t dimensions_input_0[] = {
(uint32_t) src0->ne[0], (uint32_t) src0->ne[1], (uint32_t) src0->ne[2],
(uint32_t) src0->ne[3]};
uint32_t dimensions_input_1[] = {
(uint32_t) src1->ne[0], (uint32_t) src1->ne[1], (uint32_t) src1->ne[2],
(uint32_t) src1->ne[3]};
uint32_t dimensions_output[] = {
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],
(uint32_t) dst->ne[3]};
std::string map_entry = std::string(ggml_op_name(ggmlop));
if (instance->_qnn_graph_map.find(map_entry) !=
instance->_qnn_graph_map.end()) {
graph_initialized = true;
auto & graph_item = instance->_qnn_graph_map[map_entry];
graph_handle = std::get<0>(graph_item);
}
uint32_t * tensor_0_dimensions = QNN_VER_PTR(*tensor_0)->dimensions;
uint32_t * tensor_1_dimensions = QNN_VER_PTR(*tensor_1)->dimensions;
uint32_t * tensor_2_dimensions = QNN_VER_PTR(*tensor_2)->dimensions;
if (!graph_initialized) {
graph_name = graph_name + "_" + std::to_string(ctx->threads) +
src0->name + "_" + src1->name;
QNN_LOG_INFO("graph name %s", graph_name.c_str());
error = qnn_raw_interface.graphCreate(
instance->get_qnn_context_handle(), graph_name.c_str(), nullptr,
&graph_handle);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("can't create qnn graph handle with graph name %s, "
"error = %d\n",
graph_name.c_str(), error);
goto failure;
}
error = qnn_raw_interface.tensorCreateGraphTensor(graph_handle, tensor_0);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("error = %d\n", error);
goto failure;
}
error = qnn_raw_interface.tensorCreateGraphTensor(graph_handle, tensor_1);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("error = %d\n", error);
goto failure;
}
error = qnn_raw_interface.tensorCreateGraphTensor(graph_handle, tensor_2);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("error = %d\n", error);
goto failure;
}
QNN_VER_PTR(*tensor_0)->clientBuf = {src0->data,
qnn_get_ggml_tensor_data_size(src0)};
QNN_VER_PTR(*tensor_1)->clientBuf = {src1->data,
qnn_get_ggml_tensor_data_size(src1)};
QNN_VER_PTR(*tensor_2)->clientBuf = {dst->data,
qnn_get_ggml_tensor_data_size(dst)};
QNN_VER_PTR(*tensor_0)->dimensions = dimensions_input_0;
QNN_VER_PTR(*tensor_0)->rank = qnn_get_ggml_tensor_rank(src0);
QNN_VER_PTR(*tensor_0)->dataType = src0_qnn_type;
QNN_VER_PTR(*tensor_1)->dimensions = dimensions_input_1;
QNN_VER_PTR(*tensor_1)->rank = qnn_get_ggml_tensor_rank(src1);
QNN_VER_PTR(*tensor_1)->dataType = src1_qnn_type;
QNN_VER_PTR(*tensor_2)->dimensions = dimensions_output;
QNN_VER_PTR(*tensor_2)->rank = qnn_get_ggml_tensor_rank(dst);
QNN_VER_PTR(*tensor_2)->dataType = dst_qnn_type;
Qnn_Tensor_t tensor_inputs[] = {*tensor_0, *tensor_1};
Qnn_Tensor_t tensor_outputs[] = {*tensor_2};
Qnn_OpConfig_t op_config = {(Qnn_OpConfigVersion_t) 1,
.v1 = {"ggml_op_mul_mat",
QNN_OP_PACKAGE_NAME_QTI_AISW,
QNN_OP_MAT_MUL, 0, qnn_params, 2,
tensor_inputs, 1, tensor_outputs}};
error = qnn_raw_interface.graphAddNode(graph_handle, op_config);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("error = %d\n", error);
goto failure;
}
error = qnn_raw_interface.graphFinalize(graph_handle, nullptr, nullptr);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("error = %d\n", error);
goto failure;
}
error = qnn_raw_interface.graphExecute(graph_handle,
tensor_inputs, 2,
tensor_outputs, 1,
nullptr, nullptr);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("error = %d\n", error);
goto failure;
}
auto graph_item = std::make_tuple(graph_handle, tensor_0, tensor_1, tensor_2);
instance->_qnn_graph_map[map_entry] = graph_item;
} else {
auto & graph_item= instance->_qnn_graph_map[map_entry];
graph_handle = std::get<0>(graph_item);
tensor_0 = std::get<1>(graph_item);
tensor_1 = std::get<2>(graph_item);
tensor_2 = std::get<3>(graph_item);
uint32_t dimensions_input_0[] = {
(uint32_t) src0->ne[0], (uint32_t) src0->ne[1],
(uint32_t) src0->ne[2], (uint32_t) src0->ne[3]};
uint32_t dimensions_input_1[] = {
(uint32_t) src1->ne[0], (uint32_t) src1->ne[1],
(uint32_t) src1->ne[2], (uint32_t) src1->ne[3]};
uint32_t dimensions_output[] = {
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],
(uint32_t) dst->ne[3]};
QNN_VER_PTR(*tensor_0)->dimensions = dimensions_input_0;
QNN_VER_PTR(*tensor_0)->rank = qnn_get_ggml_tensor_rank(src0);
QNN_VER_PTR(*tensor_0)->dataType = src0_qnn_type;
QNN_VER_PTR(*tensor_1)->dimensions = dimensions_input_1;
QNN_VER_PTR(*tensor_1)->rank = qnn_get_ggml_tensor_rank(src1);
QNN_VER_PTR(*tensor_1)->dataType = src1_qnn_type;
QNN_VER_PTR(*tensor_2)->dimensions = dimensions_output;
QNN_VER_PTR(*tensor_2)->rank = qnn_get_ggml_tensor_rank(dst);
