llama.cpp/ggml/src/ggml-openvino.cpp

727 lines
26 KiB
C++

#include "ggml-openvino.h"
#include "ggml-backend-impl.h"
#include "ggml-impl.h"
#include "ggml-openvino/utils.h"
#include <string>
#include <mutex>
#include <vector>
#include <openvino/openvino.hpp>
#include <openvino/op/op.hpp>
#include <openvino/op/add.hpp>
#include <openvino/op/subtract.hpp>
#include <openvino/opsets/opset1.hpp>
#define GGML_OPENVINO_MAX_STREAMS 8
struct ggml_backend_openvino_context {
int device; // the device ID currently in use
std::string name; // context Name
std::string description; // context description
// OpenVINO core components
ov::Core core; // OpenVINO core interface
std::shared_ptr<ov::CompiledModel> model; // compiled Model
ov::InferRequest infer_request; // inference Request
// OpenVINO Multi-stream support
static const int MAX_STREAMS = 8; // define the maximum number of flows
std::vector<ov::InferRequest> streams; // used to support multi-stream reasoning
int current_stream; // the currently active stream index
// state Management
bool is_initialized; // initialize
ggml_backend_openvino_context()
: device(0), name("OpenVINO"), description("OpenVINO Backend Context"),
current_stream(0), is_initialized(false) {}
};
static void ggml_backend_openvino_free(ggml_backend_t backend) {
ggml_backend_openvino_context * ctx = (ggml_backend_openvino_context *)backend->context;
delete ctx;
delete backend;
}
static const char * ggml_backend_openvino_get_name(ggml_backend_t backend) {
return GGML_OPENVINO_NAME;
GGML_UNUSED(backend);
}
static ggml_backend_buffer_type_t ggml_backend_openvino_get_default_buffer_type(ggml_backend_t backend) {
return ggml_backend_cpu_buffer_type();
GGML_UNUSED(backend);
}
static void ggml_backend_openvino_add_forward(ggml_tensor * dst) {
// Step 1: get the input tensor src0 和 src1
const struct ggml_tensor *src0 = dst->src[0];
const struct ggml_tensor *src1 = dst->src[1];
ov::Core core;
// set the shape and stride of dst
dst->ne[0] = src0->ne[0];
dst->ne[1] = src0->ne[1];
dst->nb[0] = src0->nb[0];
dst->nb[1] = src0->nb[1];
if (src0 == nullptr || src1 == nullptr) {
std::cerr << "Error: src0 or src1 is null." << std::endl;
return;
}
// Step 2: Check that the input tensor types and shapes match
if (src0->type != GGML_TYPE_F32 || src1->type != GGML_TYPE_F32) {
std::cerr << "Error: Unsupported tensor type. Only GGML_TYPE_F32 is supported for OpenVINO." << std::endl;
return;
}
if (src0->ne[0] != src1->ne[0] || src0->ne[1] != src1->ne[1]) {
std::cerr << "Error: src0 and src1 shapes do not match." << std::endl;
return;
}
ov::Tensor input0 = ov::Tensor(ov::element::f32, {static_cast<size_t>(src0->ne[0]), static_cast<size_t>(src0->ne[1])}, src0->data);
ov::Tensor input1 = ov::Tensor(ov::element::f32, {static_cast<size_t>(src1->ne[0]), static_cast<size_t>(src1->ne[1])}, src1->data);
auto input0_param = std::make_shared<ov::op::v0::Parameter>(ov::element::f32, ov::Shape{static_cast<size_t>(src0->ne[0]), static_cast<size_t>(src0->ne[1])});
auto input1_param = std::make_shared<ov::op::v0::Parameter>(ov::element::f32, ov::Shape{static_cast<size_t>(src0->ne[0]), static_cast<size_t>(src0->ne[1])});
auto add = std::make_shared<ov::op::v1::Add>(input0_param, input1_param);
auto model = std::make_shared<ov::Model>(add, ov::ParameterVector{input0_param, input1_param});
// compile model and store in context
#ifdef GGML_OPENVINO_GPU
auto compiled_model = core.compile_model(model, "GPU");
#elif GGML_OPENVINO_NPU
auto compiled_model = core.compile_model(model, "NPU");
#else
auto compiled_model = core.compile_model(model, "CPU");
#endif
// initialize infer request
auto infer_request = compiled_model.create_infer_request();
// Step 4: set input data, copy src0 and src1 data to OpenVINO input tensors
