* kimi linear model implementation * kimi linear convert_hf_to_gguf * kimi linear constants.py tensor_mapping.py * Kimi Linear ggml.h * kimi linear ggml-cpu * Kimi Linear ggml-cuda * Kimi Linear ggml.c * kimi linear src/llama * remove "const int64_t n_seq_tokens = q->ne[2];" to get rid of unused variable warning * remove type mismatch warning * read MoE params * removed some hard coded code * removed all hard code * use DeepseekV2 tokenizer * removed unnecessary internal methods called by the old set_vocab of KimiLinear * rewrite get_vocab for KimiLinear. Removed all kda_scan code * removed all traces of kda_scan * reduce OP count by 1 due to removal of kda_scan * Move KIMI_LINEAR to llm_arch_is_hybrid to enable KV cache * set n_embd_head_k/v to ensure kv cache works * don't quantize conv1d of Kimi Linear * Kimi Linear backend agnostic * removed LOG_INFO * naive chunking form implemented * fixed some comments * add Kimi-K2 specific tokens to be recognized as EOG * build_kda_autoregressive is implemented to replace build_kda_recurrent for faster inference. sync'd to b7682 * replaced Akk and Aqk with mul_mat and clamp * no clamp version * Moved Aqk computation out of the loop * fixed typo and split wkv_b into wk_b and wv_b * MLA KV cache support * fix trailing spaces * moved const llama_model & model; around to follow qwen3next format and see if it cna pass the -Wunused-private-field error * fix trailing whitespace * removed traling whitespaces in empty line + make sure indentation is multiple of 4 * try to make lint happy * remove blank lines to make lint happy * removed at least blank line containing white space * fixed flake8 complaints locally * return ggml_tensor * pair in kda_autoregressive and kda_chunking as in ngxson's Qwen3Next improvement * removed Kimi-Linear specific change that causes failure at server-windows * removed private: from kimi_linear to make build checks happy * removed unnecessary ggml_cont before ggml_reshape * created static function causal_conv1d to abtract similar code for q/k/v * merged dt_bias to SSM_DT. Do -exp(log_A) in convert_hf_to_gguf.py. * reverted to original * fixed find_hparam calls. Fixed e_score_correction_bias to use bias instead of weight. Removed all ssm_conv bias terms. * remove DT_B from constants.py. remove one comment line in llama-model.cpp * new class llm_graph_input_mem_hybrid_k to get around the new MLA change. switch the concat order of ggml_concat calls in kimi-linear.cpp to accommodate MLA changes. Removed support for exp_probs_b.weight * remove ssm_o_norm_b * remove ssm_o_norm_b * changed hparams.kda_head_dim to hparams.n_embd_head_kda. added TODO comment for class llama_graph_mem_hybrid_k * removed all ggml_cont b4 ggml_reshape_4d * Whitespace * replaced all hparams.get with find_hparams * added new names for n_experts, n_experts_used and score_func in TextModel and removed their code in KimiLinear in convert_hf_to_gguf.py. Removed unnecessary ggml_cont and GGML_ASSERT in kimi-linear.cpp * use is_mla to switch between different mem_hybrid types * fixed logical errors in convert_hf_to_gguf.py pointed out by CISC * removed if else for required parameters kv_lora_rank and qk_rope_head_dim * add back ggml_cont for Vcur * minor changes * removed extra line in llama-vocab.cpp. Added back the comment in llama-graph.cpp * f16 gguf cannot run without context length * made a mistake of adding back n_ctx parsing --------- Co-authored-by: Piotr Wilkin (ilintar) <piotr.wilkin@syndatis.com> |
||
|---|---|---|
| .devops | ||
| .gemini | ||
| .github | ||
| benches | ||
| ci | ||
| cmake | ||
| common | ||
| docs | ||
| examples | ||
| ggml | ||
| gguf-py | ||
| grammars | ||
| include | ||
