llama.cpp/ggml/src/ggml-openvino/ggml-openvino.cpp

1134 lines
46 KiB
C++

#include "ggml-openvino.h"
#include "ggml-backend-impl.h"
#include "ggml-backend.h"
#include "ggml-impl.h"
#include "ggml-openvino-extra.h"
#include "ggml-openvino/utils.h"
#include "ggml-quants.hpp"
#include "ggml.h"
#include <atomic>
#include <cstdint>
#include <cstring>
#include <memory>
#include <mutex>
#include <openvino/core/type/element_type.hpp>
#include <openvino/openvino.hpp>
#include <openvino/runtime/allocator.hpp>
#include <openvino/runtime/intel_gpu/ocl/ocl.hpp>
#include <openvino/runtime/intel_npu/level_zero/level_zero.hpp>
#include <openvino/runtime/tensor.hpp>
#include <set>
#include <string>
#include <vector>
#if defined(_WIN32)
# define WIN32_LEAN_AND_MEAN
# ifndef NOMINMAX
# define NOMINMAX
# endif
# include <windows.h>
#else
# include <unistd.h>
#endif
// =====================================================
// OpenVINO Buffer Implementation using ov::Tensor
// =====================================================
//
// Design: This implementation uses a hybrid approach:
// 1. For weight tensors: Store a pre-built ov::op::v0::Constant in tensor->extra
// - This avoids the memcpy during graph construction
// - For quantized weights, the constant is already converted to OpenVINO format
// 2. For KV cache / compute tensors: Store an ov::Tensor in tensor->extra
// - This can be directly passed to infer_request
// - Future: can be changed to ov::RemoteTensor for GPU/NPU
//
// This design is similar to:
// - CUDA split buffer: tensor->extra stores device pointers
// - CPU repack buffer: tensor->extra stores tensor_traits with repacked data
// =====================================================
// Buffer context that manages per-tensor allocations (no contiguous buffer for weights)
struct ggml_backend_openvino_buffer_context {
int device;
std::string name;
size_t id;
// For non-weight buffers (KV cache, compute), we still use contiguous allocation
void * data;
size_t size;
bool is_remote;
// Wrapping of the buffer
std::shared_ptr<ov::Tensor> ov_buffer;
// Track all extras for cleanup
std::map<ggml_tensor *, ggml_openvino_extra_base *> tensor_extras;
// Used for re-allocation on device for kvcache
void * data_prev;
ggml_backend_openvino_buffer_context(int device, size_t size, bool is_remote = false) :
device(device),
name(std::string(GGML_OPENVINO_NAME) + std::to_string(device)),
id([]() {
static std::atomic<size_t> next_id{1};
return next_id.fetch_add(1);
}()),
data(nullptr),
size(size),
is_remote(is_remote) {
if (size == 0) {
return;
}
const auto & device_name = ggml_openvino_get_device_name();
if (is_remote) {
GGML_ASSERT(device_name == "GPU");
auto remote_context = ggml_openvino_get_remote_context();
auto gpu_context = remote_context->as<ov::intel_gpu::ocl::ClContext>();
ov::intel_gpu::ocl::USMTensor usm_tensor =
gpu_context.create_usm_device_tensor(ov::element::u8, ov::Shape{size});
data = usm_tensor.get();
ov_buffer = std::make_shared<ov::intel_gpu::ocl::USMTensor>(std::move(usm_tensor));
} else {
data = ggml_aligned_malloc(size);
ov_buffer = std::make_shared<ov::Tensor>(ov::element::u8, ov::Shape{size}, data);
}
if (data == nullptr) {
GGML_LOG_ERROR("%s: failed to allocate %zu bytes\n", __func__, size);
return;
}
if (reinterpret_cast<uintptr_t>(data) % TENSOR_ALIGNMENT != 0) {
GGML_LOG_ERROR("%s: %s buffer is not aligned to %d bytes\n", __func__, device_name.c_str(),
TENSOR_ALIGNMENT);
GGML_ABORT("fatal error");
}
}
~ggml_backend_openvino_buffer_context() {
// Clean up all tensor extras
// GGML_LOG_DEBUG("Deleting OpenVINO buffer context #%zu for device %d, size %zu MB\n", id, device,
// size / 1024 / 1024);
for (auto & pair : tensor_extras) {
delete pair.second;
}
tensor_extras.clear();
if (!is_remote && data != nullptr) {
ggml_aligned_free(data, size);
}
}
};
// Buffer type context (per-device)
struct ggml_backend_openvino_buffer_type_context {
int device;
std::string name;
};
// Buffer interface functions
static void ggml_backend_openvino_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_openvino_buffer_context * ctx = (ggml_backend_openvino_buffer_context *) buffer->context;
delete ctx;
}
static void * ggml_backend_openvino_buffer_get_base(ggml_backend_buffer_t buffer) {
ggml_backend_openvino_buffer_context * ctx = (ggml_backend_openvino_buffer_context *) buffer->context;
return ctx->data;
}
static enum ggml_status ggml_backend_openvino_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
// GGML_LOG_DEBUG("%s: buffer usage=%d, tensor name=%s\n", __func__, buffer->usage, tensor->name);
ggml_backend_openvino_buffer_context * ctx = (ggml_backend_openvino_buffer_context *) buffer->context;
// Put kvcache on device memory for GPU (NPU memory is too small even for kvcache)