infer_request.set_tensor(input0_param, input0);
infer_request.set_tensor(input1_param, input1);
// Step 5: execute inference
infer_request.infer();
// Step 6: get output data
ov::Tensor output = infer_request.get_tensor(compiled_model.output());
// // Allocate memory for dst->data if not already allocated
// if (dst->data == nullptr) {
// dst->data = malloc(dst->nb[0] * dst->ne[0]);
// if (dst->data == nullptr) {
// std::cerr << "Error: Failed to allocate memory for dst->data." << std::endl;
// return;
// }
// }
std::memcpy(dst->data, output.data(), output.get_byte_size());
if (dst->ne[0] != src0->ne[0] || dst->ne[1] != src0->ne[1]) {
std::cerr << "Error: dst tensor shape does not match input tensor shape." << std::endl;
return;
}
// float* dst_data1 = (float*)(dst->data);
// printf("Output data:");;
// for (int i = 0; i < (10 < (int)(dst->ne[0]) ? 10 : (int)(dst->ne[0])); ++i) {
// printf("%f ", dst_data1[i]);
// }
// printf("\n");
// fflush(stdout);
}
static void ggml_backend_openvino_mul_forward(ggml_tensor * dst) {
struct ggml_tensor *src0 = dst->src[0];
struct ggml_tensor *src1 = dst->src[1];
ov::Core core;
// define shape
ov::Shape shape0 = {static_cast<size_t>(src0->ne[1]), static_cast<size_t>(src0->ne[0])}; // For Example: [7, 3072]
ov::Shape shape1 = {static_cast<size_t>(src1->ne[1]), static_cast<size_t>(src1->ne[0])}; // For Example: [1, 3072] -> broadcast to [7, 3072]
// create OpenVINO tensor (src0 and src1)
ov::Tensor tensor0(ov::element::f32, shape0, src0->data);
ov::Tensor tensor1(ov::element::f32, shape1, src1->data);
// define input parameters
auto input0 = std::make_shared<ov::op::v0::Parameter>(ov::element::f32, shape0);
auto input1 = std::make_shared<ov::op::v0::Parameter>(ov::element::f32, shape1);
// create a multiply operation using broadcasting
auto multiply = std::make_shared<ov::op::v1::Multiply>(input0, input1);
// create model
auto model = std::make_shared<ov::Model>(multiply, ov::ParameterVector{input0, input1});
// compile model and store in context
#ifdef GGML_OPENVINO_GPU
ov::CompiledModel compiled_model = core.compile_model(model, "GPU");
#elif GGML_OPENVINO_NPU
ov::CompiledModel compiled_model = core.compile_model(model, "NPU");
#else
ov::CompiledModel compiled_model = core.compile_model(model, "CPU");
#endif
ov::InferRequest infer_request = compiled_model.create_infer_request();
infer_request.set_tensor(input0, tensor0);
infer_request.set_tensor(input1, tensor1);
infer_request.infer();
// get output tensor and copy it back to dst->data
ov::Tensor output_tensor = infer_request.get_output_tensor();
std::memcpy(dst->data, output_tensor.data<float>(), src0->ne[0] * src0->ne[1] * sizeof(float));
}
static void ggml_backend_openvino_add(ggml_tensor * dst) {
// Placeholder for OpenVINO add operation
// GGML_ASSERT(ctx.device != 0);
GGML_ASSERT(dst->data != nullptr);
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
switch (src0->type) {
case GGML_TYPE_F16:
{
if (src1->type == GGML_TYPE_F16) {
// ggml_backend_openvino_add_forward(ctx, dst, src0, src1);
} else if (src1->type == GGML_TYPE_F32) {
// ggml_compute_forward_add_f16_f32(params, dst);
} else {
GGML_ABORT("fatal error");
}
} break;
case GGML_TYPE_F32:
{
if (src1->type == GGML_TYPE_F32) {
{
ggml_backend_openvino_add_forward(dst);
}
}
else {
GGML_ABORT("fatal error");
}
} break;
default:
GGML_ABORT("%s: unsupported type %d\n", __func__, src1->type);
}
}
static void ggml_backend_openvino_mul(ggml_tensor * dst) {
GGML_ASSERT(dst->data != nullptr);
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_backend_openvino_mul_forward(dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
void ggml_compute_forward_get_rows_f16(struct ggml_tensor *dst) {