QNN_VER_PTR(*tensor_2)->dataType = dst_qnn_type;
QNN_VER_PTR(*tensor_0)->clientBuf = {src0->data,
qnn_get_ggml_tensor_data_size(src0)};
QNN_VER_PTR(*tensor_1)->clientBuf = {src1->data,
qnn_get_ggml_tensor_data_size(src1)};
QNN_VER_PTR(*tensor_2)->clientBuf = {dst->data,
qnn_get_ggml_tensor_data_size(dst)};
Qnn_Tensor_t tensor_inputs[] = {*tensor_0, *tensor_1};
Qnn_Tensor_t tensor_outputs[] = {*tensor_2};
error = qnn_raw_interface.graphExecute(graph_handle,
tensor_inputs, 2,
tensor_outputs, 1,
nullptr, nullptr);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("error = %d\n", error);
goto failure;
}
}
failure:
if (QNN_SUCCESS != error) {
QNN_LOG_DEBUG("tensor0 name %s", QNN_TENSOR_GET_NAME(*tensor_0));
QNN_LOG_DEBUG("tensor1 name %s", QNN_TENSOR_GET_NAME(*tensor_1));
QNN_LOG_DEBUG("tensor2 name %s", QNN_TENSOR_GET_NAME(*tensor_2));
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
src0->name, src0->type, ggml_type_name(src0->type),
src0->ne[0], src0->ne[1], src0->ne[2], src0->nb[0],
src0->nb[1], src0->nb[2]);
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
src1->name, src1->type, ggml_type_name(src1->type),
src1->ne[0], src1->ne[1], src1->ne[2], src1->nb[0],
src1->nb[1], src1->nb[2]);
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
dst->name, dst->type, ggml_type_name(dst->type), dst->ne[0],
dst->ne[1], dst->ne[2], dst->nb[0], dst->nb[1], dst->nb[2]);
}
QNN_VER_PTR(*tensor_0)->dimensions = tensor_0_dimensions;
QNN_VER_PTR(*tensor_1)->dimensions = tensor_1_dimensions;
QNN_VER_PTR(*tensor_2)->dimensions = tensor_2_dimensions;
perf.info();
}
// common function for GGML OPs using QNN API
static void ggml_qnn_hanlde_op(ggml_backend_qnn_context * ctx,
const enum ggml_op ggmlop,
const ggml_tensor * src0, const ggml_tensor * src1,
ggml_tensor * dst) {
Qnn_ErrorHandle_t error = QNN_SUCCESS;
bool graph_initialized = false;
qnn_instance * instance = nullptr;
std::string qnn_graph_name = "ggml_qnn_graph";
std::string qnn_op_config_name = "ggml_qnn_op_config";
const char * qnn_op_name = nullptr;
Qnn_GraphHandle_t graph_handle = nullptr;
Qnn_Tensor_t * tensor_0 = nullptr;
Qnn_Tensor_t * tensor_1 = nullptr;
Qnn_Tensor_t * tensor_2 = nullptr;
Qnn_Param_t qnn_params[] = {};
Qnn_DataType_t src0_qnn_type = QNN_DATATYPE_FLOAT_32;
Qnn_DataType_t src1_qnn_type = QNN_DATATYPE_FLOAT_32;
Qnn_DataType_t dst_qnn_type = QNN_DATATYPE_FLOAT_32;
CHECK_PARAMS(ctx, src0, src1, dst);
tensor_0 = (Qnn_Tensor_t *) src0->extra;
tensor_1 = (Qnn_Tensor_t *) src1->extra;
tensor_2 = (Qnn_Tensor_t *) dst->extra;
instance = ctx->instance;
qnn_perf perf(ggml_op_name(ggmlop));
perf.start();
qnn_op_name = qnn_opname_from_ggmlop(ggmlop);
if (nullptr == qnn_op_name) {
QNN_LOG_WARN("ggml op %d(%s) not supported currently", ggmlop, ggml_op_name(ggmlop));
return;
}
tensor_0 = (Qnn_Tensor_t *) src0->extra;
tensor_1 = (Qnn_Tensor_t *) src1->extra;
tensor_2 = (Qnn_Tensor_t *) dst->extra;
instance = ctx->instance;
QNN_INTERFACE_VER_TYPE qnn_raw_interface = ctx->raw_interface;
src0_qnn_type = qnn_datatype_from_ggml_datatype(src0->type);
src1_qnn_type = qnn_datatype_from_ggml_datatype(src1->type);
dst_qnn_type = qnn_datatype_from_ggml_datatype(dst->type);
QNN_VER_PTR(*tensor_0)->type = QNN_TENSOR_TYPE_APP_WRITE;
QNN_VER_PTR(*tensor_1)->type = QNN_TENSOR_TYPE_APP_WRITE;
QNN_VER_PTR(*tensor_2)->type = QNN_TENSOR_TYPE_APP_READ;
uint32_t dimensions_input_0[] = {
(uint32_t) src0->ne[0], (uint32_t) src0->ne[1], (uint32_t) src0->ne[2],
(uint32_t) src0->ne[3]};
uint32_t dimensions_input_1[] = {
(uint32_t) src1->ne[0], (uint32_t) src1->ne[1], (uint32_t) src1->ne[2],
(uint32_t) src1->ne[3]};
uint32_t dimensions_output[] = {
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],
(uint32_t) dst->ne[3]};
std::string map_entry = std::string(ggml_op_name(ggmlop));
if (instance->_qnn_graph_map.find(map_entry) !=
instance->_qnn_graph_map.end()) {
graph_initialized = true;
auto & graph_item = instance->_qnn_graph_map[map_entry];
graph_handle = std::get<0>(graph_item);
}
uint32_t * tensor_0_dimensions = QNN_VER_PTR(*tensor_0)->dimensions;
uint32_t * tensor_1_dimensions = QNN_VER_PTR(*tensor_1)->dimensions;
uint32_t * tensor_2_dimensions = QNN_VER_PTR(*tensor_2)->dimensions;
if (!graph_initialized) {
qnn_graph_name = qnn_graph_name + "_" + ggml_op_name(ggmlop) +
std::to_string(ctx->threads) + src0->name + "_" +
src1->name;
qnn_op_config_name = qnn_op_config_name + "_" + ggml_op_name(ggmlop) +
std::to_string(ctx->threads) + src0->name + "_" +
src1->name;
QNN_LOG_DEBUG("qnn graph name %s", qnn_graph_name.c_str());