if (strncmp(tensor->name, "cache_", 6) == 0 && !ctx->is_remote && ggml_openvino_get_device_name() == "GPU" &&
!getenv("GGML_OPENVINO_STATEFUL_EXECUTION")) {
GGML_ASSERT(ctx->tensor_extras.empty());
auto device = ctx->device;
auto size = ctx->size;
auto * data_prev = ctx->data;
delete ctx;
ctx = new ggml_backend_openvino_buffer_context(device, size, true);
buffer->context = ctx;
tensor->data = (char *) ctx->data + ((char *) tensor->data - (char *) data_prev);
}
// Views share the extra from view_src
if (tensor->view_src != nullptr) {
GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
if (tensor->view_src->extra != nullptr) {
tensor->extra = tensor->view_src->extra;
}
return GGML_STATUS_SUCCESS;
}
ctx = (ggml_backend_openvino_buffer_context *) buffer->context;
if (tensor->data != nullptr && !ggml_is_quantized(tensor->type)) {
ggml_openvino_tensor_extra * extra = ggml_openvino_create_tensor_extra(tensor, ctx->is_remote);
if (extra != nullptr) {
auto it = ctx->tensor_extras.find(tensor);
if (it != ctx->tensor_extras.end()) {
delete it->second;
}
ctx->tensor_extras[tensor] = extra;
tensor->extra = extra;
}
}
return GGML_STATUS_SUCCESS;
}
static void ggml_backend_openvino_buffer_memset_tensor(ggml_backend_buffer_t buffer,
ggml_tensor * tensor,
uint8_t value,
size_t offset,
size_t size) {
// GGML_LOG_DEBUG("%s: buffer usage=%d, tensor name=%s\n", __func__, buffer->usage, tensor->name);
GGML_ASSERT(tensor != nullptr && tensor->data != nullptr);
ggml_backend_openvino_buffer_context * ctx = (ggml_backend_openvino_buffer_context *) buffer->context;
if (ctx->is_remote) {
// For remote (device) buffers, use OpenCL USM memfill
cl_command_queue queue = ggml_openvino_get_cl_queue();
auto mem_fill_fn = ggml_openvino_get_clEnqueueMemFillINTEL();
if (queue != nullptr && mem_fill_fn != nullptr) {
uint8_t pattern = value;
cl_int err = mem_fill_fn(queue, (char *) tensor->data + offset, &pattern, sizeof(pattern), size, 0, nullptr,
nullptr);
if (err != CL_SUCCESS) {
GGML_LOG_ERROR("%s: clEnqueueMemFillINTEL failed with error %d\n", __func__, err);
}
clFinish(queue);
} else {
GGML_LOG_ERROR("%s: no OpenCL queue or clEnqueueMemFillINTEL not available for GPU buffer\n", __func__);
}
} else {
memset((char *) tensor->data + offset, value, size);
}
}
static void ggml_backend_openvino_buffer_set_tensor(ggml_backend_buffer_t buffer,
ggml_tensor * tensor,
const void * data,
size_t offset,
size_t size) {
// GGML_LOG_DEBUG("%s: buffer usage=%d, tensor name=%s\n", __func__, buffer->usage, tensor->name);
GGML_ASSERT(tensor != nullptr && tensor->data != nullptr);
ggml_backend_openvino_buffer_context * ctx = (ggml_backend_openvino_buffer_context *) buffer->context;
// Check if this is a weight buffer (usage is set BEFORE set_tensor is called, except in test-backend-ops)
bool is_weight_buffer = (buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
// Full tensor set: offset=0, full size, not a view
bool is_full_tensor_set = (offset == 0 && size == ggml_nbytes(tensor) && tensor->view_src == nullptr);
// 2D tensor (typical weight shape)
bool is_2d = (tensor->ne[2] == 1 && tensor->ne[3] == 1);
if (is_weight_buffer && is_full_tensor_set && is_2d) {
try {
auto result = process_weight_tensor(tensor, data, tensor->data);
result.weight_node->set_friendly_name(tensor->name);
// const auto & layout = result.layout;
ggml_openvino_extra_base * extra;
// Quantized path with extracted weight/scale/zp tensors
if (result.is_quantized()) {
extra = new ggml_openvino_quantized_weight_extra(std::move(result.weights), std::move(result.scales),
std::move(result.zp), result.weight_node);
// if (layout.is_requant) {
// GGML_LOG_DEBUG("%s: requantized %s to %s (u%d, block_size=%ld)\n", __func__, tensor->name,
// extra_quant_type_name(layout.requant_type.value()), layout.is_u4 ? 4 : 8,
// layout.weights_per_block);
// } else {
// int64_t n_blocks = ggml_nelements(tensor) / layout.weights_per_block;
// GGML_LOG_DEBUG("%s: extracted quantized weight node for %s (u%d, %zu weights, %ld blocks)\n",
// __func__, tensor->name, layout.is_u4 ? 4 : 8, layout.weights_size, n_blocks);
// }
} else {
// F16/F32/BF16 weight or F16-requant
extra = new ggml_openvino_weight_extra(std::move(result.weights), result.weight_node);
// if (layout.total_size > 0) {
// GGML_LOG_DEBUG("%s: requantized %s to F16\n", __func__, tensor->name);
// } else {
// GGML_LOG_DEBUG("%s: created shared-memory weight node for %s\n", __func__, tensor->name);
// }
}
ctx->tensor_extras[tensor] = extra;
tensor->extra = extra;
} catch (const std::exception & e) {
GGML_LOG_ERROR("%s: failed to process weight tensor for %s: %s\n", __func__, tensor->name, e.what());
memcpy((char *) tensor->data + offset, data, size);
}
} else {
// Non-weight tensor (KV cache, activations, etc.) - copy data. test-backend-ops also goes here
if (ctx->is_remote) {
cl_command_queue queue = ggml_openvino_get_cl_queue();