| licenses | ||
| media | ||
| models | ||
| pocs | ||
| requirements | ||
| scripts | ||
| src | ||
| tests | ||
| tools | ||
| vendor | ||
| .clang-format | ||
| .clang-tidy | ||
| .dockerignore | ||
| .ecrc | ||
| .editorconfig | ||
| .flake8 | ||
| .gitignore | ||
| .gitmodules | ||
| .pre-commit-config.yaml | ||
| AGENTS.md | ||
| AUTHORS | ||
| CLAUDE.md | ||
| CMakeLists.txt | ||
| CMakePresets.json | ||
| CODEOWNERS | ||
| CONTRIBUTING.md | ||
| LICENSE | ||
| Makefile | ||
| README.md | ||
| SECURITY.md | ||
| build-xcframework.sh | ||
| convert_hf_to_gguf.py | ||
| convert_hf_to_gguf_update.py | ||
| convert_llama_ggml_to_gguf.py | ||
| convert_lora_to_gguf.py | ||
| flake.lock | ||
| flake.nix | ||
| mypy.ini | ||
| poetry.lock | ||
| pyproject.toml | ||
| pyrightconfig.json | ||
| requirements.txt | ||
README.md
llama.cpp
LLM inference in C/C++
Recent API changes
Hot topics
- guide : using the new WebUI of llama.cpp
- guide : running gpt-oss with llama.cpp
- [FEEDBACK] Better packaging for llama.cpp to support downstream consumers 🤗
- Support for the
gpt-ossmodel with native MXFP4 format has been added | PR | Collaboration with NVIDIA | Comment - Multimodal support arrived in
llama-server: #12898 | documentation - VS Code extension for FIM completions: https://github.com/ggml-org/llama.vscode
- Vim/Neovim plugin for FIM completions: https://github.com/ggml-org/llama.vim
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggml-org/llama.cpp/discussions/9669
- Hugging Face GGUF editor: discussion | tool
Quick start
Getting started with llama.cpp is straightforward. Here are several ways to install it on your machine:
- Install
llama.cppusing brew, nix or winget - Run with Docker - see our Docker documentation
- Download pre-built binaries from the releases page
- Build from source by cloning this repository - check out our build guide
Once installed, you'll need a model to work with. Head to the Obtaining and quantizing models section to learn more.
Example command:
# Use a local model file
llama-cli -m my_model.gguf
# Or download and run a model directly from Hugging Face
llama-cli -hf ggml-org/gemma-3-1b-it-GGUF
# Launch OpenAI-compatible API server
llama-server -hf ggml-org/gemma-3-1b-it-GGUF
Description
The main goal of llama.cpp is to enable LLM inference with minimal setup and state-of-the-art performance on a wide
range of hardware - locally and in the cloud.
- Plain C/C++ implementation without any dependencies
- Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
- AVX, AVX2, AVX512 and AMX support for x86 architectures
- RVV, ZVFH, ZFH, ZICBOP and ZIHINTPAUSE support for RISC-V architectures
- 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
- Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP and Moore Threads GPUs via MUSA)
- Vulkan and SYCL backend support
- CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity
The llama.cpp project is the main playground for developing new features for the ggml library.
Models
Typically finetunes of the base models below are supported as well.
Instructions for adding support for new models: HOWTO-add-model.md
Text-only
- LLaMA 🦙
- LLaMA 2 🦙🦙
- LLaMA 3 🦙🦙🦙
- Mistral 7B
- Mixtral MoE
- DBRX
- Jamba
- Falcon
- Chinese LLaMA / Alpaca and Chinese LLaMA-2 / Alpaca-2
- Vigogne (French)
- BERT
- Koala
- Baichuan 1 & 2 + derivations
- Aquila 1 & 2
- Starcoder models
- Refact
- MPT
- Bloom
- Yi models
- StableLM models
- Deepseek models
- Qwen models
- PLaMo-13B
- Phi models
- PhiMoE
- GPT-2
- Orion 14B
- InternLM2
- CodeShell
- Gemma
- Mamba
- Grok-1
- Xverse
- Command-R models
- SEA-LION
- GritLM-7B + GritLM-8x7B
- OLMo
- OLMo 2
- OLMoE
- Granite models
