590 lines
20 KiB
C++
590 lines
20 KiB
C++
#include "mtmd-audio.h"
|
||
|
||
#define _USE_MATH_DEFINES // for M_PI
|
||
#include <cmath>
|
||
#include <cstdint>
|
||
#include <cstring>
|
||
#include <thread>
|
||
#include <vector>
|
||
#include <fstream>
|
||
#include <algorithm>
|
||
|
||
// most of the code here is copied from whisper.cpp
|
||
|
||
constexpr bool DEBUG = false;
|
||
|
||
struct mtmd_audio_mel_filters {
|
||
int32_t n_mel;
|
||
int32_t n_fft;
|
||
|
||
std::vector<float> data;
|
||
};
|
||
|
||
// note: this global cache is shared among all preprocessors
|
||
// if we want to use multiple preprocessors at the same time,
|
||
// we will need to enclose it in the preprocessor class in the future
|
||
static struct mtmd_audio_global_cache {
|
||
// precomputed sin/cos table for FFT
|
||
std::vector<float> sin_vals;
|
||
std::vector<float> cos_vals;
|
||
|
||
// hann window
|
||
std::vector<float> hann_window;
|
||
|
||
// mel filter bank
|
||
mtmd_audio_mel_filters filters;
|
||
|
||
void fill_sin_cos_table(int n) {
|
||
sin_vals.resize(n);
|
||
cos_vals.resize(n);
|
||
for (int i = 0; i < n; i++) {
|
||
double theta = (2 * M_PI * i) / n;
|
||
sin_vals[i] = sinf(theta);
|
||
cos_vals[i] = cosf(theta);
|
||
}
|
||
}
|
||
|
||
void fill_hann_window(int length, bool periodic) {
|
||
hann_window.resize(length);
|
||
int offset = -1;
|
||
if (periodic) {
|
||
offset = 0;
|
||
}
|
||
for (int i = 0; i < length; i++) {
|
||
hann_window[i] = 0.5 * (1.0 - cosf((2.0 * M_PI * i) / (length + offset)));
|
||
}
|
||
}
|
||
|
||
// Build mel filterbank matrix [n_mel × n_fft_bins] at runtime.
|
||
// n_fft_bins must be (N_fft / 2 + 1). Example: if N_fft=512 -> n_fft_bins=257.
|
||
void fill_mel_filterbank_matrix(
|
||
int n_mel,
|
||
int n_fft,
|
||
int sample_rate, // e.g. 16000
|
||
float fmin = 0.0f, // e.g. 0.0
|
||
float fmax = -1.0f, // e.g. sr/2; pass -1 for auto
|
||
bool slaney_area_norm = true,
|
||
float scale = 1.0f // optional extra scaling; use 1.0f/1000.0f to mimic your code
|
||
) {
|
||
GGML_ASSERT(n_mel > 0 && n_fft > 1);
|
||
if (fmax <= 0.0f) {
|
||
fmax = 0.5f * sample_rate;
|
||
}
|
||
|
||
// Slaney scale (matches librosa default)
|
||
const double min_log_hz = 1000.0;
|
||
const double lin_slope = 3 / 200.;
|
||
const double min_log_mel = min_log_hz * lin_slope;
|
||
const double log_step = log(6.4) / 27.0;
|
||
auto hz_to_mel = [min_log_hz, lin_slope, log_step, min_log_mel](const double f_hz) -> double {
|
||
return (f_hz < min_log_hz) ? f_hz * lin_slope : min_log_mel + log(f_hz / min_log_hz) / log_step;
|
||
};
|
||
auto mel_to_hz = [min_log_hz, lin_slope, log_step, min_log_mel](const double m) -> double {
|
||
return (m < min_log_mel) ? m / lin_slope : min_log_hz * exp((m - min_log_mel) * log_step);
|
||
};
|
||
|
||
// infer N_fft from n_fft_bins
|
||
const double bin_hz_step = double(sample_rate) / double(n_fft);
|
||
|
||
// mel grid: n_mel + 2 edges
|
||
const double m_lo = hz_to_mel(fmin);
|
||
const double m_hi = hz_to_mel(fmax);
|
||
std::vector<double> mel_pts(n_mel + 2);
|
||
for (int i = 0; i < n_mel + 2; ++i) {
|
||
mel_pts[i] = m_lo + (m_hi - m_lo) * (double(i) / (n_mel + 1));
|
||
}
|
||
|
||
// convert to Hz
|
||
std::vector<double> hz_pts(n_mel + 2);