auto mem_cpy_fn = ggml_openvino_get_clEnqueueMemcpyINTEL();
if (queue != nullptr && mem_cpy_fn != nullptr) {
cl_int err =
mem_cpy_fn(queue, CL_TRUE, (char *) tensor->data + offset, data, size, 0, nullptr, nullptr);
if (err != CL_SUCCESS) {
GGML_LOG_ERROR("%s: clEnqueueMemcpyINTEL failed with error %d\n", __func__, err);
}
} else {
GGML_LOG_ERROR("%s: no OpenCL queue or clEnqueueMemcpyINTEL not available for GPU buffer\n", __func__);
}
} else {
memcpy((char *) tensor->data + offset, data, size);
}
ggml_openvino_tensor_extra * extra = ggml_openvino_create_tensor_extra(tensor, ctx->is_remote);
if (extra == nullptr) {
// GGML_LOG_ERROR("%s: failed to create tensor extra for %s\n", __func__, tensor->name);
return;
}
auto it = ctx->tensor_extras.find(tensor);
if (it != ctx->tensor_extras.end()) {
delete it->second;
}
ctx->tensor_extras[tensor] = extra;
tensor->extra = extra;
}
}
static void ggml_backend_openvino_buffer_get_tensor(ggml_backend_buffer_t buffer,
const ggml_tensor * tensor,
void * data,
size_t offset,
size_t size) {
// GGML_LOG_DEBUG("%s: buffer usage=%d, tensor name=%s\n", __func__, buffer->usage, tensor->name);
GGML_ASSERT(tensor != nullptr && tensor->data != nullptr);
ggml_backend_openvino_buffer_context * ctx = (ggml_backend_openvino_buffer_context *) buffer->context;
if (ctx->is_remote) {
// For remote (device) buffers, use OpenCL USM memcpy (device-to-host)
cl_command_queue queue = ggml_openvino_get_cl_queue();
auto mem_cpy_fn = ggml_openvino_get_clEnqueueMemcpyINTEL();
if (queue != nullptr && mem_cpy_fn != nullptr) {
cl_int err =
mem_cpy_fn(queue, CL_TRUE, data, (const char *) tensor->data + offset, size, 0, nullptr, nullptr);
if (err != CL_SUCCESS) {
GGML_LOG_ERROR("%s: clEnqueueMemcpyINTEL failed with error %d\n", __func__, err);
}
} else {
GGML_LOG_ERROR("%s: no OpenCL queue or clEnqueueMemcpyINTEL not available for GPU buffer\n", __func__);
}
} else {
memcpy(data, (const char *) tensor->data + offset, size);
}
}
static bool ggml_backend_openvino_buffer_cpy_tensor(ggml_backend_buffer_t buffer,
const ggml_tensor * src,
ggml_tensor * dst) {
// GGML_LOG_DEBUG("%s: src tensor name=%s, dst tensor name=%s\n", __func__, src->name, dst->name);
GGML_ASSERT(src != nullptr && dst != nullptr);
ggml_backend_openvino_buffer_context * ctx = (ggml_backend_openvino_buffer_context *) buffer->context;
if (ctx->is_remote) {
// For remote (device) buffers, use OpenCL USM memcpy
cl_command_queue queue = ggml_openvino_get_cl_queue();
auto mem_cpy_fn = ggml_openvino_get_clEnqueueMemcpyINTEL();
if (queue == nullptr || mem_cpy_fn == nullptr) {
GGML_LOG_ERROR("%s: no OpenCL queue or clEnqueueMemcpyINTEL not available for GPU buffer\n", __func__);
return false;
}
// Can copy from host to device
if (ggml_backend_buffer_is_host(src->buffer)) {
cl_int err = mem_cpy_fn(queue, CL_TRUE, dst->data, src->data, ggml_nbytes(src), 0, nullptr, nullptr);
if (err != CL_SUCCESS) {
GGML_LOG_ERROR("%s: clEnqueueMemcpyINTEL (host-to-device) failed with error %d\n", __func__, err);
return false;
}
return true;
}
// Can also copy from device to device if both are OpenVINO remote buffers
if (ggml_backend_buffer_is_openvino(src->buffer)) {
ggml_backend_openvino_buffer_context * src_ctx =
(ggml_backend_openvino_buffer_context *) src->buffer->context;
if (src_ctx->is_remote) {
cl_int err =
mem_cpy_fn(queue, CL_TRUE, dst->data, src->data, ggml_nbytes(src), 0, nullptr, nullptr);
if (err != CL_SUCCESS) {
GGML_LOG_ERROR("%s: clEnqueueMemcpyINTEL (device-to-device) failed with error %d\n", __func__,
err);
return false;
}
return true;
}
}
return false;
}
// Host buffer - can copy from any host buffer
if (ggml_backend_buffer_is_host(src->buffer)) {
memcpy(dst->data, src->data, ggml_nbytes(src));
return true;
}
return false;
}
static void ggml_backend_openvino_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_openvino_buffer_context * ctx = (ggml_backend_openvino_buffer_context *) buffer->context;
GGML_ASSERT(ctx->data != nullptr);
if (ctx->is_remote) {
cl_command_queue queue = ggml_openvino_get_cl_queue();
auto mem_fill_fn = ggml_openvino_get_clEnqueueMemFillINTEL();
if (queue != nullptr && mem_fill_fn != nullptr) {
uint8_t pattern = value;
cl_int err = mem_fill_fn(queue, ctx->data, &pattern, sizeof(pattern), ctx->size, 0, nullptr, nullptr);
if (err != CL_SUCCESS) {
GGML_LOG_WARN("%s: clEnqueueMemFillINTEL failed with error %d\n", __func__, err);
}
clFinish(queue);
} else {
GGML_LOG_WARN("%s: no OpenCL queue or clEnqueueMemFillINTEL not available for GPU buffer clear\n",
__func__);
}
} else {
memset(ctx->data, value, ctx->size);
}
}
static const ggml_backend_buffer_i ggml_backend_openvino_buffer_interface = {
/* .free_buffer = */ ggml_backend_openvino_buffer_free_buffer,
/* .get_base = */ ggml_backend_openvino_buffer_get_base,