- GPT-NeoX + Pythia
- Snowflake-Arctic MoE
- Smaug
- Poro 34B
- Bitnet b1.58 models
- Flan T5
- Open Elm models
- ChatGLM3-6b + ChatGLM4-9b + GLMEdge-1.5b + GLMEdge-4b
- GLM-4-0414
- SmolLM
- EXAONE-3.0-7.8B-Instruct
- FalconMamba Models
- Jais
- Bielik-11B-v2.3
- RWKV-7
- RWKV-6
- QRWKV-6
- GigaChat-20B-A3B
- Trillion-7B-preview
- Ling models
- LFM2 models
- Hunyuan models
- BailingMoeV2 (Ring/Ling 2.0) models
Multimodal
Bindings
- Python: ddh0/easy-llama
- Python: abetlen/llama-cpp-python
- Go: go-skynet/go-llama.cpp
- Node.js: withcatai/node-llama-cpp
- JS/TS (llama.cpp server client): lgrammel/modelfusion
- JS/TS (Programmable Prompt Engine CLI): offline-ai/cli
- JavaScript/Wasm (works in browser): tangledgroup/llama-cpp-wasm
- Typescript/Wasm (nicer API, available on npm): ngxson/wllama
- Ruby: yoshoku/llama_cpp.rb
- Rust (more features): edgenai/llama_cpp-rs
- Rust (nicer API): mdrokz/rust-llama.cpp
- Rust (more direct bindings): utilityai/llama-cpp-rs
- Rust (automated build from crates.io): ShelbyJenkins/llm_client
- C#/.NET: SciSharp/LLamaSharp
- C#/VB.NET (more features - community license): LM-Kit.NET
- Scala 3: donderom/llm4s
- Clojure: phronmophobic/llama.clj
- React Native: mybigday/llama.rn
- Java: kherud/java-llama.cpp
- Java: QuasarByte/llama-cpp-jna
- Zig: deins/llama.cpp.zig
- Flutter/Dart: netdur/llama_cpp_dart
- Flutter: xuegao-tzx/Fllama
- PHP (API bindings and features built on top of llama.cpp): distantmagic/resonance (more info)
- Guile Scheme: guile_llama_cpp
- Swift srgtuszy/llama-cpp-swift
- Swift ShenghaiWang/SwiftLlama
- Delphi Embarcadero/llama-cpp-delphi
- Go (no CGo needed): hybridgroup/yzma
- Android: llama.android
UIs
(to have a project listed here, it should clearly state that it depends on llama.cpp)
- AI Sublime Text plugin (MIT)
- BonzAI App (proprietary)
- cztomsik/ava (MIT)
- Dot (GPL)
- eva (MIT)
- iohub/collama (Apache-2.0)
- janhq/jan (AGPL)
- johnbean393/Sidekick (MIT)
- KanTV (Apache-2.0)
- KodiBot (GPL)
- llama.vim (MIT)
- LARS (AGPL)
- Llama Assistant (GPL)
- LlamaLib (Apache-2.0)
- LLMFarm (MIT)
- LLMUnity (MIT)
- LMStudio (proprietary)
- LocalAI (MIT)
- LostRuins/koboldcpp (AGPL)
- MindMac (proprietary)
- MindWorkAI/AI-Studio (FSL-1.1-MIT)
- Mobile-Artificial-Intelligence/maid (MIT)
- Mozilla-Ocho/llamafile (Apache-2.0)
- nat/openplayground (MIT)
- nomic-ai/gpt4all (MIT)
- ollama/ollama (MIT)
- oobabooga/text-generation-webui (AGPL)
- PocketPal AI (MIT)
- psugihara/FreeChat (MIT)
- ptsochantaris/emeltal (MIT)
- pythops/tenere (AGPL)
- ramalama (MIT)
- semperai/amica (MIT)
- withcatai/catai (MIT)
- Autopen (GPL)
Tools
- akx/ggify – download PyTorch models from HuggingFace Hub and convert them to GGML
- akx/ollama-dl – download models from the Ollama library to be used directly with llama.cpp
- crashr/gppm – launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption
- gpustack/gguf-parser - review/check the GGUF file and estimate the memory usage
- Styled Lines (proprietary licensed, async wrapper of inference part for game development in Unity3d with pre-built Mobile and Web platform wrappers and a model example)
- unslothai/unsloth – 🦥 exports/saves fine-tuned and trained models to GGUF (Apache-2.0)
Infrastructure
- Paddler - Open-source LLMOps platform for hosting and scaling AI in your own infrastructure
- GPUStack - Manage GPU clusters for running LLMs
- llama_cpp_canister - llama.cpp as a smart contract on the Internet Computer, using WebAssembly
- llama-swap - transparent proxy that adds automatic model switching with llama-server
- Kalavai - Crowdsource end to end LLM deployment at any scale
- llmaz - ☸️ Easy, advanced inference platform for large language models on Kubernetes.
