180 lines
7.3 KiB
Python
180 lines
7.3 KiB
Python
#!/usr/bin/env python3
|
|
|
|
import numpy as np
|
|
import argparse
|
|
import os
|
|
import importlib
|
|
|
|
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM, AutoModel
|
|
|
|
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
|
|
|
|
def cosine_similarity(a, b=None):
|
|
a = np.asarray(a)
|
|
if b is None:
|
|
b = a
|
|
else:
|
|
b = np.asarray(b)
|
|
|
|
if a.ndim == 1:
|
|
a = a.reshape(1, -1)
|
|
if b.ndim == 1:
|
|
b = b.reshape(1, -1)
|
|
|
|
a_norms = np.linalg.norm(a, axis=1, keepdims=True)
|
|
b_norms = np.linalg.norm(b, axis=1, keepdims=True)
|
|
|
|
a_norms = np.where(a_norms == 0, 1e-8, a_norms)
|
|
b_norms = np.where(b_norms == 0, 1e-8, b_norms)
|
|
|
|
a_normalized = a / a_norms
|
|
b_normalized = b / b_norms
|
|
|
|
# Compute cosine similarity
|
|
return np.dot(a_normalized, b_normalized.T)
|
|
|
|
def load_embeddings_from_file(filename, n_tokens, n_embd):
|
|
embeddings = np.fromfile(filename, dtype=np.float32)
|
|
return embeddings.reshape(n_tokens, n_embd)
|
|
|
|
def test_single_prompt_similarity(python_emb, cpp_emb, tokens, prompt):
|
|
np.set_printoptions(suppress=True, precision=6)
|
|
print("pytorch embeddings:");
|
|
print(python_emb)
|
|
print("llama.cpp embeddings:");
|
|
print(cpp_emb)
|
|
print(f"\n=== Prompt: '{prompt}' ===")
|
|
print(f"Tokens: {tokens}")
|
|
print(f"Embeddings shape: Python {python_emb.shape}, llama.cpp {cpp_emb.shape}")
|
|
|
|
n_tokens = len(tokens)
|
|
|
|
# 1. Direct embedding comparison
|
|
print(f"\n1. Raw Embedding Magnitude Comparison:")
|
|
# Check if the distance of each token embedding from the origin and compare
|
|
# if the vectors are on the same "sphere". This does not tell us about
|
|
# direction (meaning of the token embedding), just magnitude.
|
|
for i in range(n_tokens):
|
|
py_mag = np.linalg.norm(python_emb[i]) # calculate standard euclidean norm for Python embeddings
|
|
cpp_mag = np.linalg.norm(cpp_emb[i]) # calculate standard euclidean norm for llama.cpp embeddings
|
|
ratio = py_mag / cpp_mag if cpp_mag > 0 else float('inf')
|
|
print(f" Token {i} ({tokens[i]}): Python={py_mag:.3f}, llama.cpp={cpp_mag:.3f}, ratio={ratio:.3f}")
|
|
|
|
# 2. Cosine similarity between tokens within each model
|
|
# Here we check the direction of token embeddings to see if the have the
|
|
# same meaning (similarity). This is done by calculating cosine similarity
|
|
# of a pair of token embeddings within each model.
|
|
print(f"\n2. Within-Model Token Similarities:")
|
|
print(" Python model:")
|
|
for i in range(n_tokens):
|
|
for j in range(i+1, n_tokens):
|
|
sim = cosine_similarity([python_emb[i]], [python_emb[j]])[0][0]
|
|
print(f" {tokens[i]} ↔ {tokens[j]}: {sim:.4f}")
|
|
|
|
print(" llama.cpp model:")
|
|
for i in range(n_tokens):
|
|
for j in range(i+1, n_tokens):
|
|
sim = cosine_similarity([cpp_emb[i]], [cpp_emb[j]])[0][0]
|
|
print(f" {tokens[i]} ↔ {tokens[j]}: {sim:.4f}")
|
|
|
|
# 3. Cross-model similarity (same token position)
|
|
print(f"\n3. Cross-Model Same-Token Similarities:")
|
|
for i in range(n_tokens):
|
|
sim = cosine_similarity([python_emb[i]], [cpp_emb[i]])[0][0]
|
|
print(f" Token {i} ({tokens[i]}): {sim:.4f}")
|
|
|
|
# 4. Similarity matrix comparison
|
|
print(f"\n4. Similarity Matrix Differences:")
|
|
py_sim_matrix = cosine_similarity(python_emb)
|
|
cpp_sim_matrix = cosine_similarity(cpp_emb)
|
|
diff_matrix = np.abs(py_sim_matrix - cpp_sim_matrix)
|
|
|
|
print(f" Max difference: {np.max(diff_matrix):.4f}")
|
|
print(f" Mean difference: {np.mean(diff_matrix):.4f}")
|
|
print(f" RMS difference: {np.sqrt(np.mean(diff_matrix**2)):.4f}")
|
|
|
|