/* .init_tensor = */ ggml_backend_openvino_buffer_init_tensor,
/* .memset_tensor = */ ggml_backend_openvino_buffer_memset_tensor,
/* .set_tensor = */ ggml_backend_openvino_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_openvino_buffer_get_tensor,
/* .cpy_tensor = */ ggml_backend_openvino_buffer_cpy_tensor,
/* .clear = */ ggml_backend_openvino_buffer_clear,
/* .reset = */ NULL,
};
// Buffer type interface functions
static const char * ggml_backend_openvino_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
ggml_backend_openvino_buffer_type_context * ctx = (ggml_backend_openvino_buffer_type_context *) buft->context;
return ctx->name.c_str();
}
static ggml_backend_buffer_t ggml_backend_openvino_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft,
size_t size) {
ggml_backend_openvino_buffer_type_context * buft_ctx = (ggml_backend_openvino_buffer_type_context *) buft->context;
// Create buffer context with contiguous memory allocation
ggml_backend_openvino_buffer_context * ctx = new ggml_backend_openvino_buffer_context(buft_ctx->device, size);
if (ctx->data == nullptr && size > 0) {
GGML_LOG_ERROR("%s: failed to allocate buffer of size %zu\n", __func__, size);
delete ctx;
return nullptr;
}
return ggml_backend_buffer_init(buft, ggml_backend_openvino_buffer_interface, ctx, size);
}
static size_t ggml_backend_openvino_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
GGML_UNUSED(buft);
return TENSOR_ALIGNMENT;
}
static size_t ggml_backend_openvino_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
GGML_UNUSED(buft);
return SIZE_MAX;
}
static size_t ggml_backend_openvino_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft,
const ggml_tensor * tensor) {
GGML_UNUSED(buft);
// For quantized 2D tensors (weights), we need extra space for extracted data
if (ggml_is_quantized(tensor->type) && tensor->ne[2] == 1 && tensor->ne[3] == 1) {
ggml_openvino_extracted_layout layout = ggml_openvino_get_extracted_layout(tensor);
if (layout.total_size > 0) {
// GGML_LOG_DEBUG("%s: tensor %s needs %zu bytes (original %zu, extracted: weights=%zu scales=%zu zp=%zu)\n",
// __func__, tensor->name, layout.total_size, ggml_nbytes(tensor), layout.weights_size,
// layout.scales_size, layout.zp_size);
return layout.total_size;
}
}
return ggml_nbytes(tensor);
}
static const ggml_backend_buffer_type_i ggml_backend_openvino_buffer_type_interface = {
/* .get_name = */ ggml_backend_openvino_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_openvino_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_openvino_buffer_type_get_alignment,
/* .get_max_size = */ ggml_backend_openvino_buffer_type_get_max_size,
/* .get_alloc_size = */ ggml_backend_openvino_buffer_type_get_alloc_size,
/* .is_host = */ nullptr,
};
// Get buffer type for a specific device
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_openvino_buffer_type(int device) {
GGML_ASSERT(device >= 0 && device < ggml_backend_openvino_get_device_count());
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
static std::vector<ggml_backend_buffer_type> buffer_types;
static std::vector<ggml_backend_openvino_buffer_type_context> buffer_type_contexts;
if (buffer_types.empty()) {
int device_count = ggml_backend_openvino_get_device_count();
buffer_types.resize(device_count);
buffer_type_contexts.resize(device_count);
for (int i = 0; i < device_count; i++) {
buffer_type_contexts[i].device = i;
buffer_type_contexts[i].name = std::string(GGML_OPENVINO_NAME) + std::to_string(i);
buffer_types[i] = ggml_backend_buffer_type{
/* .iface = */ ggml_backend_openvino_buffer_type_interface,
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_openvino_reg(), i),
/* .context = */ &buffer_type_contexts[i],
};
}
}
return &buffer_types[device];
}
// =====================================================
// OpenVINO Host Buffer Implementation
// =====================================================
static const char * ggml_backend_openvino_host_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
ggml_backend_openvino_buffer_type_context * ctx = (ggml_backend_openvino_buffer_type_context *) buft->context;
static std::string name;
name = ctx->name + "_HOST";
return name.c_str();
}
static bool ggml_backend_openvino_host_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
GGML_UNUSED(buft);
return true;
}
static const ggml_backend_buffer_type_i ggml_backend_openvino_host_buffer_type_interface = {
/* .get_name = */ ggml_backend_openvino_host_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_openvino_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_openvino_buffer_type_get_alignment,
/* .get_max_size = */ ggml_backend_openvino_buffer_type_get_max_size,
/* .get_alloc_size = */ ggml_backend_openvino_buffer_type_get_alloc_size,
/* .is_host = */ ggml_backend_openvino_host_buffer_type_is_host,
};