const struct ggml_tensor *src0 = dst->src[0];
const struct ggml_tensor *src1 = dst->src[1];
ov::Core core;
ov::Shape shape0 = {static_cast<size_t>(src0->ne[1]), static_cast<size_t>(src0->ne[0])}; // [3072, 7]
ov::Shape shape1 = {static_cast<size_t>(src1->ne[0])}; // [7]
ov::Tensor tensor0(ov::element::f16, shape0, src0->data);
ov::Tensor tensor1(ov::element::i32, shape1, src1->data);
auto input0 = std::make_shared<ov::op::v0::Parameter>(ov::element::f16, shape0);
auto input1 = std::make_shared<ov::op::v0::Parameter>(ov::element::i32, shape1);
auto gather = std::make_shared<ov::op::v8::Gather>(input0, input1, ov::op::v0::Constant::create(ov::element::i64, ov::Shape{}, {0}));
auto model = std::make_shared<ov::Model>(gather, ov::ParameterVector{input0, input1});
ov::CompiledModel compiled_model = core.compile_model(model, "CPU");
ov::InferRequest infer_request = compiled_model.create_infer_request();
infer_request.set_tensor(input0, tensor0);
infer_request.set_tensor(input1, tensor1);
infer_request.infer();
ov::Tensor output_tensor = infer_request.get_output_tensor();
// Convert output tensor data type from f16 to f32
ov::Tensor output_tensor_f32 = ov::Tensor(ov::element::f32, output_tensor.get_shape());
for (size_t i = 0; i < output_tensor.get_size(); ++i) {
output_tensor_f32.data<float>()[i] = static_cast<float>(output_tensor.data<ov::float16>()[i]);
}
// Copy the converted data to dst->data
std::memcpy(dst->data, output_tensor_f32.data<float>(), output_tensor_f32.get_byte_size());
}
void ggml_compute_forward_get_rows_f32(struct ggml_tensor *dst) {
const struct ggml_tensor *src0 = dst->src[0];
const struct ggml_tensor *src1 = dst->src[1];
ov::Core core;
ov::Shape shape0 = {static_cast<size_t>(src0->ne[1]), static_cast<size_t>(src0->ne[0])}; // [3072, 7]
ov::Shape shape1 = {static_cast<size_t>(src1->ne[0])}; // [7]
ov::Tensor tensor0(ov::element::f32, shape0, src0->data);
ov::Tensor tensor1(ov::element::i32, shape1, src1->data);
auto input0 = std::make_shared<ov::op::v0::Parameter>(ov::element::f32, shape0);
auto input1 = std::make_shared<ov::op::v0::Parameter>(ov::element::i32, shape1);
auto gather = std::make_shared<ov::op::v8::Gather>(input0, input1, ov::op::v0::Constant::create(ov::element::i64, ov::Shape{}, {0}));
auto model = std::make_shared<ov::Model>(gather, ov::ParameterVector{input0, input1});
ov::CompiledModel compiled_model = core.compile_model(model, "CPU");
ov::InferRequest infer_request = compiled_model.create_infer_request();
infer_request.set_tensor(input0, tensor0);
infer_request.set_tensor(input1, tensor1);
infer_request.infer();
ov::Tensor output_tensor = infer_request.get_output_tensor();
// Copy the converted data to dst->data
std::memcpy(dst->data, output_tensor.data<float>(), output_tensor.get_byte_size());
}
void ggml_compute_forward_get_rows(struct ggml_tensor *dst) {
const struct ggml_tensor *src0 = dst->src[0];
const struct ggml_tensor *src1 = dst->src[1];
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_get_rows_f16(dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_get_rows_f32(dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}
static enum ggml_status ggml_backend_openvino_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * node = cgraph->nodes[i];
if (node->op == GGML_OP_NONE || ggml_is_empty(node)) {
return GGML_STATUS_SUCCESS;
}
switch (node->op) {
case GGML_OP_PERMUTE:
case GGML_OP_RESHAPE:
case GGML_OP_TRANSPOSE:
case GGML_OP_VIEW:
break;
case GGML_OP_ADD:
{
ggml_backend_openvino_add(node);
} break;
case GGML_OP_MUL:
{
ggml_backend_openvino_mul(node);
} break;
case GGML_OP_MUL_MAT:
break;
case GGML_OP_GET_ROWS:
{
ggml_compute_forward_get_rows(node);
} break;
default:
GGML_ABORT("%s: unsupported op %s\n", __func__, ggml_op_desc(node));
}
}
// openvino_frontend_compute(backend, cgraph);
return GGML_STATUS_SUCCESS;
GGML_UNUSED(backend);
GGML_UNUSED(ctx);
}
static const ggml_backend_i ggml_backend_openvino_interface = {
/* .get_name = */ ggml_backend_openvino_get_name,
/* .free = */ ggml_backend_openvino_free,
/* .get_default_buffer_type = */ ggml_backend_openvino_get_default_buffer_type,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_openvino_graph_compute,
/* .supports_op = */ NULL,
/* .supports_buft = */ NULL,
/* .offload_op = */ NULL,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
};
int ggml_backend_openvino_get_device_count() {
return ggml_openvino_info().device_count;
}
static ggml_guid_t ggml_backend_openvino_guid(void) {
static ggml_guid guid = { 0x12, 0xa8, 0xae, 0xf4, 0xc0, 0x1e, 0x61, 0x97, 0x8f, 0xeb, 0x33, 0x04, 0xa1, 0x33, 0x51, 0x2d };
return &guid;
}
// backend API
GGML_API ggml_backend_t ggml_backend_openvino_init(int device) {
if (device < 0 || device >= ggml_backend_openvino_get_device_count()) {
GGML_LOG_ERROR("%s: invalid device %d\n", __func__, device);
return nullptr;
}
ggml_backend_openvino_context * ctx = new ggml_backend_openvino_context;
if (ctx == nullptr) {
GGML_LOG_ERROR("%s: failed to allocate context\n", __func__);
return nullptr;
}
ggml_backend_t openvino_backend = new ggml_backend {
/* .guid = */ ggml_backend_openvino_guid(),
/* .interface = */ ggml_backend_openvino_interface,
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_openvino_reg(), device),
/* .context = */ ctx,
};
return openvino_backend;
}
GGML_API bool ggml_backend_is_openvino(ggml_backend_t backend) {
GGML_ASSERT(backend->context != nullptr);
return true;
}
// device buffer
GGML_API ggml_backend_buffer_type_t
ggml_backend_openvino_buffer_type(int device) {
GGML_ASSERT(device >= 0);
return nullptr;
}
// split tensor buffer that splits matrices by rows across multiple devices
GGML_API ggml_backend_buffer_type_t
ggml_backend_openvino_split_buffer_type(const float *tensor_split) {
GGML_ASSERT(tensor_split != nullptr);
return nullptr;
}
// pinned host buffer for use with the CPU backend for faster copies between CPU
// and GPU
GGML_API ggml_backend_buffer_type_t
ggml_backend_openvino_host_buffer_type(void) { return nullptr;}
struct ggml_backend_openvino_buffer_type_context {
int device;
std::string name;
};
static const char * ggml_backend_openvino_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
ggml_backend_openvino_buffer_type_context * ctx = (ggml_backend_openvino_buffer_type_context *)buft->context;
return ctx->name.c_str();
}
static bool ggml_backend_buft_is_openvino(ggml_backend_buffer_type_t buft) {
return buft->iface.get_name == ggml_backend_openvino_buffer_type_get_name;
}
static const char * ggml_backend_openvino_split_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return GGML_OPENVINO_NAME "_Split";
GGML_UNUSED(buft);
}
static bool ggml_backend_buft_is_openvino_split(ggml_backend_buffer_type_t buft) {
return buft->iface.get_name == ggml_backend_openvino_split_buffer_type_get_name;
}
struct ggml_backend_openvino_device_context {
int device;
std::string name;
std::string description;
};
static const char * ggml_backend_openvino_device_get_name(ggml_backend_dev_t dev) {
ggml_backend_openvino_device_context * ctx = (ggml_backend_openvino_device_context *)dev->context;
return ctx->name.c_str();
}
static const char * ggml_backend_openvino_device_get_description(ggml_backend_dev_t dev) {
ggml_backend_openvino_device_context * ctx = (ggml_backend_openvino_device_context *)dev->context;
return ctx->description.c_str();
}
// TODO
static void ggml_backend_openvino_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