|
||
for (int i = 0; i < n_mel + 2; ++i) {
|
||
hz_pts[i] = mel_to_hz(mel_pts[i]);
|
||
}
|
||
|
||
const int n_fft_bins = n_fft / 2 + 1;
|
||
|
||
// filterbank
|
||
std::vector<float> out(n_mel * n_fft_bins, 0);
|
||
for (int m = 0; m < n_mel; ++m) {
|
||
const double f_left = hz_pts[m];
|
||
const double f_center = hz_pts[m + 1];
|
||
const double f_right = hz_pts[m + 2];
|
||
|
||
const double denom_l = std::max(1e-30, f_center - f_left);
|
||
const double denom_r = std::max(1e-30, f_right - f_center);
|
||
const double enorm = slaney_area_norm ? (2.0 / std::max(1e-30, f_right - f_left)) : 1.0;
|
||
|
||
for (int k = 0; k < n_fft_bins; ++k) {
|
||
const double f = k * bin_hz_step;
|
||
double w = 0.0;
|
||
if (f >= f_left && f <= f_center) {
|
||
w = (f - f_left) / denom_l;
|
||
} else if (f > f_center && f <= f_right) {
|
||
w = (f_right - f) / denom_r;
|
||
}
|
||
out[size_t(m) * size_t(n_fft_bins) + size_t(k)] = float(w * enorm * scale);
|
||
}
|
||
}
|
||
|
||
filters.n_mel = n_mel;
|
||
filters.n_fft = n_fft;
|
||
filters.data = std::move(out);
|
||
|
||
if (DEBUG) { // debug
|
||
for (size_t i = 0; i < filters.data.size(); ++i) {
|
||
if (filters.data[i] != 0.0f) {
|
||
printf("filters[%zu] = %f\n", i, filters.data[i] * 1000.0f);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
} g_cache;
|
||
|
||
// naive Discrete Fourier Transform
|
||
// input is real-valued
|
||
// output is complex-valued
|
||
static void dft(const float * in, int N, float * out) {
|
||
const int n_sin_cos_vals = g_cache.sin_vals.size();
|
||
const int sin_cos_step = n_sin_cos_vals / N;
|
||
|
||
for (int k = 0; k < N; k++) {
|
||
float re = 0;
|
||
float im = 0;
|
||
|
||
for (int n = 0; n < N; n++) {
|
||
int idx = (k * n * sin_cos_step) % (n_sin_cos_vals); // t = 2*M_PI*k*n/N
|
||
re += in[n] * g_cache.cos_vals[idx]; // cos(t)
|
||
im -= in[n] * g_cache.sin_vals[idx]; // sin(t)
|
||
}
|
||
|
||
out[k*2 + 0] = re;
|
||
out[k*2 + 1] = im;
|
||
}
|
||
}
|
||
|
||
// Cooley-Tukey FFT
|
||
// poor man's implementation - use something better
|
||
// input is real-valued
|
||
// output is complex-valued
|
||
static void fft(float * in, int N, float * out) {
|
||
const int n_sin_cos_vals = g_cache.sin_vals.size();
|
||
if (N == 1) {
|
||
out[0] = in[0];
|
||
out[1] = 0;
|
||
return;
|
||
}
|
||
|
||
const int half_N = N / 2;
|
||
if (N - half_N*2 == 1) {
|
||
dft(in, N, out);
|
||
return;
|
||
}
|
||
|
||
float* even = in + N;
|
||
for (int i = 0; i < half_N; ++i) {
|
||
even[i]= in[2*i];
|
||
}
|
||
float* even_fft = out + 2 * N;
|
||
fft(even, half_N, even_fft);
|
||
|
||
float* odd = even;
|
||
for (int i = 0; i < half_N; ++i) {
|
||
odd[i] = in[2*i + 1];
|
||
}
|
||
float* odd_fft = even_fft + N;
|
||
fft(odd, half_N, odd_fft);
|
||
|
||
const int sin_cos_step = n_sin_cos_vals / N;
|
||
for (int k = 0; k < half_N; k++) {
|
||
int idx = k * sin_cos_step; // t = 2*M_PI*k/N
|
||
float re = g_cache.cos_vals[idx]; // cos(t)
|
||
float im = -g_cache.sin_vals[idx]; // sin(t)
|
||
|
||
float re_odd = odd_fft[2*k + 0];
|
||
float im_odd = odd_fft[2*k + 1];
|
||
|
||
out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd;
|
||
out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd;
|
||
|