QNN_LOG_DEBUG("qnn op_config name %s", qnn_op_config_name.c_str());
error = qnn_raw_interface.graphCreate(
instance->get_qnn_context_handle(), qnn_graph_name.c_str(), nullptr,
&graph_handle);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("can't create qnn graph handle with ggml op %s, graph "
"name %s, error = %d\n",
ggml_op_name(ggmlop), qnn_graph_name.c_str(), error);
goto failure;
}
error = qnn_raw_interface.tensorCreateGraphTensor(graph_handle, tensor_0);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("error = %d\n", error);
goto failure;
}
error = qnn_raw_interface.tensorCreateGraphTensor(graph_handle, tensor_1);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("error = %d\n", error);
goto failure;
}
error = qnn_raw_interface.tensorCreateGraphTensor(graph_handle, tensor_2);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("error = %d\n", error);
goto failure;
}
QNN_VER_PTR(*tensor_0)->clientBuf = {src0->data,
qnn_get_ggml_tensor_data_size(src0)};
QNN_VER_PTR(*tensor_1)->clientBuf = {src1->data,
qnn_get_ggml_tensor_data_size(src1)};
QNN_VER_PTR(*tensor_2)->clientBuf = {dst->data,
qnn_get_ggml_tensor_data_size(dst)};
QNN_VER_PTR(*tensor_0)->dimensions = dimensions_input_0;
QNN_VER_PTR(*tensor_0)->rank = qnn_get_ggml_tensor_rank(src0);
QNN_VER_PTR(*tensor_0)->dataType = src0_qnn_type;
QNN_VER_PTR(*tensor_1)->dimensions = dimensions_input_1;
QNN_VER_PTR(*tensor_1)->rank = qnn_get_ggml_tensor_rank(src1);
QNN_VER_PTR(*tensor_1)->dataType = src1_qnn_type;
QNN_VER_PTR(*tensor_2)->dimensions = dimensions_output;
QNN_VER_PTR(*tensor_2)->rank = qnn_get_ggml_tensor_rank(dst);
QNN_VER_PTR(*tensor_2)->dataType = dst_qnn_type;
Qnn_Tensor_t tensor_inputs[] = {*tensor_0, *tensor_1};
Qnn_Tensor_t tensor_outputs[] = {*tensor_2};
Qnn_OpConfig_t op_config = {(Qnn_OpConfigVersion_t) 1,
.v1 = {qnn_op_config_name.c_str(),
QNN_OP_PACKAGE_NAME_QTI_AISW,
qnn_op_name, 0, qnn_params, 2,
tensor_inputs, 1, tensor_outputs}};
error = qnn_raw_interface.graphAddNode(graph_handle, op_config);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("error = %d\n", error);
goto failure;
}
error = qnn_raw_interface.graphFinalize(graph_handle, nullptr, nullptr);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("error = %d\n", error);
goto failure;
}
error = qnn_raw_interface.graphExecute(graph_handle,
tensor_inputs, 2,
tensor_outputs, 1,
nullptr, nullptr);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("error = %d\n", error);
goto failure;
}
auto graph_item = std::make_tuple(graph_handle, tensor_0, tensor_1, tensor_2);
instance->_qnn_graph_map[map_entry] = graph_item;
} else {
auto & graph_item = instance->_qnn_graph_map[map_entry];
graph_handle = std::get<0>(graph_item);
tensor_0 = std::get<1>(graph_item);
tensor_1 = std::get<2>(graph_item);
tensor_2 = std::get<3>(graph_item);
uint32_t dimensions_input_0[] = {
(uint32_t) src0->ne[0], (uint32_t) src0->ne[1],
(uint32_t) src0->ne[2], (uint32_t) src0->ne[3]};
uint32_t dimensions_input_1[] = {
(uint32_t) src1->ne[0], (uint32_t) src1->ne[1],
(uint32_t) src1->ne[2], (uint32_t) src1->ne[3]};
uint32_t dimensions_output[] = {
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],
(uint32_t) dst->ne[3]};
QNN_VER_PTR(*tensor_0)->dimensions = dimensions_input_0;
QNN_VER_PTR(*tensor_0)->rank = qnn_get_ggml_tensor_rank(src0);
QNN_VER_PTR(*tensor_0)->dataType = src0_qnn_type;
QNN_VER_PTR(*tensor_1)->dimensions = dimensions_input_1;
QNN_VER_PTR(*tensor_1)->rank = qnn_get_ggml_tensor_rank(src1);
QNN_VER_PTR(*tensor_1)->dataType = src1_qnn_type;
QNN_VER_PTR(*tensor_2)->dimensions = dimensions_output;
QNN_VER_PTR(*tensor_2)->rank = qnn_get_ggml_tensor_rank(dst);
QNN_VER_PTR(*tensor_2)->dataType = dst_qnn_type;
QNN_VER_PTR(*tensor_0)->clientBuf = {src0->data,
qnn_get_ggml_tensor_data_size(src0)};
QNN_VER_PTR(*tensor_1)->clientBuf = {src1->data,
qnn_get_ggml_tensor_data_size(src1)};
QNN_VER_PTR(*tensor_2)->clientBuf = {dst->data,
qnn_get_ggml_tensor_data_size(dst)};
Qnn_Tensor_t tensor_inputs[] = {*tensor_0, *tensor_1};
Qnn_Tensor_t tensor_outputs[] = {*tensor_2};
error =
qnn_raw_interface.graphExecute(graph_handle,
tensor_inputs, 2,
tensor_outputs, 1,
nullptr, nullptr);
if (QNN_SUCCESS != error) {
QNN_LOG_INFO("error = %d\n", error);
goto failure;
}
}
failure:
if (QNN_SUCCESS != error) {
QNN_LOG_DEBUG("tensor0 name %s", QNN_TENSOR_GET_NAME(*tensor_0));
QNN_LOG_DEBUG("tensor1 name %s", QNN_TENSOR_GET_NAME(*tensor_1));
QNN_LOG_DEBUG("tensor2 name %s", QNN_TENSOR_GET_NAME(*tensor_2));
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