GGML_ASSERT(dev->context != nullptr);
GGML_ASSERT(free != nullptr);
GGML_ASSERT(total != nullptr);
ggml_backend_openvino_device_context * ctx = (ggml_backend_openvino_device_context *)dev->context;
// Placeholder
GGML_ASSERT(ctx->device >= 0);
// ggml_openvino_set_device(ctx->device);
}
static enum ggml_backend_dev_type ggml_backend_openvino_device_get_type(ggml_backend_dev_t dev) {
GGML_UNUSED(dev);
return GGML_BACKEND_DEVICE_TYPE_CPU;
// return GGML_BACKEND_DEVICE_TYPE_GPU_FULL;
}
static void ggml_backend_openvino_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
props->name = ggml_backend_openvino_device_get_name(dev);
props->description = ggml_backend_openvino_device_get_description(dev);
props->type = ggml_backend_openvino_device_get_type(dev);
ggml_backend_openvino_device_get_memory(dev, &props->memory_free, &props->memory_total);
bool host_buffer = getenv("GGML_OPENVINO_NO_PINNED") == nullptr;
#ifdef GGML_OPENVINO_NO_PEER_COPY
bool events = false;
#else
bool events = true;
#endif
props->caps = {
/* .async = */ true,
/* .host_buffer = */ host_buffer,
/* .buffer_from_host_ptr = */ false,
/* .events = */ events,
};
}
static ggml_backend_t ggml_backend_openvino_device_init(ggml_backend_dev_t dev, const char * params) {
GGML_UNUSED(params);
ggml_backend_openvino_device_context * ctx = (ggml_backend_openvino_device_context *)dev->context;
return ggml_backend_openvino_init(ctx->device);
}
static ggml_backend_buffer_type_t ggml_backend_openvino_device_get_buffer_type(ggml_backend_dev_t dev) {
ggml_backend_openvino_device_context * ctx = (ggml_backend_openvino_device_context *)dev->context;
return ggml_backend_openvino_buffer_type(ctx->device);
}
static ggml_backend_buffer_type_t ggml_backend_openvino_device_get_host_buffer_type(ggml_backend_dev_t dev) {
GGML_UNUSED(dev);
return ggml_backend_openvino_host_buffer_type();
}
static ggml_backend_buffer_t ggml_backend_openvino_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
GGML_UNUSED(dev);
GGML_UNUSED(ptr);
GGML_UNUSED(size);
GGML_UNUSED(max_tensor_size);
return nullptr;
}
static ggml_backend_buffer_t ggml_backend_openvino_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
GGML_UNUSED(dev);
GGML_UNUSED(ptr);
GGML_UNUSED(size);
GGML_UNUSED(max_tensor_size);
return nullptr;
}
std::set<std::string> get_openvino_available_opsets() {
ov::Core core;
std::set<std::string> unique_ops;
for (const auto& opset : ov::get_available_opsets()) {
for (const auto& op : opset.second().get_type_info_set()) {
unique_ops.insert(op.name).second;
}
}
return unique_ops;
}
static bool ggml_backend_openvino_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
GGML_ASSERT(dev->reg != nullptr);
// ggml_backend_openvino_device_context * dev_ctx = (ggml_backend_openvino_device_context *) dev->context;
switch (op->op) {
case GGML_OP_NONE:
case GGML_OP_PERMUTE:
case GGML_OP_RESHAPE:
case GGML_OP_TRANSPOSE:
case GGML_OP_VIEW:
return true;
case GGML_OP_ADD:
return true;
case GGML_OP_MUL:
return true;
case GGML_OP_MUL_MAT:
return false;
default:
return false;
}
}
static bool ggml_backend_openvino_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
return ggml_backend_buft_is_host(buft);
GGML_UNUSED(dev);
}
static const struct ggml_backend_device_i ggml_backend_openvino_device_interface = {
/* .get_name = */ ggml_backend_openvino_device_get_name,
/* .get_description = */ ggml_backend_openvino_device_get_description,
/* .get_memory = */ ggml_backend_openvino_device_get_memory,
/* .get_type = */ ggml_backend_openvino_device_get_type,
/* .get_props = */ ggml_backend_openvino_device_get_props,
/* .init_backend = */ ggml_backend_openvino_device_init,
/* .get_buffer_type = */ ggml_backend_openvino_device_get_buffer_type,