||
out[2*(k + half_N) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd;
|
||
out[2*(k + half_N) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd;
|
||
}
|
||
}
|
||
|
||
struct filter_params {
|
||
int32_t n_mel;
|
||
int32_t n_fft_bins;
|
||
int32_t hann_window_size;
|
||
int32_t hop_length;
|
||
int32_t sample_rate;
|
||
bool center_padding = false;
|
||
float preemph = 0.f;
|
||
bool use_natural_log = false;
|
||
bool norm_per_feature = false;
|
||
};
|
||
|
||
static void log_mel_spectrogram_worker_thread(int ith, const float * hann, const std::vector<float> & samples,
|
||
int n_samples, int frame_size, int frame_step, int n_threads,
|
||
const filter_params & params, mtmd_audio_mel & out) {
|
||
std::vector<float> fft_in(frame_size * 2, 0.0);
|
||
std::vector<float> fft_out(frame_size * 2 * 2 * 2);
|
||
|
||
int n_fft_bins = params.n_fft_bins;
|
||
int i = ith;
|
||
|
||
const auto & filters = g_cache.filters;
|
||
|
||
// make sure n_fft == 1 + (WHISPER_N_FFT / 2), bin_0 to bin_nyquist
|
||
GGML_ASSERT(n_fft_bins == 1 + (frame_size / 2));
|
||
GGML_ASSERT(g_cache.sin_vals.size() == g_cache.cos_vals.size());
|
||
// calculate FFT only when fft_in are not all zero
|
||
for (; i < std::min(n_samples / frame_step + 1, out.n_len); i += n_threads) {
|
||
const int offset = i * frame_step;
|
||
|
||
// apply Hann window (~10% faster)
|
||
for (int j = 0; j < std::min(frame_size, n_samples - offset); j++) {
|
||
fft_in[j] = hann[j] * samples[offset + j];
|
||
}
|
||
|
||
// fill the rest with zeros
|
||
if (n_samples - offset < frame_size) {
|
||
std::fill(fft_in.begin() + (n_samples - offset), fft_in.end(), 0.0);
|
||
}
|
||
|
||
// FFT
|
||
fft(fft_in.data(), frame_size, fft_out.data());
|
||
|
||
// Calculate modulus^2 of complex numbers
|
||
// Use pow(fft_out[2 * j + 0], 2) + pow(fft_out[2 * j + 1], 2) causes inference quality problem? Interesting.
|
||
for (int j = 0; j < n_fft_bins; j++) {
|
||
fft_out[j] = (fft_out[2 * j + 0] * fft_out[2 * j + 0] + fft_out[2 * j + 1] * fft_out[2 * j + 1]);
|
||
}
|
||
|
||
// mel spectrogram
|
||
for (int j = 0; j < out.n_mel; j++) {
|
||
double sum = 0.0;
|
||
// unroll loop (suggested by GH user @lunixbochs)
|
||
int k = 0;
|
||
for (k = 0; k < n_fft_bins - 3; k += 4) {
|
||
size_t idx = size_t(j) * size_t(n_fft_bins) + size_t(k);
|
||
sum +=
|
||
fft_out[k + 0] * filters.data[idx + 0] +
|
||
fft_out[k + 1] * filters.data[idx + 1] +
|
||
fft_out[k + 2] * filters.data[idx + 2] +
|
||
fft_out[k + 3] * filters.data[idx + 3];
|
||
}
|
||
// handle n_fft remainder
|
||
for (; k < n_fft_bins; k++) {
|
||
sum += fft_out[k] * filters.data[j * n_fft_bins + k];
|
||
}
|
||
sum = params.use_natural_log
|
||
? log(sum + 5.960464477539063e-08)
|
||
: log10(std::max(sum, 1e-10));
|
||
out.data[j * out.n_len + i] = sum;
|
||
}
|
||
}
|
||
|
||
// Otherwise fft_out are all zero
|
||
double sum = params.use_natural_log ? log(1e-10) : log10(1e-10);
|
||
for (; i < out.n_len; i += n_threads) {
|
||
for (int j = 0; j < out.n_mel; j++) {
|
||
out.data[j * out.n_len + i] = sum;
|
||
}
|
||
}
|
||
}
|
||
|
||
// ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L110-L157
|
||
static bool log_mel_spectrogram(
|
||
const float * samples,
|
||