Games
- Lucy's Labyrinth - A simple maze game where agents controlled by an AI model will try to trick you.
Supported backends
| Backend | Target devices |
|---|---|
| Metal | Apple Silicon |
| BLAS | All |
| BLIS | All |
| SYCL | Intel and Nvidia GPU |
| MUSA | Moore Threads GPU |
| CUDA | Nvidia GPU |
| HIP | AMD GPU |
| ZenDNN | AMD CPU |
| Vulkan | GPU |
| CANN | Ascend NPU |
| OpenCL | Adreno GPU |
| IBM zDNN | IBM Z & LinuxONE |
| WebGPU [In Progress] | All |
| RPC | All |
| Hexagon [In Progress] | Snapdragon |
Obtaining and quantizing models
The Hugging Face platform hosts a number of LLMs compatible with llama.cpp:
You can either manually download the GGUF file or directly use any llama.cpp-compatible models from Hugging Face or other model hosting sites, such as ModelScope, by using this CLI argument: -hf <user>/<model>[:quant]. For example:
llama-cli -hf ggml-org/gemma-3-1b-it-GGUF
By default, the CLI would download from Hugging Face, you can switch to other options with the environment variable MODEL_ENDPOINT. For example, you may opt to downloading model checkpoints from ModelScope or other model sharing communities by setting the environment variable, e.g. MODEL_ENDPOINT=https://www.modelscope.cn/.
After downloading a model, use the CLI tools to run it locally - see below.
llama.cpp requires the model to be stored in the GGUF file format. Models in other data formats can be converted to GGUF using the convert_*.py Python scripts in this repo.
The Hugging Face platform provides a variety of online tools for converting, quantizing and hosting models with llama.cpp:
- Use the GGUF-my-repo space to convert to GGUF format and quantize model weights to smaller sizes
- Use the GGUF-my-LoRA space to convert LoRA adapters to GGUF format (more info: https://github.com/ggml-org/llama.cpp/discussions/10123)
- Use the GGUF-editor space to edit GGUF meta data in the browser (more info: https://github.com/ggml-org/llama.cpp/discussions/9268)
- Use the Inference Endpoints to directly host
llama.cppin the cloud (more info: https://github.com/ggml-org/llama.cpp/discussions/9669)
To learn more about model quantization, read this documentation
llama-cli
A CLI tool for accessing and experimenting with most of llama.cpp's functionality.
-
Run in conversation mode
Models with a built-in chat template will automatically activate conversation mode. If this doesn't occur, you can manually enable it by adding
-cnvand specifying a suitable chat template with--chat-template NAMEllama-cli -m model.gguf # > hi, who are you? # Hi there! I'm your helpful assistant! I'm an AI-powered chatbot designed to assist and provide information to users like you. I'm here to help answer your questions, provide guidance, and offer support on a wide range of topics. I'm a friendly and knowledgeable AI, and I'm always happy to help with anything you need. What's on your mind, and how can I assist you today? # # > what is 1+1? # Easy peasy! The answer to 1+1 is... 2! -
Run in conversation mode with custom chat template
# use the "chatml" template (use -h to see the list of supported templates) llama-cli -m model.gguf -cnv --chat-template chatml # use a custom template llama-cli -m model.gguf -cnv --in-prefix 'User: ' --reverse-prompt 'User:' -
Constrain the output with a custom grammar
llama-cli -m model.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:' # {"appointmentTime": "8pm", "appointmentDetails": "schedule a a call"}The grammars/ folder contains a handful of sample grammars. To write your own, check out the GBNF Guide.
For authoring more complex JSON grammars, check out https://grammar.intrinsiclabs.ai/
llama-server
A lightweight, OpenAI API compatible, HTTP server for serving LLMs.