/* .get_host_buffer_type = */ NULL,
/* .buffer_from_host_ptr = */ ggml_backend_openvino_device_buffer_from_ptr,
/* .supports_op = */ ggml_backend_openvino_device_supports_op,
/* .supports_buft = */ ggml_backend_openvino_device_supports_buft,
/* .offload_op = */ NULL,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_synchronize = */ NULL,
};
struct ggml_backend_openvino_reg_context {
std::vector<ggml_backend_dev_t> devices;
};
static const char * ggml_backend_openvino_reg_get_name(ggml_backend_reg_t reg) {
return GGML_OPENVINO_NAME;
GGML_UNUSED(reg);
}
static size_t ggml_backend_openvino_reg_get_device_count(ggml_backend_reg_t reg) {
return ggml_openvino_info().device_count;
GGML_UNUSED(reg);
// TODO
ggml_backend_openvino_reg_context * ctx = (ggml_backend_openvino_reg_context *)reg->context;
return ctx->devices.size();
}
static ggml_backend_dev_t ggml_backend_openvino_reg_get_device(ggml_backend_reg_t reg, size_t index) {
ggml_backend_openvino_reg_context * ctx = (ggml_backend_openvino_reg_context *)reg->context;
GGML_ASSERT(index < ctx->devices.size());
return ctx->devices[index];
// GGML_ASSERT(index == 0);
// static ggml_backend_device ggml_backend_openvino_device = {
// /* .iface = */ ggml_backend_openvino_device_interface,
// /* .reg = */ reg,
// /* .context = */ nullptr,
// };
// return &ggml_backend_openvino_device;
// GGML_UNUSED(reg);
// GGML_UNUSED(index);
}
static void * ggml_backend_openvino_get_proc_address(ggml_backend_reg_t reg, const char * name) {
GGML_UNUSED(reg);
if (strcmp(name, "ggml_backend_split_buffer_type") == 0) {
return (void *)ggml_backend_openvino_split_buffer_type;
}
// if (strcmp(name, "ggml_backend_register_host_buffer") == 0) {
// return (void *)ggml_backend_openvino_register_host_buffer;
// }
// if (strcmp(name, "ggml_backend_unregister_host_buffer") == 0) {
// return (void *)ggml_backend_openvino_unregister_host_buffer;
// }
return nullptr;
}
static const struct ggml_backend_reg_i ggml_backend_openvino_reg_interface = {
/* .get_name = */ ggml_backend_openvino_reg_get_name,
/* .get_device_count = */ ggml_backend_openvino_reg_get_device_count,
/* .get_device = */ ggml_backend_openvino_reg_get_device,
/* .get_proc_address = */ ggml_backend_openvino_get_proc_address,
};
static int get_openvino_device_count() {
ov::Core core;
auto devices = core.get_available_devices();
// return devices.size();
return 1;
}
static ggml_openvino_device_info ggml_openvino_init() {
ggml_openvino_device_info info = {};
// TODO
info.device_count = get_openvino_device_count();
return info;
}
const ggml_openvino_device_info & ggml_openvino_info() {
static ggml_openvino_device_info info = ggml_openvino_init();
return info;
}
GGML_API ggml_backend_reg_t ggml_backend_openvino_reg(void) {
static ggml_backend_reg reg;
static bool initialized = false;
{
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (!initialized) {
ggml_backend_openvino_reg_context * ctx = new ggml_backend_openvino_reg_context;
// GGML_LOG_DEBUG("ggml_openvino_info().device_count = %d \n", ggml_openvino_info().device_count);
for (int i = 0; i < ggml_openvino_info().device_count; i++) {
ggml_backend_openvino_device_context * dev_ctx = new ggml_backend_openvino_device_context;
dev_ctx->device = i;
dev_ctx->name = GGML_OPENVINO_NAME + std::to_string(i);
// ggml_openvino_set_device(i);
dev_ctx->description = ov::get_openvino_version().description;
ggml_backend_dev_t dev = new ggml_backend_device {
/* .interface = */ ggml_backend_openvino_device_interface,
/* .reg = */ &reg,
/* .context = */ dev_ctx
};
ctx->devices.push_back(dev);
}
reg = ggml_backend_reg {
/* .interface = */ ggml_backend_openvino_reg_interface,
/* .context = */ ctx
};
}
initialized = true;
}
return &reg;
}