llama.cpp/ggml/src/ggml-cuda/fattn-tile.cuh

1234 lines
55 KiB
Plaintext

#include "common.cuh"
#include "fattn-common.cuh"
#include "fattn-wmma-f16.cuh"
// nbatch_fa == number of KQ rows to process per iteration
// nbatch_K == number of K columns to load in parallel for KQ calculation
// TODO optimize kernel parameters for FP16 NVIDIA (P100)
// TODO optimize kernel parameters for head sizes 40, 72, 80, 96, 112
// The ROCm compiler cannot handle templating in __launch_bounds__.
// As a workaround, define a macro to package the kernel parameters as uint32_t:
#define GGML_CUDA_FATTN_TILE_CONFIG_CASE(DKQ_, DV_, ncols_, nthreads, occupancy, nbatch_fa, nbatch_K) \
if (DKQ == (DKQ_) && DV == (DV_) && ncols == (ncols_)) { \
static_assert((nthreads) <= 512, "bad nthreads"); \
static_assert((occupancy) <= 8, "bad occupancy"); \
static_assert((nbatch_fa) <= 256, "bad nbatch_fa"); \
static_assert((nbatch_K) <= 256, "bad nbatch_K"); \
return ((nthreads) << 0) | ((occupancy) << 10) | ((nbatch_fa) << 14) | ((nbatch_K) << 23); \
} \
static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_nvidia_fp16(const int DKQ, const int DV, const int ncols) {
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 2, 64, 2, 64, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 4, 128, 2, 64, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 8, 256, 2, 64, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 16, 256, 2, 64, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 32, 256, 2, 64, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 2, 64, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 4, 128, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 8, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 16, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 32, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 2, 64, 2, 64, 72)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 4, 128, 2, 64, 72)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 8, 256, 2, 64, 72)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 16, 256, 2, 64, 72)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 32, 256, 2, 64, 72)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 2, 64, 2, 64, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 4, 128, 2, 64, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 8, 256, 2, 64, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 16, 256, 2, 64, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 32, 256, 2, 64, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 2, 64, 2, 64, 48)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 4, 128, 2, 64, 48)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 8, 256, 2, 64, 48)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 16, 256, 2, 64, 48)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 32, 256, 2, 64, 48)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 2, 64, 2, 64, 56)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 4, 128, 2, 64, 56)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 8, 256, 2, 64, 56)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 16, 256, 2, 64, 56)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 32, 256, 2, 64, 56)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 2, 64, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 4, 128, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 8, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 16, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 32, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 2, 64, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 4, 128, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 8, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 2, 64, 64)
return 0;
}
static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_nvidia_fp32(const int DKQ, const int DV, const int ncols) {