src0->name, src0->type, ggml_type_name(src0->type),
src0->ne[0], src0->ne[1], src0->ne[2], src0->nb[0],
src0->nb[1], src0->nb[2]);
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
src1->name, src1->type, ggml_type_name(src1->type),
src1->ne[0], src1->ne[1], src1->ne[2], src1->nb[0],
src1->nb[1], src1->nb[2]);
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
dst->name, dst->type, ggml_type_name(dst->type), dst->ne[0],
dst->ne[1], dst->ne[2], dst->nb[0], dst->nb[1], dst->nb[2]);
QNN_LOG_DEBUG("%d, %d, %d, %d", src0->ne[0], src0->ne[1], src0->ne[2],
src0->ne[3]);
}
QNN_VER_PTR(*tensor_0)->dimensions = tensor_0_dimensions;
QNN_VER_PTR(*tensor_1)->dimensions = tensor_1_dimensions;
QNN_VER_PTR(*tensor_2)->dimensions = tensor_2_dimensions;
perf.info();
}
static void ggml_qnn_repeat(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0, const ggml_tensor * src1,
ggml_tensor * dst) {
}
static void ggml_qnn_get_rows(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0, const ggml_tensor * src1,
ggml_tensor * dst) {
}
static void ggml_qnn_acc(ggml_backend_qnn_context * ctx, const ggml_tensor * src0,
const ggml_tensor * src1, ggml_tensor * dst) {
}
static void ggml_qnn_div(ggml_backend_qnn_context * ctx, const ggml_tensor * src0,
const ggml_tensor * src1, ggml_tensor * dst) {
}
static void ggml_qnn_gelu(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0, const ggml_tensor * src1,
ggml_tensor * dst) {
}
static void ggml_qnn_silu(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0, const ggml_tensor * src1,
ggml_tensor * dst) {
}
static void ggml_qnn_gelu_quick(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0,
const ggml_tensor * src1, ggml_tensor * dst) {
}
static void ggml_qnn_tanh(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0, const ggml_tensor * src1,
ggml_tensor * dst) {
}
static void ggml_qnn_relu(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0, const ggml_tensor * src1,
ggml_tensor * dst) {
}
static void ggml_qnn_hardsigmoid(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0,
const ggml_tensor * src1, ggml_tensor * dst) {
}
static void ggml_qnn_hardswish(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0, const ggml_tensor * src1,
ggml_tensor * dst) {
}
static void ggml_qnn_leaky_relu(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0,
const ggml_tensor * src1, ggml_tensor * dst) {
}
static void ggml_qnn_sqr(ggml_backend_qnn_context * ctx, const ggml_tensor * src0,
const ggml_tensor * src1, ggml_tensor * dst) {
}
static void ggml_qnn_norm(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0, const ggml_tensor * src1,
ggml_tensor * dst) {
}
static void ggml_qnn_group_norm(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0,
const ggml_tensor * src1, ggml_tensor * dst) {
}
static void ggml_qnn_concat(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0, const ggml_tensor * src1,
ggml_tensor * dst) {
}
static void ggml_qnn_upscale(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0, const ggml_tensor * src1,
ggml_tensor * dst) {
}
static void ggml_qnn_pad(ggml_backend_qnn_context * ctx, const ggml_tensor * src0,
const ggml_tensor * src1, ggml_tensor * dst) {
}
static void ggml_qnn_rms_norm(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0, const ggml_tensor * src1,
ggml_tensor * dst) {
}
static void ggml_qnn_cpy(ggml_backend_qnn_context * ctx, const ggml_tensor * src0,
const ggml_tensor * src1, ggml_tensor * dst) {
}
static void ggml_qnn_dup(ggml_backend_qnn_context * ctx, const ggml_tensor * src0,
const ggml_tensor * src1, ggml_tensor * dst) {
ggml_qnn_cpy(ctx, src0, dst, nullptr);
(void) src1;
}
static void ggml_qnn_mul_mat_id(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0,
const ggml_tensor * src1, ggml_tensor * dst) {
}
static void ggml_qnn_scale(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0, const ggml_tensor * src1,
ggml_tensor * dst) {
}
static void ggml_qnn_clamp(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0, const ggml_tensor * src1,
ggml_tensor * dst) {
}
static void ggml_qnn_diag_mask_inf(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0,
const ggml_tensor * src1, ggml_tensor * dst) {
}
static void ggml_qnn_soft_max(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0, const ggml_tensor * src1,
ggml_tensor * dst) {
}
static void ggml_qnn_rope(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0, const ggml_tensor * src1,
ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(src0));
}
static void ggml_qnn_pool2d(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0, const ggml_tensor * src1,