-
Start a local HTTP server with default configuration on port 8080
llama-server -m model.gguf --port 8080 # Basic web UI can be accessed via browser: http://localhost:8080 # Chat completion endpoint: http://localhost:8080/v1/chat/completions -
Support multiple-users and parallel decoding
# up to 4 concurrent requests, each with 4096 max context llama-server -m model.gguf -c 16384 -np 4 -
Enable speculative decoding
# the draft.gguf model should be a small variant of the target model.gguf llama-server -m model.gguf -md draft.gguf -
Serve an embedding model
# use the /embedding endpoint llama-server -m model.gguf --embedding --pooling cls -ub 8192 -
Serve a reranking model
# use the /reranking endpoint llama-server -m model.gguf --reranking -
Constrain all outputs with a grammar
# custom grammar llama-server -m model.gguf --grammar-file grammar.gbnf # JSON llama-server -m model.gguf --grammar-file grammars/json.gbnf
llama-perplexity
A tool for measuring the perplexity 1 (and other quality metrics) of a model over a given text.
-
Measure the perplexity over a text file
llama-perplexity -m model.gguf -f file.txt # [1]15.2701,[2]5.4007,[3]5.3073,[4]6.2965,[5]5.8940,[6]5.6096,[7]5.7942,[8]4.9297, ... # Final estimate: PPL = 5.4007 +/- 0.67339 -
Measure KL divergence
# TODO
llama-bench
Benchmark the performance of the inference for various parameters.
-
Run default benchmark
llama-bench -m model.gguf # Output: # | model | size | params | backend | threads | test | t/s | # | ------------------- | ---------: | ---------: | ---------- | ------: | ------------: | -------------------: | # | qwen2 1.5B Q4_0 | 885.97 MiB | 1.54 B | Metal,BLAS | 16 | pp512 | 5765.41 ± 20.55 | # | qwen2 1.5B Q4_0 | 885.97 MiB | 1.54 B | Metal,BLAS | 16 | tg128 | 197.71 ± 0.81 | # # build: 3e0ba0e60 (4229)
llama-simple
A minimal example for implementing apps with llama.cpp. Useful for developers.
-
Basic text completion
llama-simple -m model.gguf # Hello my name is Kaitlyn and I am a 16 year old girl. I am a junior in high school and I am currently taking a class called "The Art of
Contributing
- Contributors can open PRs
- Collaborators will be invited based on contributions
- Maintainers can push to branches in the
llama.cpprepo and merge PRs into themasterbranch - Any help with managing issues, PRs and projects is very appreciated!
- See good first issues for tasks suitable for first contributions
- Read the CONTRIBUTING.md for more information
- Make sure to read this: Inference at the edge
- A bit of backstory for those who are interested: Changelog podcast
Other documentation
Development documentation
Seminal papers and background on the models
If your issue is with model generation quality, then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:
- LLaMA:
- GPT-3
- GPT-3.5 / InstructGPT / ChatGPT:
XCFramework
The XCFramework is a precompiled version of the library for iOS, visionOS, tvOS, and macOS. It can be used in Swift projects without the need to compile the library from source. For example:
// swift-tools-version: 5.10
// The swift-tools-version declares the minimum version of Swift required to build this package.
import PackageDescription
let package = Package(
name: "MyLlamaPackage",
targets: [
.executableTarget(
name: "MyLlamaPackage",
dependencies: [
"LlamaFramework"
]),
.binaryTarget(
name: "LlamaFramework",
url: "https://github.com/ggml-org/llama.cpp/releases/download/b5046/llama-b5046-xcframework.zip",
checksum: "c19be78b5f00d8d29a25da41042cb7afa094cbf6280a225abe614b03b20029ab"
)
]
)
The above example is using an intermediate build b5046 of the library. This can be modified
to use a different version by changing the URL and checksum.
Completions
Command-line completion is available for some environments.
Bash Completion
$ build/bin/llama-cli --completion-bash > ~/.llama-completion.bash
$ source ~/.llama-completion.bash
Optionally this can be added to your .bashrc or .bash_profile to load it
automatically. For example:
$ echo "source ~/.llama-completion.bash" >> ~/.bashrc
Dependencies
- yhirose/cpp-httplib - Single-header HTTP server, used by
llama-server- MIT license - stb-image - Single-header image format decoder, used by multimodal subsystem - Public domain
- nlohmann/json - Single-header JSON library, used by various tools/examples - MIT License
- miniaudio.h - Single-header audio format decoder, used by multimodal subsystem - Public domain
- subprocess.h - Single-header process launching solution for C and C++ - Public domain