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 2, 64, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 4, 128, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 8, 256, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 16, 256, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 32, 256, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 2, 128, 3, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 4, 128, 3, 32, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 8, 128, 3, 32, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 16, 128, 3, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 32, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 2, 64, 2, 32, 72)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 4, 128, 2, 32, 72)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 8, 256, 2, 32, 72)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 16, 256, 2, 32, 72)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 32, 256, 2, 32, 72)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 2, 64, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 4, 128, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 8, 256, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 16, 256, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 32, 256, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 2, 64, 2, 32, 48)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 4, 128, 2, 32, 48)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 8, 256, 2, 32, 48)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 16, 256, 2, 32, 48)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 32, 256, 2, 32, 48)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 2, 64, 2, 32, 56)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 4, 128, 2, 32, 56)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 8, 256, 2, 32, 56)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 16, 256, 2, 32, 56)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 32, 256, 2, 32, 56)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 2, 128, 3, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 4, 128, 3, 32, 128)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 8, 128, 3, 64, 128)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 16, 128, 3, 32, 128)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 32, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 2, 128, 3, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 4, 128, 3, 32, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 8, 256, 2, 32, 256)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 2, 32, 128)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 2, 32, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 2, 32, 64)
return 0;
}
static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_amd(const int DKQ, const int DV, const int ncols) {
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 2, 64, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 4, 128, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 8, 256, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 16, 256, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 32, 256, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 64, 256, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 2, 64, 3, 32, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 4, 128, 3, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 8, 128, 2, 32, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 16, 256, 2, 128, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 32, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 64, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 2, 64, 2, 32, 72)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 4, 128, 2, 32, 72)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 8, 256, 2, 32, 72)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 16, 256, 2, 32, 72)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 32, 256, 2, 32, 72)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 64, 256, 2, 32, 72)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 2, 64, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 4, 128, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 8, 256, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 16, 256, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 32, 256, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 64, 256, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 2, 64, 2, 32, 48)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 4, 128, 2, 32, 48)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 8, 256, 2, 32, 48)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 16, 256, 2, 32, 48)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 32, 256, 2, 32, 48)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 64, 256, 2, 32, 48)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 2, 64, 2, 32, 56)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 4, 128, 2, 32, 