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_openvino_host_buffer_type(int device) {
GGML_ASSERT(device >= 0 && device < ggml_backend_openvino_get_device_count());
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
static std::vector<ggml_backend_buffer_type> buffer_types;
static std::vector<ggml_backend_openvino_buffer_type_context> buffer_type_contexts;
if (buffer_types.empty()) {
int device_count = ggml_backend_openvino_get_device_count();
buffer_types.resize(device_count);
buffer_type_contexts.resize(device_count);
for (int i = 0; i < device_count; i++) {
buffer_type_contexts[i].device = i;
buffer_type_contexts[i].name = std::string(GGML_OPENVINO_NAME) + std::to_string(i);
buffer_types[i] = ggml_backend_buffer_type{
/* .iface = */ ggml_backend_openvino_host_buffer_type_interface,
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_openvino_reg(), i),
/* .context = */ &buffer_type_contexts[i],
};
}
}
return &buffer_types[device];
}
bool ggml_backend_buffer_is_openvino(ggml_backend_buffer_t buffer) {
return buffer->iface.free_buffer == ggml_backend_openvino_buffer_free_buffer;
}
size_t ggml_backend_openvino_buffer_get_ctx_id(ggml_backend_buffer_t buffer) {
if (!ggml_backend_buffer_is_openvino(buffer)) {
return 0;
}
ggml_backend_openvino_buffer_context * ctx = (ggml_backend_openvino_buffer_context *) buffer->context;
return ctx->id;
}
void ggml_openvino_buffer_register_extra(ggml_tensor * tensor, ggml_openvino_extra_base * extra) {
GGML_ASSERT(tensor != nullptr);
GGML_ASSERT(tensor->buffer != nullptr);
GGML_ASSERT(ggml_backend_buffer_is_openvino(tensor->buffer));
auto * ctx = static_cast<ggml_backend_openvino_buffer_context *>(tensor->buffer->context);
auto it = ctx->tensor_extras.find(tensor);
if (it != ctx->tensor_extras.end()) {
delete it->second;
}
ctx->tensor_extras[tensor] = extra;
tensor->extra = extra;
}
bool ggml_backend_buft_is_openvino(ggml_backend_buffer_type_t buft) {
return buft->iface.get_name == ggml_backend_openvino_buffer_type_get_name;
}
bool ggml_backend_buft_is_openvino_host(ggml_backend_buffer_type_t buft) {
return buft->iface.get_name == ggml_backend_openvino_host_buffer_type_get_name;
}
// =====================================================
// OpenVINO Backend Context and Interface
// =====================================================
struct ggml_backend_openvino_context {
int device; // the device ID currently in use
std::string name; // context Name
std::string description; // context description
// OpenVINO core components
ov::Core core; // OpenVINO core interface
std::shared_ptr<ov::CompiledModel> model; // compiled Model
ov::InferRequest infer_request; // inference Request
// OpenVINO Multi-stream support
static const int MAX_STREAMS = 8; // define the maximum number of flows
std::vector<ov::InferRequest> streams; // used to support multi-stream reasoning
int current_stream; // the currently active stream index
// state Management
bool is_initialized; // initialize
ggml_backend_openvino_context() :
device(0),
name("OpenVINO"),
description("OpenVINO Backend Context"),
current_stream(0),
is_initialized(false) {}
};
static void ggml_backend_openvino_free(ggml_backend_t backend) {
ggml_backend_openvino_context * ctx = (ggml_backend_openvino_context *) backend->context;
delete ctx;
delete backend;
}
static const char * ggml_backend_openvino_get_name(ggml_backend_t backend) {
return GGML_OPENVINO_NAME;
GGML_UNUSED(backend);
}
static enum ggml_status ggml_backend_openvino_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
return ov_graph_compute(cgraph);
GGML_UNUSED(backend);
}
static const ggml_backend_i ggml_backend_openvino_interface = {
/* .get_name = */ ggml_backend_openvino_get_name,
/* .free = */ ggml_backend_openvino_free,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_openvino_graph_compute,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
/* .graph_optimize = */ NULL,
};
int ggml_backend_openvino_get_device_count() {
return ggml_openvino_info().device_count;
}
static ggml_guid_t ggml_backend_openvino_guid(void) {
static ggml_guid guid = {0x12, 0xa8, 0xae, 0xf4, 0xc0, 0x1e, 0x61, 0x97,
0x8f, 0xeb, 0x33, 0x04, 0xa1, 0x33, 0x51, 0x2d};
return &guid;
}
// backend API
GGML_BACKEND_API ggml_backend_t ggml_backend_openvino_init(int device) {
if (device < 0 || device >= ggml_backend_openvino_get_device_count()) {
GGML_LOG_ERROR("%s: invalid device %d\n", __func__, device);
return nullptr;
}
ggml_backend_openvino_context * ctx = new ggml_backend_openvino_context;
if (ctx == nullptr) {
GGML_LOG_ERROR("%s: failed to allocate context\n", __func__);
return nullptr;
}
ggml_backend_t openvino_backend = new ggml_backend{
/* .guid = */ ggml_backend_openvino_guid(),
/* .interface = */ ggml_backend_openvino_interface,
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_openvino_reg(), device),