const int n_samples_in,
|
||
const int n_threads,
|
||
const filter_params & params,
|
||
mtmd_audio_mel & out) {
|
||
//const int64_t t_start_us = ggml_time_us();
|
||
|
||
out.n_len_org = n_samples_in;
|
||
int n_samples = n_samples_in;
|
||
|
||
// Hann window
|
||
const float * hann = g_cache.hann_window.data();
|
||
const int frame_size = (params.n_fft_bins - 1) * 2;
|
||
const int frame_step = params.hop_length;
|
||
|
||
// Padding
|
||
std::vector<float> samples_padded;
|
||
if (params.center_padding) {
|
||
const auto pad_amount = frame_size / 2;
|
||
samples_padded = std::vector<float>(n_samples + 2 * pad_amount, 0);
|
||
std::copy(samples, samples + n_samples, samples_padded.data() + pad_amount);
|
||
samples = samples_padded.data();
|
||
n_samples = samples_padded.size();
|
||
} else {
|
||
// existing padding logic
|
||
int64_t stage_1_pad = params.sample_rate * 30;
|
||
int64_t stage_2_pad = frame_size / 2;
|
||
samples_padded.resize(n_samples + stage_1_pad + stage_2_pad * 2);
|
||
std::copy(samples, samples + n_samples, samples_padded.begin() + stage_2_pad);
|
||
// pad 30 seconds of zeros at the end of audio (480,000 samples) + reflective pad 200 samples at the end of audio
|
||
std::fill(samples_padded.begin() + n_samples + stage_2_pad, samples_padded.begin() + n_samples + stage_1_pad + 2 * stage_2_pad, 0);
|
||
// reflective pad 200 samples at the beginning of audio
|
||
if (n_samples < stage_2_pad + 1) {
|
||
// TODO: Handle short audio differently or return error
|
||
return false;
|
||
}
|
||
std::reverse_copy(samples + 1, samples + 1 + stage_2_pad, samples_padded.begin());
|
||
}
|
||
|
||
// preemphasis
|
||
if (params.preemph) {
|
||
const int pad_amount = frame_size / 2;
|
||
const float preemph = 0.97f;
|
||
float prev = samples_padded[pad_amount];
|
||
for (int i = pad_amount + 1; i + pad_amount < n_samples; ++i) {
|
||
float cur = samples_padded[i];
|
||
samples_padded[i] = cur - preemph * prev;
|
||
prev = cur;
|
||
}
|
||
}
|
||
|
||
// pad hann window if it's smaller than frame_size
|
||
// TODO: probably unnecessary here? (or better doing it in g_cache?)
|
||
std::vector<float> hann_window_padded;
|
||
if (params.hann_window_size < frame_size) {
|
||
hann_window_padded.resize(frame_size);
|
||
const int padding = (frame_size - params.hann_window_size) / 2;
|
||
std::copy(hann, hann + params.hann_window_size, &hann_window_padded[padding]);
|
||
hann = hann_window_padded.data();
|
||
}
|
||
|
||
|
||
out.n_mel = params.n_mel;
|
||
out.n_len = (n_samples - frame_size) / frame_step + 1;
|
||
// TODO: handle these checks better
|
||
if (out.n_mel > 0 && (unsigned long)out.n_len > SIZE_MAX / out.n_mel) {
|
||
LOG_ERR("%s: size overflow\n", __func__);
|
||
return false;
|
||
}
|
||
if (n_samples < frame_size) {
|
||
LOG_ERR("%s: not enough samples after padding\n", __func__);
|
||
return false;
|
||
}
|
||
out.data.resize(out.n_mel * out.n_len);
|
||
|
||
{
|
||
std::vector<std::thread> workers(n_threads - 1);
|
||
for (int iw = 0; iw < n_threads - 1; ++iw) {
|
||
workers[iw] = std::thread(
|
||
log_mel_spectrogram_worker_thread, iw + 1, hann, std::cref(samples_padded),
|
||
n_samples, frame_size, frame_step, n_threads,
|
||
std::cref(params), std::ref(out));
|
||