56)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 8, 256, 2, 32, 56)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 16, 256, 2, 32, 56)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 32, 256, 2, 32, 56)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 64, 256, 2, 32, 56)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 2, 256, 2, 128, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 4, 128, 2, 64, 128)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 8, 256, 2, 64, 128)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 16, 256, 2, 64, 128)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 32, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 64, 256, 2, 64, 32)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 2, 256, 2, 128, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 4, 256, 2, 64, 128)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 8, 256, 2, 64, 128)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 2, 32, 128)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 2, 32, 128)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 2, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 32, 512, 1, 128, 64)
return 0;
}
static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_amd_rdna(const int DKQ, const int DV, const int ncols) {
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 2, 64, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 4, 128, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 8, 256, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 16, 256, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 32, 256, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 40, 40, 64, 256, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 2, 64, 8, 32, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 4, 64, 8, 32, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 8, 128, 5, 128, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 16, 128, 5, 128, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 32, 128, 4, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 64, 128, 5, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 2, 64, 2, 32, 72)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 4, 128, 2, 32, 72)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 8, 256, 2, 32, 72)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 16, 256, 2, 32, 72)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 32, 256, 2, 32, 72)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 64, 256, 2, 32, 72)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 2, 64, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 4, 128, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 8, 256, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 16, 256, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 32, 256, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 64, 256, 2, 32, 40)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 2, 64, 2, 32, 48)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 4, 128, 2, 32, 48)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 8, 256, 2, 32, 48)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 16, 256, 2, 32, 48)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 32, 256, 2, 32, 48)
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 96, 96, 64, 256, 2, 32, 48)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 2, 64, 2, 32, 56)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 4, 128, 2, 32, 56)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 8, 256, 2, 32, 56)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 16, 256, 2, 32, 56)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 32, 256, 2, 32, 56)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(112, 112, 64, 256, 2, 32, 56)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 2, 64, 8, 32, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 4, 128, 8, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 8, 128, 8, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 16, 256, 3, 128, 128)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 32, 256, 3, 128, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(128, 128, 64, 256, 3, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 2, 64, 8, 32, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 4, 128, 6, 32, 256)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 8, 128, 6, 32, 256)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 16, 256, 5, 32, 256)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(256, 256, 32, 256, 3, 64, 128)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 16, 256, 4, 64, 64)