/* .context = */ ctx,
};
return openvino_backend;
}
GGML_BACKEND_API bool ggml_backend_is_openvino(ggml_backend_t backend) {
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_openvino_guid());
}
struct ggml_backend_openvino_device_context {
int device;
std::string name;
std::string description;
};
static const char * ggml_backend_openvino_device_get_name(ggml_backend_dev_t dev) {
ggml_backend_openvino_device_context * ctx = (ggml_backend_openvino_device_context *) dev->context;
return ctx->name.c_str();
}
static const char * ggml_backend_openvino_device_get_description(ggml_backend_dev_t dev) {
ggml_backend_openvino_device_context * ctx = (ggml_backend_openvino_device_context *) dev->context;
return ctx->description.c_str();
}
static void ggml_backend_openvino_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
#ifdef _WIN32
MEMORYSTATUSEX status;
status.dwLength = sizeof(status);
GlobalMemoryStatusEx(&status);
*total = status.ullTotalPhys;
*free = status.ullAvailPhys;
#else
long pages = sysconf(_SC_PHYS_PAGES);
long page_size = sysconf(_SC_PAGE_SIZE);
*total = pages * page_size;
// "free" system memory is ill-defined, for practical purposes assume that all of it is free:
*free = *total;
#endif // _WIN32
GGML_UNUSED(dev);
}
static enum ggml_backend_dev_type ggml_backend_openvino_device_get_type(ggml_backend_dev_t dev) {
GGML_UNUSED(dev);
return GGML_BACKEND_DEVICE_TYPE_GPU;
}
static void ggml_backend_openvino_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
props->name = ggml_backend_openvino_device_get_name(dev);
props->description = ggml_backend_openvino_device_get_description(dev);
props->type = ggml_backend_openvino_device_get_type(dev);
ggml_backend_openvino_device_get_memory(dev, &props->memory_free, &props->memory_total);
props->caps = {
/* .async = */ false,
/* .host_buffer = */ false,
/* .buffer_from_host_ptr = */ false,
/* .events = */ false,
};
}
static ggml_backend_t ggml_backend_openvino_device_init(ggml_backend_dev_t dev, const char * params) {
GGML_UNUSED(params);
ggml_backend_openvino_device_context * ctx = (ggml_backend_openvino_device_context *) dev->context;
return ggml_backend_openvino_init(ctx->device);
}
static ggml_backend_buffer_type_t ggml_backend_openvino_device_get_buffer_type(ggml_backend_dev_t dev) {
ggml_backend_openvino_device_context * ctx = (ggml_backend_openvino_device_context *) dev->context;
return ggml_backend_openvino_buffer_type(ctx->device);
}
static ggml_backend_buffer_type_t ggml_backend_openvino_device_get_host_buffer_type(ggml_backend_dev_t dev) {
ggml_backend_openvino_device_context * ctx = (ggml_backend_openvino_device_context *) dev->context;
return ggml_backend_openvino_host_buffer_type(ctx->device);
}
static bool has_view_op_input(const ggml_tensor * op) {
for (int i = 0; i < GGML_MAX_SRC; i++) {
if (op->src[i] == nullptr) {
break;
}
if (op->src[i]->op == GGML_OP_VIEW) {
return true;
}
}
return false;
}
static bool is_supported_flash_attn_pattern(const ggml_tensor * op) {
// pattern of q,k,v should be q->op==PERMUTE, q->src[0]->op==VIEW, q->src[0]->src[0]->view_src==nullptr
for (int i = 0; i < 3; i++) {
const ggml_tensor * src = op->src[i];
if (src->op != GGML_OP_PERMUTE || src->src[0] == nullptr || src->src[0]->op != GGML_OP_VIEW ||
src->src[0]->src[0] == nullptr || src->src[0]->src[0]->view_src != nullptr) {
return false;
}
}
return true;
}
static bool is_op_unsupported_case(const ggml_tensor * op) {
switch (op->op) {
case GGML_OP_GET_ROWS:
case GGML_OP_SET_ROWS: {
if (op->ne[3] != 1) {
return true;
}
break;
}
case GGML_OP_ADD:
case GGML_OP_MUL: {
for (int i = 0; i < 4; i++) {
if (op->src[0]->ne[i] != op->src[1]->ne[i] && (op->src[0]->ne[i] != 1 && op->src[1]->ne[i] != 1)) {
return true;
}
}
break;
}
case GGML_OP_SOFT_MAX: {
if (op->src[2] != nullptr) {
// GGML_LOG_WARN("OpenVINO backend does not support SOFT_MAX with sinks\n");
return true;
}
float scale = 1.0f;
float max_bias = 0.0f;
const auto * op_params = op->op_params;
memcpy(&scale, (const float *) op_params + 0, sizeof(float));
memcpy(&max_bias, (const float *) op_params + 1, sizeof(float));
if (max_bias > 0) {
// GGML_LOG_WARN("OpenVINO backend does not support SOFT_MAX with max_bias > 0\n");
return true;
}
break;
}
case GGML_OP_FLASH_ATTN_EXT: {
if (op->src[4] != nullptr) {
// GGML_LOG_WARN("OpenVINO backend does not support FLASH_ATTN_EXT with sinks\n");
return true;
}
if (!is_supported_flash_attn_pattern(op)) {
return true;
}
float scale = 1.0f;
float max_bias = 0.0f;
float logit_softcap = 0.0f;
const auto * op_params = op->op_params;
memcpy(&scale, (const float *) op_params + 0, sizeof(float));
memcpy(&max_bias, (const float *) op_params + 1, sizeof(float));
memcpy(&logit_softcap, (const float *) op_params + 2, sizeof(float));
if (max_bias > 0) {
// GGML_LOG_WARN("OpenVINO backend does not support FLASH_ATTN_EXT with max_bias > 0\n");
