llama.cpp/examples/model-conversion/scripts/embedding/run-original-model.py

117 lines
4.1 KiB
Python
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
import argparse
import os
import numpy as np
import importlib
from pathlib import Path
from transformers import AutoTokenizer, AutoConfig, AutoModel
import torch
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
parser = argparse.ArgumentParser(description='Process model with specified path')
parser.add_argument('--model-path', '-m', help='Path to the model')
args = parser.parse_args()
model_path = os.environ.get('EMBEDDING_MODEL_PATH', args.model_path)
if model_path is None:
parser.error("Model path must be specified either via --model-path argument or EMBEDDING_MODEL_PATH environment variable")
tokenizer = AutoTokenizer.from_pretrained(model_path)
if unreleased_model_name:
model_name_lower = unreleased_model_name.lower()
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
class_name = f"{unreleased_model_name}Model"
print(f"Importing unreleased model module: {unreleased_module_path}")
try:
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
model = model_class.from_pretrained(model_path) # Note: from_pretrained, not fromPretrained
except (ImportError, AttributeError) as e:
print(f"Failed to import or load model: {e}")
exit(1)
else:
model = AutoModel.from_pretrained(model_path)
print(f"Model class: {type(model)}")
#print(f"Model file: {type(model).__module__}")
config = AutoConfig.from_pretrained(model_path)
model_name = os.path.basename(model_path)
texts = [ "Hello world today" ]
encoded = tokenizer(
texts,
padding=True,
truncation=True,
return_tensors="pt"
)
tokens = encoded['input_ids'][0]
token_strings = tokenizer.convert_ids_to_tokens(tokens)
for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
print(f"{token_id:6d} -> '{token_str}'")
with torch.no_grad():
outputs = model(**encoded)
hidden_states = outputs.last_hidden_state # Shape: [batch_size, seq_len, hidden_size]
# Extract embeddings for each token (matching LLAMA_POOLING_TYPE_NONE behavior)
all_embeddings = hidden_states[0].cpu().numpy() # Shape: [seq_len, hidden_size]
print(f"Hidden states shape: {hidden_states.shape}")
print(f"All embeddings shape: {all_embeddings.shape}")
print(f"Embedding dimension: {all_embeddings.shape[1]}")
# Print embeddings exactly like embedding.cpp does for LLAMA_POOLING_TYPE_NONE
n_embd = all_embeddings.shape[1]
n_embd_count = all_embeddings.shape[0]
print() # Empty line to match C++ output
for j in range(n_embd_count):
embedding = all_embeddings[j]
print(f"embedding {j}: ", end="")
# Print first 3 values
for i in range(min(3, n_embd)):
print(f"{embedding[i]:9.6f} ", end="")
print(" ... ", end="")
# Print last 3 values
for i in range(n_embd - 3, n_embd):
print(f"{embedding[i]:9.6f} ", end="")
print() # New line
print() # Final empty line to match C++ output
data_dir = Path("data")
data_dir.mkdir(exist_ok=True)
bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"
# Save all embeddings flattened (matching what embedding.cpp would save if it did)
flattened_embeddings = all_embeddings.flatten()
flattened_embeddings.astype(np.float32).tofile(bin_filename)
with open(txt_filename, "w") as f:
f.write(f"# Model class: {model_name}\n")
f.write(f"# Tokens: {token_strings}\n")
f.write(f"# Shape: {all_embeddings.shape}\n")
f.write(f"# n_embd_count: {n_embd_count}, n_embd: {n_embd}\n\n")
for j in range(n_embd_count):
f.write(f"# Token {j} ({token_strings[j]}):\n")
for i, value in enumerate(all_embeddings[j]):
f.write(f"{j}_{i}: {value:.6f}\n")
f.write("\n")
print(f"Total values: {len(flattened_embeddings)} ({n_embd_count} tokens × {n_embd} dimensions)")
print("")
print(f"Saved bin embeddings to: {bin_filename}")
print(f"Saved txt embeddings to: {txt_filename}")