GGML_CUDA_FATTN_TILE_CONFIG_CASE(576, 512, 32, 256, 2, 128, 64)
return 0;
}
static __host__ uint32_t ggml_cuda_fattn_tile_get_config(const int DKQ, const int DV, const int ncols, const int cc) {
if (GGML_CUDA_CC_IS_AMD(cc)) {
if (GGML_CUDA_CC_IS_RDNA(cc)) {
return ggml_cuda_fattn_tile_get_config_amd_rdna(DKQ, DV, ncols);
}
return ggml_cuda_fattn_tile_get_config_amd(DKQ, DV, ncols);
}
if (fast_fp16_available(cc)) {
return ggml_cuda_fattn_tile_get_config_nvidia_fp16(DKQ, DV, ncols);
}
return ggml_cuda_fattn_tile_get_config_nvidia_fp32(DKQ, DV, ncols);
}
static constexpr __device__ uint32_t ggml_cuda_fattn_tile_get_config(const int DKQ, const int DV, const int ncols) {
#ifdef GGML_USE_HIP
#ifdef RDNA
return ggml_cuda_fattn_tile_get_config_amd_rdna(DKQ, DV, ncols);
#else
return ggml_cuda_fattn_tile_get_config_amd(DKQ, DV, ncols);
#endif // RDNA
#else
#ifdef FAST_FP16_AVAILABLE
return ggml_cuda_fattn_tile_get_config_nvidia_fp16(DKQ, DV, ncols);
#else
return ggml_cuda_fattn_tile_get_config_nvidia_fp32(DKQ, DV, ncols);
#endif // FAST_FP16_AVAILABLE
#endif // GGML_USE_HIP
}
static __host__ int ggml_cuda_fattn_tile_get_nthreads(const int DKQ, const int DV, const int ncols, const int cc) {
return (ggml_cuda_fattn_tile_get_config(DKQ, DV, ncols, cc) >> 0) & ((1 << 10) - 1);
}
static constexpr __device__ int ggml_cuda_fattn_tile_get_nthreads(const int DKQ, const int DV, const int ncols) {
return (ggml_cuda_fattn_tile_get_config(DKQ, DV, ncols) >> 0) & ((1 << 10) - 1);
}
static __host__ int ggml_cuda_fattn_tile_get_occupancy(const int DKQ, const int DV, const int ncols, const int cc) {
return (ggml_cuda_fattn_tile_get_config(DKQ, DV, ncols, cc) >> 10) & ((1 << 4) - 1);
}
static constexpr __device__ int ggml_cuda_fattn_tile_get_occupancy(const int DKQ, const int DV, const int ncols) {
return (ggml_cuda_fattn_tile_get_config(DKQ, DV, ncols) >> 10) & ((1 << 4) - 1);
}
static __host__ int ggml_cuda_fattn_tile_get_nbatch_fa(const int DKQ, const int DV, const int ncols, const int cc) {
return (ggml_cuda_fattn_tile_get_config(DKQ, DV, ncols, cc) >> 14) & ((1 << 9) - 1);
}
static constexpr __device__ int ggml_cuda_fattn_tile_get_nbatch_fa(const int DKQ, const int DV, const int ncols) {
return (ggml_cuda_fattn_tile_get_config(DKQ, DV, ncols) >> 14) & ((1 << 9) - 1);
}
static __host__ int ggml_cuda_fattn_tile_get_nbatch_K(const int DKQ, const int DV, const int ncols, const int cc) {
return (ggml_cuda_fattn_tile_get_config(DKQ, DV, ncols, cc) >> 23) & ((1 << 9) - 1);
}
static constexpr __device__ int ggml_cuda_fattn_tile_get_nbatch_K(const int DKQ, const int DV, const int ncols) {
return (ggml_cuda_fattn_tile_get_config(DKQ, DV, ncols) >> 23) & ((1 << 9) - 1);
}
// TODO: deduplicate with mma-f16
template<int warp_size, int nwarps, int I, int J, int J_padding, bool oob_check>
static __device__ __forceinline__ void flash_attn_tile_load_tile(
const half2 * const __restrict__ KV, half2 * const __restrict__ tile_KV, const int stride_KV, const int i_sup) {
constexpr int cpy_nb = ggml_cuda_get_max_cpy_bytes();
constexpr int cpy_ne = cpy_nb / 4;
auto load = [&] __device__ (const int n) {
const int stride_j = warp_size >> n;
if (stride_j == 0) {
return;
}
const int j0_start = stride_j == warp_size ? 0 : ((J/2)/cpy_ne) - ((J/2)/cpy_ne) % (2*stride_j);
const int j0_stop = ((J/2)/cpy_ne) - ((J/2)/cpy_ne) % (1*stride_j);
const int stride_i = warp_size / stride_j;
if (j0_start == j0_stop) {
return;
}
#pragma unroll
for (int i0 = 0; i0 < I; i0 += nwarps*stride_i) {
const int i = i0 + threadIdx.y*stride_i + (stride_j == warp_size ? 0 : threadIdx.x / stride_j);
if (i0 + nwarps*stride_i <= I || i < I) {
#pragma unroll
for (int j0 = j0_start; j0 < j0_stop; j0 += stride_j) {
const int j = j0*cpy_ne + (stride_j == warp_size ? threadIdx.x : threadIdx.x % stride_j)*cpy_ne;
const half2 zero[cpy_ne] = {{0.0f, 0.0f}};
ggml_cuda_memcpy_1<cpy_nb>(
tile_KV + i*(J/2 + J_padding) + j,
!oob_check || i < i_sup ? KV + i*stride_KV + j : zero);
}
}
}
};
// 1: max 64*16=512 bytes, 512 half
// 2: max 32*16=512 bytes, 256 half
// 3: max 16*16=256 bytes, 128 half
// 4: max 8*16=128 bytes, 64 half
// 5: max 4*16= 64 bytes, 32 half
// 6: max 2*16= 32 bytes, 16 half
// 7: max 1*16= 16 bytes, 8 half
static_assert(J % 8 == 0, "bad J");