return {
|
|
'cross_model_similarities': [cosine_similarity([python_emb[i]], [cpp_emb[i]])[0][0] for i in range(n_tokens)],
|
|
'similarity_matrix_diff': diff_matrix,
|
|
'max_diff': np.max(diff_matrix),
|
|
'mean_diff': np.mean(diff_matrix),
|
|
'rms_diff': np.sqrt(np.mean(diff_matrix**2))
|
|
}
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description='Test semantic similarity between Python and llama.cpp embeddings')
|
|
parser.add_argument('--model-path', '-m', required=True, help='Path to the original Python model')
|
|
parser.add_argument('--python-embeddings', '-pe', help='Path to pytorch embeddings "logits" binary file')
|
|
parser.add_argument('--cpp-embeddings', '-ce', help='Path to llama.cpp embeddings "logits" binary file')
|
|
parser.add_argument('--causal', '-c', default=False, help='if the model is causal (default: false)', action='store_true')
|
|
parser.add_argument('--prompt', '-p', default='Hello world today', help='Test prompt')
|
|
|
|
args = parser.parse_args()
|
|
|
|
print("Semantic Similarity Test Between Python and llama.cpp Embedding Models")
|
|
print("=" * 70)
|
|
|
|
# Single prompt detailed comparison
|
|
print(f"\nTesting with prompt: '{args.prompt}'")
|
|
|
|
# Load the python model to get configuration information and also to load the tokenizer.
|
|
print("Loading model and tokenizer using AutoTokenizer:", args.model_path)
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
|
|
config = AutoConfig.from_pretrained(args.model_path)
|
|
|
|
if unreleased_model_name:
|
|
model_name_lower = unreleased_model_name.lower()
|
|
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
|
|
if args.causal:
|
|
class_name = f"{unreleased_model_name}ForCausalLM"
|
|
else:
|
|
class_name = f"{unreleased_model_name}Model"
|
|
print(f"Model class: {class_name}")
|
|
print(f"Importing unreleased model module: {unreleased_module_path}")
|
|
|
|
try:
|
|
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
|
|
model = model_class.from_pretrained(args.model_path)
|
|
except (ImportError, AttributeError) as e:
|
|
print(f"Failed to import or load model: {e}")
|
|
exit(1)
|
|
else:
|
|
if args.causal:
|
|
model = AutoModelForCausalLM.from_pretrained(args.model_path)
|
|
else:
|
|
model = AutoModel.from_pretrained(args.model_path)
|
|
|
|
encoded = tokenizer(args.prompt, return_tensors="pt")
|
|
tokens = tokenizer.convert_ids_to_tokens(encoded['input_ids'][0])
|
|
n_tokens = len(tokens)
|
|
print(f"n_tokens: {n_tokens}");
|
|
print(f"hidden_size: {model.config.hidden_size}")
|
|
|
|
# Load binary embeddings from data directory.
|
|
llamacpp_embeddings = load_embeddings_from_file(args.cpp_embeddings, n_tokens, model.config.hidden_size)
|
|
python_embeddings = load_embeddings_from_file(args.python_embeddings, n_tokens, model.config.hidden_size)
|
|
|
|
# Run comparison
|
|
results = test_single_prompt_similarity(python_embeddings, llamacpp_embeddings, tokens, args.prompt)
|
|
|
|
# Summary
|
|
print(f"\n=== SUMMARY ===")
|
|
avg_cross_sim = np.mean(results['cross_model_similarities'])
|
|
print(f"Average cross-model similarity: {avg_cross_sim:.4f}")
|
|
print(f"Similarity matrix RMS difference: {results['rms_diff']:.4f}")
|
|
|
|
# Quality assessment
|
|
if avg_cross_sim > 0.95:
|
|
print("✅ EXCELLENT: Models are highly similar")
|
|
elif avg_cross_sim > 0.90:
|
|
print("✅ VERY GOOD: Models are very similar")
|
|
elif avg_cross_sim > 0.80:
|
|
print("⚠️ GOOD: Models are reasonably similar")
|
|
elif avg_cross_sim > 0.70:
|
|
print("⚠️ FAIR: Models have some differences")
|
|
else:
|
|
print("❌ POOR: Models are significantly different")
|
|
|
|
if __name__ == "__main__":
|
|
main()
|