ggml_tensor * dst) {
}
static void ggml_qnn_im2col(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0, const ggml_tensor * src1,
ggml_tensor * dst) {
}
static void ggml_qnn_sum_rows(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0, const ggml_tensor * src1,
ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(src0));
}
static void ggml_qnn_argsort(ggml_backend_qnn_context * ctx,
const ggml_tensor * src0, const ggml_tensor * src1,
ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(src0));
}
static void ggml_qnn_nop(ggml_backend_qnn_context * ctx, const ggml_tensor * src0,
const ggml_tensor * src1, ggml_tensor * dst) {
(void)src0;
(void)src1;
(void)dst;
}
bool ggml_qnn_compute_forward(ggml_backend_qnn_context * ctx,
struct ggml_compute_params * params,
struct ggml_tensor * tensor) {
ggml_qnn_func_t func = nullptr;
ggml_qnn_func_common_t func_common = nullptr;
switch (tensor->op) {
case GGML_OP_ADD:
func = ggml_qnn_add;
break;
case GGML_OP_MUL:
func_common = ggml_qnn_hanlde_op;
break;
case GGML_OP_MUL_MAT:
func = ggml_qnn_mul_mat;
break;
case GGML_OP_REPEAT:
func = ggml_qnn_repeat;
break;
case GGML_OP_GET_ROWS:
func = ggml_qnn_get_rows;
break;
case GGML_OP_DUP:
func = ggml_qnn_dup;
break;
case GGML_OP_ACC:
func = ggml_qnn_acc;
break;
case GGML_OP_DIV:
func = ggml_qnn_div;
break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(tensor)) {
case GGML_UNARY_OP_GELU:
func = ggml_qnn_gelu;
break;
case GGML_UNARY_OP_SILU:
func = ggml_qnn_silu;
break;
case GGML_UNARY_OP_GELU_QUICK:
func = ggml_qnn_gelu_quick;
break;
case GGML_UNARY_OP_TANH:
func = ggml_qnn_tanh;
break;
case GGML_UNARY_OP_RELU:
func = ggml_qnn_relu;
break;
case GGML_UNARY_OP_HARDSIGMOID:
func = ggml_qnn_hardsigmoid;
break;
case GGML_UNARY_OP_HARDSWISH:
func = ggml_qnn_hardswish;
break;
default:
return false;
}
break;
case GGML_OP_NORM:
func = ggml_qnn_norm;
break;
case GGML_OP_GROUP_NORM:
func = ggml_qnn_group_norm;
break;
case GGML_OP_CONCAT:
func = ggml_qnn_concat;
break;
case GGML_OP_UPSCALE:
func = ggml_qnn_upscale;
break;
case GGML_OP_PAD:
func = ggml_qnn_pad;
break;
case GGML_OP_LEAKY_RELU:
func = ggml_qnn_leaky_relu;
break;
case GGML_OP_RMS_NORM:
func = ggml_qnn_rms_norm;
break;
case GGML_OP_MUL_MAT_ID:
func = ggml_qnn_mul_mat_id;
break;
case GGML_OP_SCALE:
func = ggml_qnn_scale;
break;
case GGML_OP_SQR:
func = ggml_qnn_sqr;
break;
case GGML_OP_CLAMP:
func = ggml_qnn_clamp;
break;
case GGML_OP_CPY:
func = ggml_qnn_cpy;
break;
case GGML_OP_CONT:
func = ggml_qnn_dup;
break;
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
func = ggml_qnn_nop;
break;
case GGML_OP_DIAG_MASK_INF:
func = ggml_qnn_diag_mask_inf;
break;
case GGML_OP_SOFT_MAX:
func = ggml_qnn_soft_max;
break;
case GGML_OP_ROPE:
func = ggml_qnn_rope;
break;
case GGML_OP_IM2COL:
func = ggml_qnn_im2col;
break;
case GGML_OP_POOL_2D:
func = ggml_qnn_pool2d;
break;
case GGML_OP_SUM_ROWS:
func = ggml_qnn_sum_rows;
break;
case GGML_OP_ARGSORT:
func = ggml_qnn_argsort;
break;
default:
return false;
}
if (nullptr != func) func(ctx, tensor->src[0], tensor->src[1], tensor);
if (nullptr != func_common)
func_common(ctx, tensor->op, tensor->src[0], tensor->src[1], tensor);
return true;
}
static const char * ggml_backend_qnn_buffer_get_name(ggml_backend_buffer_t buffer) {
GGML_UNUSED(buffer);
return "QNN";
}
GGML_CALL static bool ggml_backend_buffer_is_qnn(ggml_backend_buffer_t buffer) {
return buffer->iface.get_name == ggml_backend_qnn_buffer_get_name;
}
GGML_CALL static void ggml_backend_qnn_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_qnn_buffer_context * ctx = (ggml_backend_qnn_buffer_context *) buffer->context;
delete ctx;
}
GGML_CALL static void * ggml_backend_qnn_buffer_get_base(ggml_backend_buffer_t buffer) {
ggml_backend_qnn_buffer_context * ctx = (ggml_backend_qnn_buffer_context *) buffer->context;
return ctx->buffer;
}
GGML_CALL static void ggml_backend_qnn_buffer_init_tensor(ggml_backend_buffer_t buffer,
ggml_tensor * tensor) {
Qnn_ErrorHandle_t error = QNN_SUCCESS;
ggml_backend_qnn_buffer_context * ctx =
(ggml_backend_qnn_buffer_context *) buffer->context;
static int idx = 0;
char tensor_name[GGML_MAX_NAME] = {0};
snprintf(tensor_name, GGML_MAX_NAME, "tensor_%04d", idx++);
uint32_t dimensions[] = {(uint32_t) tensor->ne[0], (uint32_t) tensor->ne[1],
(uint32_t) tensor->ne[2],
(uint32_t) tensor->ne[3]};
Qnn_DataType_t qnn_data_type =
qnn_datatype_from_ggml_datatype(tensor->type);
Qnn_TensorType_t qnn_tensor_type = QNN_TENSOR_TYPE_APP_WRITE;