static_assert((J/2) % cpy_ne == 0, "bad J");
ggml_cuda_unroll<7>{}(load);
}
template<int warp_size, int nwarps, int I, int J, int J_padding, bool oob_check>
static __device__ __forceinline__ void flash_attn_tile_load_tile(
const half2 * const __restrict__ KV, float * const __restrict__ tile_KV, const int stride_KV, const int i_sup) {
constexpr int cpy_nb = ggml_cuda_get_max_cpy_bytes();
constexpr int cpy_ne = cpy_nb / 4;
auto load = [&] __device__ (const int n) {
const int stride_j = warp_size >> n;
if (stride_j == 0) {
return;
}
const int j0_start = stride_j == warp_size ? 0 : (J/cpy_ne) - (J/cpy_ne) % (2*stride_j);
const int j0_stop = (J/cpy_ne) - (J/cpy_ne) % (1*stride_j);
const int stride_i = warp_size / stride_j;
if (j0_start == j0_stop) {
return;
}
#pragma unroll
for (int i0 = 0; i0 < I; i0 += nwarps*stride_i) {
const int i = i0 + threadIdx.y*stride_i + (stride_j == warp_size ? 0 : threadIdx.x / stride_j);
if (i0 + nwarps*stride_i <= I || i < I) {
#pragma unroll
for (int j0 = j0_start; j0 < j0_stop; j0 += stride_j) {
const int j = j0*(cpy_ne/2) + (stride_j == warp_size ? threadIdx.x : threadIdx.x % stride_j)*(cpy_ne/2);
const half2 zero[cpy_ne/2] = {{0.0f, 0.0f}};
half2 tmp_h2[cpy_ne/2];
ggml_cuda_memcpy_1<sizeof(tmp_h2)>(
tmp_h2, !oob_check || i < i_sup ? KV + i*stride_KV + j : zero);
float2 tmp_f2[cpy_ne/2];
#pragma unroll
for (int l = 0; l < cpy_ne/2; ++l) {
tmp_f2[l] = __half22float2(tmp_h2[l]);
}
ggml_cuda_memcpy_1<sizeof(tmp_f2)>(tile_KV + i*(J + J_padding) + 2*j, tmp_f2);
}
}
}
};
// 1: max 32*16=512 bytes, 128 float
// 2: max 16*16=256 bytes, 64 float
// 3: max 8*16=128 bytes, 32 float
// 4: max 4*16= 64 bytes, 16 float
// 5: max 2*16= 32 bytes, 8 float
static_assert(J % 8 == 0, "bad J");
static_assert(J % cpy_ne == 0, "bad J");
ggml_cuda_unroll<5>{}(load);
}
// Function that performs a single iteration in for the KQ matrix multiplication:
template <int warp_size, int nwarps, int ncols1, int ncols2, int DKQ, int nbatch_fa, int nbatch_K,
bool use_logit_softcap, bool oob_check, typename T_vec_dot>
static __device__ __forceinline__ void flash_attn_tile_iter_KQ(
T_vec_dot * const Q_tmp,
const half2 * const __restrict__ K_h2,
T_vec_dot * const KV_tmp,
const int stride_K2,
const int k_VKQ_0,
const int k_VKQ_sup,
const int k_KQ_0,
float * KQ_acc) {
constexpr int cpy_nb = ggml_cuda_get_max_cpy_bytes();
constexpr int cpy_ne = cpy_nb / 4;
constexpr int ncols = ncols1*ncols2;
constexpr int cpw = ncols > nwarps ? ncols/nwarps : 1; // Q columns per warp
constexpr int np = nwarps > ncols ? nwarps/ncols : 1; // number of parallel warps per Q column
flash_attn_tile_load_tile<warp_size, nwarps, nbatch_fa, nbatch_K, cpy_ne, oob_check>
(K_h2 + int64_t(k_VKQ_0)*stride_K2 + k_KQ_0/2, KV_tmp, stride_K2, k_VKQ_sup);
__syncthreads();
#ifdef FAST_FP16_AVAILABLE
static_assert((nbatch_K/2) % cpy_ne == 0, "bad nbatch_K");
#pragma unroll
for (int k_KQ_1 = 0; k_KQ_1 < nbatch_K/2; k_KQ_1 += cpy_ne) {
half2 K_k[nbatch_fa/(np*warp_size)][cpy_ne];
half2 Q_k[cpw][cpy_ne];
#else
static_assert(nbatch_K % cpy_ne == 0, "bad nbatch_K");
#pragma unroll
for (int k_KQ_1 = 0; k_KQ_1 < nbatch_K; k_KQ_1 += cpy_ne) {
float K_k[nbatch_fa/(np*warp_size)][cpy_ne];
float Q_k[cpw][cpy_ne];
#endif // FAST_FP16_AVAILABLE
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < nbatch_fa; i_KQ_0 += np*warp_size) {
const int i_KQ = i_KQ_0 + (threadIdx.y % np)*warp_size + threadIdx.x;
#ifdef FAST_FP16_AVAILABLE
ggml_cuda_memcpy_1<cpy_nb>(&K_k[i_KQ_0/(np*warp_size)], &KV_tmp[i_KQ*(nbatch_K/2 + cpy_ne) + k_KQ_1]);
#else
ggml_cuda_memcpy_1<cpy_nb>(&K_k[i_KQ_0/(np*warp_size)], &KV_tmp[i_KQ*(nbatch_K + cpy_ne) + k_KQ_1]);
#endif // FAST_FP16_AVAILABLE
}
#pragma unroll
for (int jc0 = 0; jc0 < cpw; ++jc0) {
const int jc = jc0 + (threadIdx.y / np)*cpw;
#ifdef FAST_FP16_AVAILABLE
ggml_cuda_memcpy_1<cpy_nb>(&Q_k[jc0], &Q_tmp[jc*(DKQ/2) + k_KQ_0/2 + k_KQ_1]);
#else
ggml_cuda_memcpy_1<cpy_nb>(&Q_k[jc0], &Q_tmp[jc* DKQ + k_KQ_0 + k_KQ_1]);
#endif // FAST_FP16_AVAILABLE
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < nbatch_fa; i_KQ_0 += np*warp_size) {
#pragma unroll
for (int jc0 = 0; jc0 < cpw; ++jc0) {
#pragma unroll
for (int k = 0; k < cpy_ne; ++k) {
ggml_cuda_mad(KQ_acc[i_KQ_0/(np*warp_size)*cpw + jc0], K_k[i_KQ_0/(np*warp_size)][k], Q_k[jc0][k]);
}
}
}
}
if (k_KQ_0 + nbatch_K < DKQ) {
__syncthreads(); // Sync not needed on last iteration.
}
}
// Function that performs a single iteration of the main loop over up to nbatch_fa tokens.