return true;
}
if (logit_softcap != 0) {
// GGML_LOG_WARN("OpenVINO backend does not support FLASH_ATTN_EXT with logit_softcap != 0\n");
return true;
}
break;
}
case GGML_OP_PERMUTE: {
if (op->type == GGML_TYPE_BF16) {
// err msg: [GPU] Could not find a suitable kernel for transpose
// GGML_LOG_WARN("OpenVINO backend does not support PERMUTE with BF16 type\n");
return true;
}
break;
}
case GGML_OP_CPY: {
if (op->src[1] != op) {
// GGML_LOG_WARN("OpenVINO backend only supports CPY that is a cast\n");
return true;
}
break;
}
case GGML_OP_MUL_MAT: {
if (op->src[0]->type == GGML_TYPE_F16 && op->src[1]->type == GGML_TYPE_F16) {
// Has accuracy issue, try enabling this and see `test-backend-ops -o "MUL_MAT"`
// GGML_LOG_WARN("OpenVINO backend does not support MUL_MAT with two F16 tensors\n");
return true;
}
if (op->src[0]->ne[3] != op->src[1]->ne[3] && op->src[0]->ne[3] != 1 && op->src[1]->ne[3] != 1) {
return true;
}
if (op->src[0]->op == GGML_OP_PERMUTE || op->src[1]->op == GGML_OP_PERMUTE) {
return true;
}
if (ggml_is_quantized(op->src[0]->type) && op->src[0]->ne[1] == 1) {
// MUL_MAT(type_a=q4_0,type_b=f32,m=1,n=2048,k=8192,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1)
// triggers a bug in ov matmul_shape_inference.hpp
return true;
}
if (op->src[0]->op == GGML_OP_VIEW && op->src[1]->op == GGML_OP_VIEW) {
return true;
}
break;
}
case GGML_OP_ROPE: {
const int32_t * op_params = op->op_params;
const int n_dims = op_params[1];
const int mode = op_params[2];
if (mode != GGML_ROPE_TYPE_NORMAL && mode != GGML_ROPE_TYPE_NEOX) {
// GGML_LOG_WARN("OpenVINO backend does not support ROPE with mode %d\n", mode);
return true;
}
if (n_dims != 0.0f && n_dims != op->src[0]->ne[0]) {
// GGML_LOG_WARN("OpenVINO backend does not support ROPE with n_dims %d != src[0]->ne[0] %ld\n", n_dims,
// op->src[0]->ne[0]);
return true;
}
if (op->type != GGML_TYPE_F32) {
// GGML_LOG_WARN("OpenVINO backend does not support ROPE with type %s\n", ggml_type_name(op->type));
return true;
}
float freq_scale;
float ext_factor;
memcpy(&freq_scale, op_params + 6, sizeof(float));
memcpy(&ext_factor, op_params + 7, sizeof(float));
if (ext_factor != 0.0f) {
// GGML_LOG_WARN("OpenVINO backend does not support ROPE with ext_factor %f != 0.0f\n", ext_factor);
return true;
}
if (op->src[0]->op == GGML_OP_VIEW) {
if (op->src[0]->view_src->ne[1] != op->src[0]->ne[2]) {
// GGML_LOG_WARN(
// "OpenVINO backend does not support ROPE with src[0]->view_src->ne[1] %ld != src[0]->ne[2] "
// "%ld\n",
// op->src[0]->view_src->ne[1], op->src[0]->ne[2]);
return true;
}
}
break;
}
default:
break;
}
if (op->op == GGML_OP_GET_ROWS) {
if (op->ne[0] == 256 && (op->src[0]->type == GGML_TYPE_Q4_K || op->src[0]->type == GGML_TYPE_Q5_K)) {
// ERR = 0.000000306 > 0.000000100 GET_ROWS(type=q4_K,n=256,m=5,r=4,be1=1,be2=1,v=0)
// ERR = 0.000000197 > 0.000000100 GET_ROWS(type=q5_K,n=256,m=5,r=4,be1=1,be2=1,v=0)
return true;
}
}
return false;
}
static bool ggml_backend_openvino_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
GGML_ASSERT(dev->reg != nullptr);
static std::set<ggml_type> supported_types{GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_I64,
GGML_TYPE_I32, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1, GGML_TYPE_Q4_K,
GGML_TYPE_Q5_K, GGML_TYPE_Q8_0, GGML_TYPE_Q6_K};
static const std::set<ggml_op> supported_ops{GGML_OP_NONE, GGML_OP_ADD, GGML_OP_MUL, GGML_OP_MUL_MAT, GGML_OP_VIEW,
/*GGML_OP_CONT,*/ GGML_OP_RESHAPE, GGML_OP_PERMUTE, GGML_OP_TRANSPOSE,
GGML_OP_GET_ROWS, GGML_OP_ROPE, GGML_OP_RMS_NORM, GGML_OP_SCALE,
// softmax is not updated due to replaced by flash_attn_ext
// GGML_OP_SOFT_MAX,
GGML_OP_SET_ROWS, GGML_OP_FLASH_ATTN_EXT, GGML_OP_CPY};
static const std::set<ggml_unary_op> supported_unary_ops{
GGML_UNARY_OP_SILU,
};
static const std::set<ggml_glu_op> supported_glu_ops{
GGML_GLU_OP_SWIGLU,
GGML_GLU_OP_GEGLU,
};
switch (op->op) {
case GGML_OP_UNARY: {
auto supported = supported_unary_ops.find(ggml_get_unary_op(op)) != supported_unary_ops.end();
if (!supported) {
// GGML_LOG_WARN("OpenVINO backend does not support unary op %s\n", ggml_unary_op_name(ggml_get_unary_op(op)));
return false;
}
if (has_view_op_input(op)) {
// GGML_LOG_WARN("OpenVINO backend does not support unary op %s with view input\n",
// ggml_unary_op_name(ggml_get_unary_op(op)));
return false;
}
break;
}
case GGML_OP_GLU: {
auto supported = supported_glu_ops.find(ggml_get_glu_op(op)) != supported_glu_ops.end();
if (!supported) {
// GGML_LOG_WARN("OpenVINO backend does not support GLU op %s\n", ggml_glu_op_name(ggml_get_glu_op(op)));
return false;
}
if (has_view_op_input(op)) {
// GGML_LOG_WARN("OpenVINO backend does not support unary op %s with view input\n",
// ggml_glu_op_name(ggml_get_glu_op(op)));
return false;
}
break;
}
default: {