if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
qnn_tensor_type = QNN_TENSOR_TYPE_APP_WRITE;
} else if (tensor->flags & GGML_TENSOR_FLAG_OUTPUT) {
qnn_tensor_type = QNN_TENSOR_TYPE_APP_READ;
}
Qnn_Tensor_t qnn_tensor = {
.version = QNN_TENSOR_VERSION_1,
{.v1 = {.id = 0,
.name = tensor_name,
.type = qnn_tensor_type,
.dataFormat = QNN_TENSOR_DATA_FORMAT_FLAT_BUFFER,
.dataType = qnn_data_type,
.quantizeParams =
{QNN_DEFINITION_UNDEFINED,
QNN_QUANTIZATION_ENCODING_UNDEFINED,
{.scaleOffsetEncoding = {.scale = 0.0000000000000000f,
.offset = 0}}},
.rank = qnn_get_ggml_tensor_rank(tensor),
.dimensions = dimensions,
.memType = QNN_TENSORMEMTYPE_RAW,
{.clientBuf = {.data = nullptr, .dataSize = 0}}}}};
Qnn_Tensor_t * p_qnn_tensor =
(Qnn_Tensor_t *)calloc(1, sizeof(Qnn_Tensor_t));
if (nullptr == p_qnn_tensor) {
QNN_LOG_WARN("calloc failed");
return;
}
error = deep_copy_qnn_tensors(qnn_tensor, *p_qnn_tensor);
if (error != QNN_SUCCESS) {
free(p_qnn_tensor);
QNN_LOG_DEBUG("init tensor failed");
return;
}
tensor->extra = p_qnn_tensor;
ctx->qnn_tensors.push_back(p_qnn_tensor);
}
GGML_CALL static void ggml_backend_qnn_buffer_set_tensor(ggml_backend_buffer_t buffer,
ggml_tensor * tensor, const void * data,
size_t offset, size_t size) {
GGML_UNUSED(buffer);
memcpy((char *) tensor->data + offset, data, size);
}
GGML_CALL static void ggml_backend_qnn_buffer_get_tensor(ggml_backend_buffer_t buffer,
const ggml_tensor * tensor, void * data,
size_t offset, size_t size) {
GGML_UNUSED(buffer);
memcpy(data, (const char *) tensor->data + offset, size);
}
GGML_CALL static bool ggml_backend_qnn_buffer_cpy_tensor(ggml_backend_buffer_t buffer,
const struct ggml_tensor * src,
struct ggml_tensor * dst) {
GGML_UNUSED(buffer);
if (ggml_backend_buffer_is_host(src->buffer)) {
memcpy(dst->data, src->data, ggml_nbytes(src));
return true;
}
return false;
}
GGML_CALL static void ggml_backend_qnn_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_qnn_buffer_context * ctx = (ggml_backend_qnn_buffer_context *) buffer->context;
memset(ctx->buffer, value, ctx->buffer_size);
}
static ggml_backend_buffer_i ggml_backend_qnn_buffer_interface = {
/* .get_name = */ ggml_backend_qnn_buffer_get_name,
/* .free_buffer = */ ggml_backend_qnn_buffer_free_buffer,
/* .get_base = */ ggml_backend_qnn_buffer_get_base,
/* .init_tensor = */ ggml_backend_qnn_buffer_init_tensor,
/* .set_tensor = */ ggml_backend_qnn_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_qnn_buffer_get_tensor,
/* .cpy_tensor = */ ggml_backend_qnn_buffer_cpy_tensor,
/* .clear = */ ggml_backend_qnn_buffer_clear,
/* .reset = */ nullptr,
};
GGML_CALL static const char * ggml_backend_qnn_buffer_type_name(ggml_backend_buffer_type_t buft) {
return "QNN";
}
static void * ggml_qnn_host_malloc(size_t n) {
void * data = nullptr;
int result = posix_memalign((void **) &data, sysconf(_SC_PAGESIZE), n);
if (result != 0) {
QNN_LOG_WARN("%s: error: posix_memalign failed\n", __func__);
return nullptr;
}
return data;
}
GGML_CALL static ggml_backend_buffer_t ggml_backend_qnn_buffer_type_alloc_buffer(
ggml_backend_buffer_type_t buft, size_t size) {
ggml_backend_qnn_buffer_type_context * buft_ctx = (ggml_backend_qnn_buffer_type_context *)buft->context;
ggml_backend_qnn_buffer_context * ctx = new ggml_backend_qnn_buffer_context(buft_ctx->device);
size_t size_page = sysconf(_SC_PAGESIZE);
size_t size_aligned = size;
if ((size_aligned % size_page) != 0) {
size_aligned += (size_page - (size_aligned % size_page));
}
// TODO:use pre-allocated buffer in internal memory pool
ctx->buffer = ggml_qnn_host_malloc(size_aligned);
ctx->buffer_size = size_aligned;
ctx->backend_ctx = &g_qnn_mgr[buft_ctx->device];
if (nullptr == ctx->buffer) {
QNN_LOG_WARN("%s: failed to allocate %.2f MiB\n", __func__, size / (1 << 20));
return nullptr;
}
return ggml_backend_buffer_init(buft, ggml_backend_qnn_buffer_interface,ctx, size);
}
GGML_CALL static size_t ggml_backend_qnn_buffer_type_get_alignment(
ggml_backend_buffer_type_t buft) {
GGML_UNUSED(buft);
return 32;
}
// TODO: this value is an experimental value, works fine with whisper/llm/minicpm-v inference on Android
GGML_CALL static size_t ggml_backend_qnn_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
GGML_UNUSED(buft);
return (96 * 1024 * 1024);
}
GGML_CALL static bool ggml_backend_qnn_buffer_type_supports_backend(
ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
GGML_UNUSED(buft);
return ggml_backend_is_qnn(backend) || ggml_backend_is_cpu(backend);
}
GGML_CALL static bool ggml_backend_qnn_buffer_is_host(ggml_backend_buffer_type_t buft) {