template <int warp_size, int nwarps, int ncols1, int ncols2, int DKQ, int DV, int nbatch_fa, int nbatch_K,
bool use_logit_softcap, bool oob_check, typename T_vec_dot, typename T_KQ, typename T_acc>
static __device__ __forceinline__ void flash_attn_tile_iter(
T_vec_dot * const Q_tmp,
const half2 * const __restrict__ K_h2,
const half2 * const __restrict__ V_h2,
const half * const __restrict__ mask,
const float logit_softcap,
const float slope,
T_KQ * const KQ,
T_vec_dot * const KV_tmp,
const int stride_K2,
const int stride_V2,
const int stride_mask,
float * const KQ_max,
float * const KQ_sum,
T_acc * const VKQ,
const int k_VKQ_0,
const int k_VKQ_max) {
constexpr int cpy_nb = ggml_cuda_get_max_cpy_bytes();
constexpr int cpy_ne = cpy_nb / 4;
constexpr int ncols = ncols1*ncols2;
constexpr int cpw = ncols > nwarps ? ncols/nwarps : 1; // Q columns per warp
constexpr int np = nwarps > ncols ? nwarps/ncols : 1; // number of parallel warps per Q column
constexpr int DVp = (DV + 2*warp_size - 1) & ~(2*warp_size - 1); // DV padded to multiple of 2*warp_size.
// KQ_cs == KQ chunk size, number of KQ values in j direction to store as one contiguous chunk in memory.
// KQ is originally 2D but uses a Z-shaped 3D memory pattern like KQ[ncols/KQ_cs][DVp][KQ_cs].
#ifdef FAST_FP16_AVAILABLE
constexpr int KQ_cs = cpw < 2*cpy_ne ? cpw : 2*cpy_ne;
#else
constexpr int KQ_cs = cpw < 1*cpy_ne ? cpw : 1*cpy_ne;
#endif // FAST_FP16_AVAILABLE
static_assert(cpw % KQ_cs == 0, "bad KQ_cs");
const int k_VKQ_sup = k_VKQ_max - k_VKQ_0; // k supremum, only smaller k values have valid KV data
float KQ_max_new[cpw];
#pragma unroll
for (int jc0 = 0; jc0 < cpw; ++jc0) {
KQ_max_new[jc0] = KQ_max[jc0];
}
float KQ_acc[nbatch_fa/(np*warp_size) * cpw] = {0.0f}; // Accumulators for KQ matrix multiplication.
// KQ = K @ Q matrix multiplication:
constexpr int nbatch_K_last = DKQ % nbatch_K;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < DKQ - nbatch_K_last; k_KQ_0 += nbatch_K) {
flash_attn_tile_iter_KQ<warp_size, nwarps, ncols1, ncols2, DKQ, nbatch_fa, nbatch_K, use_logit_softcap, oob_check>(
Q_tmp, K_h2, KV_tmp, stride_K2, k_VKQ_0, k_VKQ_sup, k_KQ_0, KQ_acc);
}
if (nbatch_K_last > 0) {
constexpr int k_KQ_0 = DKQ - nbatch_K_last;
flash_attn_tile_iter_KQ<warp_size, nwarps, ncols1, ncols2, DKQ, nbatch_fa, nbatch_K_last, use_logit_softcap, oob_check>(
Q_tmp, K_h2, KV_tmp, stride_K2, k_VKQ_0, k_VKQ_sup, k_KQ_0, KQ_acc);
}
// Apply logit softcap + mask, update KQ_max:
#pragma unroll
for (int jc0 = 0; jc0 < cpw; ++jc0) {
const int j = (jc0 + (threadIdx.y / np)*cpw)/ncols2;
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < nbatch_fa; i_KQ_0 += np*warp_size) {
const int i_KQ = i_KQ_0 + (threadIdx.y % np)*warp_size + threadIdx.x;
if (use_logit_softcap) {
KQ_acc[(i_KQ_0/(np*warp_size))*cpw + jc0] = logit_softcap * tanhf(KQ_acc[(i_KQ_0/(np*warp_size))*cpw + jc0]);
}
if (!oob_check || i_KQ < k_VKQ_sup) {
KQ_acc[(i_KQ_0/(np*warp_size))*cpw + jc0] += (ncols2 > 1 || mask) ?