auto supported = supported_ops.find(op->op) != supported_ops.end();
if (!supported) {
// GGML_LOG_WARN("OpenVINO backend does not support op %s\n", ggml_op_name(op->op));
return false;
}
static std::set<ggml_op> ops_not_support_view_input{
GGML_OP_GET_ROWS,
GGML_OP_RMS_NORM,
};
if (ops_not_support_view_input.find(op->op) != ops_not_support_view_input.end() && has_view_op_input(op)) {
// GGML_LOG_WARN("OpenVINO backend does not support op %s with view input\n", ggml_op_name(op->op));
return false;
}
}
}
if (supported_types.find(op->type) == supported_types.end()) {
// GGML_LOG_WARN("OpenVINO backend does not support tensor type %s\n", ggml_type_name(op->type));
return false;
}
for (int i = 0; i < GGML_MAX_SRC; i++) {
auto * src = op->src[i];
if (src == nullptr) {
break;
}
if (supported_types.find(src->type) == supported_types.end()) {
// GGML_LOG_WARN("OpenVINO backend does not support tensor type %s\n", ggml_type_name(src->type));
return false;
}
if (ggml_is_quantized(src->type) && src->ne[2] != 1) {
// GGML_LOG_WARN("OpenVINO backend does not support 3D quantized tensors\n");
return false;
}
}
if (is_op_unsupported_case(op)) {
return false;
}
return true;
}
static bool ggml_backend_openvino_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
return ggml_backend_buft_is_openvino(buft) || ggml_backend_buft_is_host(buft);
GGML_UNUSED(dev);
}
static const struct ggml_backend_device_i ggml_backend_openvino_device_interface = {
/* .get_name = */ ggml_backend_openvino_device_get_name,
/* .get_description = */ ggml_backend_openvino_device_get_description,
/* .get_memory = */ ggml_backend_openvino_device_get_memory,
/* .get_type = */ ggml_backend_openvino_device_get_type,
/* .get_props = */ ggml_backend_openvino_device_get_props,
/* .init_backend = */ ggml_backend_openvino_device_init,
/* .get_buffer_type = */ ggml_backend_openvino_device_get_buffer_type,
/* .get_host_buffer_type = */ ggml_backend_openvino_device_get_host_buffer_type,
/* .buffer_from_host_ptr = */ NULL,
/* .supports_op = */ ggml_backend_openvino_device_supports_op,
/* .supports_buft = */ ggml_backend_openvino_device_supports_buft,
/* .offload_op = */ NULL,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_synchronize = */ NULL,
};
struct ggml_backend_openvino_reg_context {
std::vector<ggml_backend_dev_t> devices;
};
static const char * ggml_backend_openvino_reg_get_name(ggml_backend_reg_t reg) {
return GGML_OPENVINO_NAME;
GGML_UNUSED(reg);
}
static size_t ggml_backend_openvino_reg_get_device_count(ggml_backend_reg_t reg) {
GGML_UNUSED(reg);
return ggml_openvino_info().device_count;
}
static ggml_backend_dev_t ggml_backend_openvino_reg_get_device(ggml_backend_reg_t reg, size_t index) {
ggml_backend_openvino_reg_context * ctx = (ggml_backend_openvino_reg_context *) reg->context;
GGML_ASSERT(index < ctx->devices.size());
return ctx->devices[index];
}
static void * ggml_backend_openvino_get_proc_address(ggml_backend_reg_t reg, const char * name) {
GGML_UNUSED(reg);
GGML_UNUSED(name);
return nullptr;
}
static const struct ggml_backend_reg_i ggml_backend_openvino_reg_interface = {
/* .get_name = */ ggml_backend_openvino_reg_get_name,
/* .get_device_count = */ ggml_backend_openvino_reg_get_device_count,
/* .get_device = */ ggml_backend_openvino_reg_get_device,
/* .get_proc_address = */ ggml_backend_openvino_get_proc_address,
};
static int get_openvino_device_count() {
return 1;
}
static ggml_openvino_device_info ggml_openvino_init() {
// Initialize device config singleton from env var
ggml_openvino_init_device_config();
GGML_LOG_INFO("OpenVINO: using device %s\n", ggml_openvino_get_device_name().c_str());
ggml_openvino_device_info info = {};
info.device_count = get_openvino_device_count();
return info;
}
const ggml_openvino_device_info & ggml_openvino_info() {
static ggml_openvino_device_info info = ggml_openvino_init();
return info;
}
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_openvino_reg(void) {
static ggml_backend_reg reg;
static bool initialized = false;
{
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (!initialized) {
ggml_backend_openvino_reg_context * ctx = new ggml_backend_openvino_reg_context;
for (int i = 0; i < ggml_openvino_info().device_count; i++) {
ggml_backend_openvino_device_context * dev_ctx = new ggml_backend_openvino_device_context;
dev_ctx->device = i;
dev_ctx->name = GGML_OPENVINO_NAME + std::to_string(i);
dev_ctx->description = ov::get_openvino_version().description;
ggml_backend_dev_t dev =
new ggml_backend_device{/* .interface = */ ggml_backend_openvino_device_interface,
/* .reg = */ &reg,
/* .context = */ dev_ctx};
ctx->devices.push_back(dev);
}
reg = ggml_backend_reg{/* .api_version = */ GGML_BACKEND_API_VERSION,
/* .iface = */ ggml_backend_openvino_reg_interface,
/* .context = */ ctx};
}
initialized = true;
}
return &reg;
}