GGML_UNUSED(buft);
return true;
}
GGML_CALL static const char * ggml_backend_qnn_name(ggml_backend_t backend) {
return "QNN";
}
GGML_CALL static void ggml_backend_qnn_free(ggml_backend_t backend) {
QNN_LOG_INFO("enter %s", __func__);
ggml_backend_qnn_context * ctx = (ggml_backend_qnn_context *) backend->context;
QNN_LOG_INFO("idx %d, name:%s", ctx->device, g_qnn_mgr[ctx->device].name);
qnn_instance * instance = (qnn_instance *)g_qnn_mgr[ctx->device].instance;
if (instance != nullptr) {
std::map<std::string,
std::tuple<Qnn_GraphHandle_t, Qnn_Tensor_t *, Qnn_Tensor_t *,
Qnn_Tensor_t *>>::iterator graph_it;
for (graph_it = instance->_qnn_graph_map.begin();
graph_it != instance->_qnn_graph_map.end(); graph_it++) {
auto & graph_item = graph_it->second;
Qnn_GraphHandle_t & graph_handle = std::get<0>(graph_item);
GGML_UNUSED(graph_handle);
QNN_LOG_INFO("graph type:%s", graph_it->first.c_str());
}
instance->_qnn_graph_map.clear();
instance->qnn_finalize();
delete instance;
g_qnn_mgr[ctx->device].instance = nullptr;
}
if (g_qnn_mgr[ctx->device].backend != nullptr) {
delete backend;
g_qnn_mgr[ctx->device].backend = nullptr;
}
QNN_LOG_INFO("leave %s", __func__);
}
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_qnn_get_default_buffer_type(ggml_backend_t backend) {
ggml_backend_qnn_context * ctx = (ggml_backend_qnn_context *) backend->context;
return ggml_backend_qnn_buffer_type(ctx->device);
}
GGML_CALL static ggml_status ggml_backend_qnn_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
enum ggml_status result = GGML_STATUS_SUCCESS;
ggml_backend_qnn_context * ctx = (ggml_backend_qnn_context *) backend->context;
GGML_UNUSED(ctx);
ggml_compute_params params = {};
params.type = GGML_TASK_TYPE_COMPUTE;
params.ith = 0;
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE ||
node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW ||
node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
continue;
}
bool ok = ggml_qnn_compute_forward(ctx, &params, node);
if (!ok) {
QNN_LOG_DEBUG("error: op not supported %s (%s)\n", node->name, ggml_op_name(node->op));
}
}
return result;
}
GGML_CALL static bool ggml_backend_qnn_supports_op(ggml_backend_t backend,
const ggml_tensor * op) {
ggml_backend_qnn_context *ctx = (ggml_backend_qnn_context *) backend->context;
return (ggml_qnn_can_handle_op(ctx, op, false));
}
GGML_CALL static bool ggml_backend_qnn_offload_op(ggml_backend_t backend,const ggml_tensor * tensor) {
ggml_backend_qnn_context * ctx = (ggml_backend_qnn_context *) backend->context;
return ggml_qnn_compute_forward(ctx, nullptr, (ggml_tensor *) tensor);
}
static ggml_backend_i ggml_backend_qnn_interface = {
/* .get_name = */ ggml_backend_qnn_name,
/* .free = */ ggml_backend_qnn_free,
/* .get_default_buffer_type = */ ggml_backend_qnn_get_default_buffer_type,
/* .set_tensor_async = */ nullptr,
/* .get_tensor_async = */ nullptr,
/* .cpy_tensor_async = */ nullptr,
/* .synchronize = */ nullptr,
/* .graph_plan_create = */ nullptr,
/* .graph_plan_free = */ nullptr,
/* .graph_plan_compute = */ nullptr,
/* .graph_compute = */ ggml_backend_qnn_graph_compute,
/* .supports_op = */ ggml_backend_qnn_supports_op,
/* .offload_op = */ ggml_backend_qnn_offload_op,
/* .event_new = */ nullptr,
/* .event_free = */ nullptr,
/* .event_record = */ nullptr,
/* .event_wait = */ nullptr,
/* .event_synchronize = */ nullptr,
};
static ggml_guid_t ggml_backend_qnn_guid() {
static ggml_guid guid = {
0x1a, 0x2b, 0x3c, 0x4d, 0x5e, 0x6f, 0x70, 0x81,
0x92, 0xa3, 0xb4, 0xc5, 0xd6, 0xe7, 0xf8, 0x09
};
return &guid;
}
static ggml_backend_t ggml_backend_qnn_reg_init(const char * params, void * user_data) {
if (nullptr == params) {
// QNN library path
// can be hardcoded to "/data/local/tmp/" for Android command line application
// or specified in JNI layer for Android APK
params = "/data/local/tmp/";
}
ggml_backend_t qnn_backend = ggml_backend_qnn_init((int) (intptr_t) user_data, params);
return qnn_backend;
}
bool ggml_backend_is_qnn(ggml_backend_t backend) {
return backend != nullptr && ggml_guid_matches(backend->guid, ggml_backend_qnn_guid());
}
void ggml_backend_qnn_set_n_threads(ggml_backend_t backend, int n_threads) {
GGML_ASSERT(ggml_backend_is_qnn(backend));
struct ggml_backend_qnn_context * ctx = (struct ggml_backend_qnn_context *) backend->context;
ctx->threads = n_threads;
}
const char * ggml_backend_qnn_get_name(ggml_backend_t backend) {
return backend->iface.get_name(backend);
}
int ggml_backend_qnn_get_device_count() {
return GGML_QNN_MAX_DEVICES;
}