}
|
||
|
||
// main thread
|
||
log_mel_spectrogram_worker_thread(0, hann, samples_padded, n_samples, frame_size, frame_step, n_threads, params, out);
|
||
for (int iw = 0; iw < n_threads - 1; ++iw) {
|
||
workers[iw].join();
|
||
}
|
||
}
|
||
|
||
const int effective_n_len = n_samples_in / frame_step;
|
||
if (params.norm_per_feature) {
|
||
for (int i = 0; i < out.n_mel; i++) {
|
||
double mean = 0;
|
||
for (int j = 0; j < effective_n_len; ++j) {
|
||
mean += out.data[i * out.n_len + j];
|
||
}
|
||
mean /= effective_n_len;
|
||
|
||
double var = 0.0;
|
||
for (int j = 0; j < effective_n_len; ++j) {
|
||
const double value = out.data[i * out.n_len + j] - mean;
|
||
var += value * value;
|
||
}
|
||
var /= effective_n_len - 1; // unbiased
|
||
const double mstd = std::sqrt(var + 1e-5);
|
||
|
||
for (int j = 0; j < effective_n_len; ++j) {
|
||
auto &value = out.data[i * out.n_len + j];
|
||
value = (value - mean) / mstd;
|
||
}
|
||
|
||
// pad the rest with zeros
|
||
for (int j = effective_n_len; j < out.n_len; ++j) {
|
||
out.data[i * out.n_len + j] = 0.0;
|
||
}
|
||
}
|
||
} else {
|
||
// clamping and normalization
|
||
double mmax = -1e20;
|
||
for (int i = 0; i < out.n_mel*out.n_len; i++) {
|
||
if (out.data[i] > mmax) {
|
||
mmax = out.data[i];
|
||
}
|
||
}
|
||
|
||
mmax -= 8.0;
|
||
|
||
for (int i = 0; i < out.n_mel*out.n_len; i++) {
|
||
if (out.data[i] < mmax) {
|
||
out.data[i] = mmax;
|
||
}
|
||
out.data[i] = (out.data[i] + 4.0)/4.0;
|
||
}
|
||
}
|
||
|
||
// Dump log_mel_spectrogram
|
||
if (DEBUG) {
|
||
std::ofstream outFile("log_mel_spectrogram.json");
|
||
outFile << "[";
|
||
for (uint64_t i = 0; i < out.data.size() - 1; i++) {
|
||
outFile << out.data[i] << ", ";
|
||
}
|
||
outFile << out.data[out.data.size() - 1] << "]";
|
||
outFile.close();
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
//
|
||
// mtmd_audio_preprocessor_whisper
|
||
//
|
||
|
||
void mtmd_audio_preprocessor_whisper::initialize() {
|
||
g_cache.fill_sin_cos_table(hparams.audio_n_fft);
|
||
g_cache.fill_hann_window(hparams.audio_window_len, true);
|
||
g_cache.fill_mel_filterbank_matrix(
|
||
hparams.n_mel_bins,
|
||
hparams.audio_n_fft,
|
||
hparams.audio_sample_rate);
|
||
}
|
||
|
||
bool mtmd_audio_preprocessor_whisper::preprocess(
|
||
const float * samples,
|
||
size_t n_samples,
|
||
std::vector<mtmd_audio_mel> & output) {
|
||
if (n_samples == 0) {
|
||
// empty audio
|
||
return false;
|
||
}
|
||
|
||
std::vector<float> smpl;
|
||
// if input is too short, pad with zeros
|
||
// this is to avoid potential issues with stage1/2 padding in log_mel_spectrogram
|
||
// TODO: maybe handle this better
|
||
size_t min_samples = (size_t)hparams.audio_sample_rate * (hparams.audio_chunk_len + 1); // +1 second margin
|
||
if (n_samples < min_samples) {
|
||
smpl.resize(min_samples, 0.0f);
|
||
std::memcpy(smpl.data(), samples, n_samples * sizeof(float));
|
||
samples = smpl.data();
|
||
n_samples = smpl.size();
|
||
}
|
||
|
||
filter_params params;
|
||
params.n_mel = hparams.n_mel_bins;
|
||
params.n_fft_bins = 1 + (hparams.audio_n_fft / 2);
|
||
params.hann_window_size = hparams.audio_window_len;
|
||
params.hop_length = hparams.audio_hop_len;
|
||
params.sample_rate = hparams.audio_sample_rate;
