llama.cpp/ggml/src/ggml-vulkan/vulkan-shaders/ssm_scan.comp

125 lines
3.9 KiB
Plaintext

#version 450
#extension GL_EXT_control_flow_attributes : require
#extension GL_KHR_shader_subgroup_basic : enable
#if USE_SUBGROUP_ADD
#extension GL_KHR_shader_subgroup_arithmetic : enable
#endif
#include "types.glsl"
layout(constant_id = 0) const uint D_STATE = 128;
layout(constant_id = 1) const uint SUBGROUP_SIZE = 32;
const uint32_t c_factor = D_STATE / SUBGROUP_SIZE;
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout(binding = 0) readonly buffer Src0 { float s0[]; };
layout(binding = 1) readonly buffer Src1 { float x[]; };
layout(binding = 2) readonly buffer Src2 { float dt[]; };
layout(binding = 3) readonly buffer Src3 { float A[]; };
layout(binding = 4) readonly buffer Src4 { float B[]; };
layout(binding = 5) readonly buffer Src5 { float C[]; };
layout(binding = 6) readonly buffer Src6 { int ids[]; };
layout(binding = 7) buffer Dst { float d[]; };
layout(push_constant) uniform PushConstants {
uint nb02; uint nb03; uint nb12; uint nb13;
uint nb21; uint nb22; uint nb31;
uint nb42; uint nb43; uint nb52; uint nb53;
uint s_off;
uint n_head;
uint d_head;
uint n_group;
uint n_tok;
};
float softplus(float x) {
if (x <= 20.0) {
return log(1.0 + exp(x));
} else {
return x;
}
}
#if !USE_SUBGROUP_ADD
shared float temp[D_STATE];
#endif
void main() {
const uint subgroup = gl_SubgroupID;
const uint lane = gl_SubgroupInvocationID;
const uint tid = gl_SubgroupID * SUBGROUP_SIZE + lane;
const uint subgroup_idx = gl_WorkGroupID.x * c_factor + subgroup;
const uint head_idx = subgroup_idx / d_head;
const uint head_off = (subgroup_idx % d_head) * 4;
const uint seq_idx = gl_WorkGroupID.y;
const uint group_off = (head_idx / (n_head / n_group)) * D_STATE * 4;
const uint s0_base_idx = (uint(ids[seq_idx]) * nb03 + head_idx * nb02 + head_off * D_STATE) / 4;
const uint x_base_idx = (seq_idx * nb13 + subgroup_idx * 4) / 4;
const uint dt_base_idx = (seq_idx * nb22 + head_idx * 4) / 4;
const uint A_base_idx = (head_idx * nb31) / 4;
const uint B_base_idx = (seq_idx * nb43 + group_off) / 4;
const uint C_base_idx = (seq_idx * nb53 + group_off) / 4;
const uint y_base_idx = seq_idx * n_tok * n_head * d_head + subgroup_idx;
const uint s_base_idx = (s_off + seq_idx * nb03 + head_idx * nb02 + head_off * D_STATE) / 4;
const uint stride_x = nb12 / 4;
const uint stride_dt = nb21 / 4;
const uint stride_B = nb42 / 4;
const uint stride_C = nb52 / 4;
const uint stride_y = n_head * d_head;
float state[c_factor];
[[unroll]] for (uint j = 0; j < c_factor; j++) {
state[j] = s0[s0_base_idx + SUBGROUP_SIZE * j + lane];
}
float a = A[A_base_idx];
for (uint i = 0; i < n_tok; i++) {
float dt_soft_plus = softplus(dt[dt_base_idx + i * stride_dt]);
float state_sum = 0.0f;
const float dA = exp(dt_soft_plus * a);
const float x_dt = x[x_base_idx + i * stride_x] * dt_soft_plus;
[[unroll]] for (uint j = 0; j < c_factor; j++) {
float B_val = B[B_base_idx + i * stride_B + SUBGROUP_SIZE * j + lane];
float C_val = C[C_base_idx + i * stride_C + SUBGROUP_SIZE * j + lane];
state[j] = (state[j] * dA) + (B_val * x_dt);
state_sum += state[j] * C_val;
}
#if USE_SUBGROUP_ADD
state_sum = subgroupAdd(state_sum);
#else
temp[tid] = state_sum;
barrier();
[[unroll]] for (uint s = SUBGROUP_SIZE / 2; s > 0; s >>= 1) {
if (lane < s) {
temp[tid] += temp[tid + s];
}
barrier();
}
// get the value from lane 0
state_sum = temp[subgroup * SUBGROUP_SIZE];
barrier();
#endif
if (lane == 0) {
d[y_base_idx + i * stride_y] = state_sum;
}
}
// write back the state
[[unroll]]
for (int j = 0; j < c_factor; j++) {
d[s_base_idx + SUBGROUP_SIZE * j + lane] = state[j];
}
}