void ggml_backend_qnn_get_device_description(size_t dev_num, char * description, size_t description_size) {
if (nullptr == description || 0 == description_size) {
QNN_LOG_WARN("invalid param");
return;
}
if (dev_num >= GGML_QNN_MAX_DEVICES) {
QNN_LOG_WARN("invalid param");
return;
}
snprintf(description, description_size, "%s", g_qnn_mgr[dev_num].name);
}
ggml_backend_buffer_type_t ggml_backend_qnn_buffer_type(size_t device) {
if (device >= GGML_QNN_MAX_DEVICES) {
QNN_LOG_DEBUG("ggml_backend_qnn_buffer_type error: device_index:%d is "
"out of range [0, %d]\n",
device, GGML_QNN_MAX_DEVICES - 1);
return nullptr;
}
static ggml_backend_qnn_buffer_type_context ggml_backend_qnn_buffer_type_contexts[GGML_QNN_MAX_DEVICES];
static ggml_backend_buffer_type ggml_backend_qnn_buffer_types[GGML_QNN_MAX_DEVICES];
static bool ggml_backend_qnn_buffer_type_initialized = false;
if (!ggml_backend_qnn_buffer_type_initialized) {
for (size_t i = 0; i < GGML_QNN_MAX_DEVICES; i++) {
auto & context = ggml_backend_qnn_buffer_type_contexts[i];
context = { i, std::string(QNN_BACKEND_NAME) + std::to_string(i) };
ggml_backend_qnn_buffer_types[i] = {
/* .iface = */ {
/* .get_name = */ ggml_backend_qnn_buffer_type_name,
/* .alloc_buffer = */ ggml_backend_qnn_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_qnn_buffer_type_get_alignment,
/* .get_max_size = */ ggml_backend_qnn_buffer_type_get_max_size,
/* .get_alloc_size = */ nullptr, // defaults to ggml_nbytes
/* .supports_backend = */ ggml_backend_qnn_buffer_type_supports_backend,
/* .is_host = */ ggml_backend_qnn_buffer_is_host
},
/* .context = */ & context,
};
}
ggml_backend_qnn_buffer_type_initialized = true;
}
return &ggml_backend_qnn_buffer_types[device];
}
/**
*
* @param device 0: QNN_BACKEND_CPU 1: QNN_BACKEND_GPU 2: QNN_BACKEND_NPU
* @param qnn_lib_path qnn library path, such as "/data/local/tmp/" on Android or specified in JNI layer
* @return
*/
ggml_backend_t ggml_backend_qnn_init(size_t device, const char * qnn_lib_path) {
int result = 0;
if (nullptr == qnn_lib_path) {
QNN_LOG_ERROR("invalid qnn lib path\n");
return nullptr;
}
QNN_LOG_DEBUG("device %d", device);
QNN_LOG_DEBUG("qnn_lib_path %s", qnn_lib_path);
if (device >= GGML_QNN_MAX_DEVICES) {
QNN_LOG_ERROR("invalid device %d", device);
return nullptr;
}
std::string path = qnn_lib_path;
if (QNN_BACKEND_NPU == device) {
if (0 == setenv("LD_LIBRARY_PATH",
(path + ":/vendor/dsp/cdsp:/vendor/lib64:/vendor/dsp/"
"dsp:/vendor/dsp/images")
.c_str(),
1)) {
QNN_LOG_INFO("QNN NPU backend setenv successfully");
} else {
QNN_LOG_ERROR("QNN NPU backend setenv failure");
}
if (0 == setenv("ADSP_LIBRARY_PATH",
(path +
";/vendor/dsp/cdsp;/vendor/lib/rfsa/adsp;/system/lib/"
"rfsa/adsp;/vendor/dsp/dsp;/vendor/dsp/images;/dsp")
.c_str(),
1)) {
QNN_LOG_INFO("QNN NPU backend setenv successfully");
} else {
QNN_LOG_ERROR("QNN NPU backend setenv failure");
}
} else {
if (0 == setenv("LD_LIBRARY_PATH", path.c_str(), 1)) {
QNN_LOG_INFO("%s backend setenv successfully\n",
qnn_get_backend_name(device));
} else {
QNN_LOG_ERROR("%s backend setenv failure\n",
qnn_get_backend_name(device));
}
}
qnn_instance * instance = nullptr;
instance = new qnn_instance(qnn_lib_path, g_qnn_mgr[device].lib, "");
result = instance->qnn_init(nullptr);
if (0 != result) {
QNN_LOG_WARN(
"init qnn subsystem failed with qnn backend %s, pls check why\n",
qnn_get_backend_name(device));
delete instance;
return nullptr;
}
qnn_interface qnn_interface = instance->get_qnn_interface();
if (!qnn_interface.is_loaded()) {
QNN_LOG_WARN("qnn subsystem failure\n");
delete instance;
return nullptr;
}
std::string device_name = qnn_get_backend_name(device);
QNN_LOG_INFO("qnn device name %s", device_name.c_str());
instance->init_qnn_graph(device_name.c_str(), false);
g_qnn_mgr[device].instance = instance;
g_qnn_mgr[device].raw_interface = instance->get_qnn_raw_interface();
g_qnn_mgr[device].raw_system_interface = instance->get_qnn_raw_system_interface();
ggml_backend_t qnn_backend =
new ggml_backend{/* .guid = */ ggml_backend_qnn_guid(),
/* .iface = */ ggml_backend_qnn_interface,
/* .context = */ &g_qnn_mgr[device]};
g_qnn_mgr[device].backend = qnn_backend;
return qnn_backend;
}
extern "C" GGML_CALL int ggml_backend_qnn_reg_devices(void);
GGML_CALL int ggml_backend_qnn_reg_devices() {
for (size_t idx = 0; idx < GGML_QNN_MAX_DEVICES; idx++) {
char name[GGML_MAX_NAME];
ggml_backend_qnn_get_device_description(idx, name, GGML_MAX_NAME);
ggml_backend_register(name, ggml_backend_qnn_reg_init,
ggml_backend_qnn_buffer_type(idx),
(void *) (intptr_t) idx);
}
return GGML_QNN_MAX_DEVICES;
}