|
||
params.center_padding = false;
|
||
params.preemph = 0.0f; // disabled
|
||
params.use_natural_log = false;
|
||
params.norm_per_feature = false;
|
||
|
||
// make sure the global cache is initialized
|
||
GGML_ASSERT(!g_cache.sin_vals.empty());
|
||
GGML_ASSERT(!g_cache.cos_vals.empty());
|
||
GGML_ASSERT(!g_cache.filters.data.empty());
|
||
|
||
mtmd_audio_mel out_full;
|
||
bool ok = log_mel_spectrogram(
|
||
samples,
|
||
n_samples,
|
||
4, // n_threads
|
||
params,
|
||
out_full);
|
||
if (!ok) {
|
||
return false;
|
||
}
|
||
|
||
// because the cgraph in clip.cpp only accepts 3000 frames each, we need to split the mel
|
||
// we always expect the mel to have 3000 silent frames at the end
|
||
if (DEBUG) {
|
||
printf("output: n_mel = %d, n_len = %d\n", out_full.n_mel, out_full.n_len);
|
||
}
|
||
const size_t frames_per_chunk = 3000;
|
||
GGML_ASSERT((size_t)out_full.n_len > frames_per_chunk);
|
||
for (size_t off = 0; off < (size_t)out_full.n_len; off += frames_per_chunk) {
|
||
int n_len = std::min(frames_per_chunk, (size_t)out_full.n_len - off);
|
||
if ((size_t)n_len < frames_per_chunk) {
|
||
break; // last uncomplete chunk will always be a padded chunk, safe to ignore
|
||
}
|
||
|
||
mtmd_audio_mel out_chunk;
|
||
out_chunk.n_len = n_len;
|
||
out_chunk.n_mel = out_full.n_mel;
|
||
out_chunk.n_len_org = out_full.n_mel; // unused
|
||
out_chunk.data.reserve(out_chunk.n_mel * out_chunk.n_len);
|
||
|
||
for (int i = 0; i < out_full.n_mel; i++) {
|
||
auto src = out_full.data.begin() + i*out_full.n_len + off;
|
||
out_chunk.data.insert(out_chunk.data.end(), src, src + frames_per_chunk);
|
||
}
|
||
|
||
output.push_back(std::move(out_chunk));
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
//
|
||
// mtmd_audio_preprocessor_lfm2
|
||
//
|
||
void mtmd_audio_preprocessor_lfm2::initialize() {
|
||
g_cache.fill_sin_cos_table(hparams.audio_n_fft);
|
||
g_cache.fill_hann_window(hparams.audio_window_len, true);
|
||
g_cache.fill_mel_filterbank_matrix(
|
||
hparams.n_mel_bins,
|
||
hparams.audio_n_fft,
|
||
hparams.audio_sample_rate);
|
||
}
|
||
|
||
bool mtmd_audio_preprocessor_lfm2::preprocess(
|
||
const float * samples,
|
||
size_t n_samples,
|
||
std::vector<mtmd_audio_mel> & output) {
|
||
// empty audio
|
||
if (n_samples == 0) {
|
||
return false;
|
||
}
|
||
|
||
filter_params params;
|
||
params.n_mel = hparams.n_mel_bins;
|
||
params.n_fft_bins = 1 + (hparams.audio_n_fft / 2);
|
||
params.hann_window_size = hparams.audio_window_len;
|
||
params.hop_length = hparams.audio_hop_len;
|
||
params.sample_rate = hparams.audio_sample_rate;
|
||
params.center_padding = true;
|
||
params.preemph = 0.97f; // disabled
|
||
params.use_natural_log = true;
|
||
params.norm_per_feature = true;
|
||
|
||
// make sure the global cache is initialized
|
||
GGML_ASSERT(!g_cache.sin_vals.empty());
|
||
GGML_ASSERT(!g_cache.cos_vals.empty());
|
||
GGML_ASSERT(!g_cache.filters.data.empty());
|
||
|
||
mtmd_audio_mel out_full;
|
||
bool ok = log_mel_spectrogram(
|
||
samples,
|
||
n_samples,
|
||
4, // n_threads
|
||
params,
|
||
out_full);
|
||
if (!ok) {
|
||
return false;
|
||
}
|
||
|
||
output.push_back(std::move(out_full));
|
||
return true;
|
||
}
|