slope*__half2float(mask[j*stride_mask + k_VKQ_0 + i_KQ]) : 0.0f;
KQ_max_new[jc0] = fmaxf(KQ_max_new[jc0], KQ_acc[(i_KQ_0/(np*warp_size))*cpw + jc0]);
}
}
KQ_max_new[jc0] = warp_reduce_max<warp_size>(KQ_max_new[jc0]);
}
if constexpr (np == 1) {
__syncthreads();
} else {
static_assert(cpw == 1, "bad cpw");
__shared__ float KQ_max_new_shared[nwarps];
if (threadIdx.x == 0) {
KQ_max_new_shared[threadIdx.y] = KQ_max_new[0];
}
__syncthreads();
KQ_max_new[0] = KQ_max_new_shared[(threadIdx.y & ~(np-1)) + threadIdx.x % np];
KQ_max_new[0] = warp_reduce_max<np>(KQ_max_new[0]);
}
// Calculate KQ softmax, write to shared KQ buffer, re-scale VKQ accumulators:
#pragma unroll
for (int jc0 = 0; jc0 < cpw; jc0 += KQ_cs) {
#ifdef FAST_FP16_AVAILABLE
half tmp[nbatch_fa/(np*warp_size)][KQ_cs];
#else
float tmp[nbatch_fa/(np*warp_size)][KQ_cs];
#endif // FAST_FP16_AVAILABLE
#pragma unroll
for (int jc1 = 0; jc1 < KQ_cs; ++jc1) {
const int jc = jc0 + jc1;
const float KQ_max_scale = expf(KQ_max[jc] - KQ_max_new[jc]);
KQ_max[jc] = KQ_max_new[jc];
float KQ_sum_add = 0.0f;
#pragma unroll
for (int i0 = 0; i0 < nbatch_fa; i0 += np*warp_size) {
const float val = !oob_check || i0 + (threadIdx.y % np)*warp_size + threadIdx.x < k_VKQ_sup ?
expf(KQ_acc[(i0/(np*warp_size))*cpw + jc] - KQ_max[jc]) : 0.0f;
KQ_sum_add += val;
tmp[i0/(np*warp_size)][jc1] = val;
}
KQ_sum[jc] = KQ_sum[jc]*KQ_max_scale + KQ_sum_add;
#ifdef FAST_FP16_AVAILABLE
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale, KQ_max_scale);
#pragma unroll
for (int i0 = 0; i0 < DVp/2; i0 += warp_size) {
VKQ[jc*((DVp/2)/warp_size) + i0/warp_size] *= KQ_max_scale_h2;
}
#else
#pragma unroll
for (int i0 = 0; i0 < DVp/2; i0 += warp_size) {
VKQ[jc*((DVp/2)/warp_size) + i0/warp_size].x *= KQ_max_scale;
VKQ[jc*((DVp/2)/warp_size) + i0/warp_size].y *= KQ_max_scale;
}
#endif // FAST_FP16_AVAILABLE
}
#pragma unroll
for (int i0 = 0; i0 < nbatch_fa; i0 += np*warp_size) {
const int i = i0 + (threadIdx.y % np)*warp_size + threadIdx.x;
ggml_cuda_memcpy_1<sizeof(tmp[0])>(
KQ + (jc0/KQ_cs + (threadIdx.y / np)*(cpw/KQ_cs))*(nbatch_fa*KQ_cs) + i*KQ_cs,
tmp[i0/(np*warp_size)]);
}
}
// VKQ = V @ KQ matrix multiplication:
static_assert(DV <= DKQ, "bad DV");
static_assert(DV % nbatch_K == 0 || (nbatch_K % 3 == 0 && DV % (nbatch_K*2/3) == 0), "bad nbatch_K");
constexpr int nbatch_V = (DV % nbatch_K == 0 ? nbatch_K : nbatch_K*2/3) * nbatch_fa / DV; // Number of V columns that fit in SRAM for K.
static_assert(nbatch_fa % nbatch_V == 0, "bad nbatch_V");
static_assert(nbatch_V % np == 0, "bad nbatch_V");
#pragma unroll
for (int k0 = 0; k0 < nbatch_fa; k0 += nbatch_V) {
flash_attn_tile_load_tile<warp_size, nwarps, nbatch_V, DV, 0, oob_check>
(V_h2 + int64_t(k_VKQ_0 + k0)*stride_V2, KV_tmp, stride_V2, k_VKQ_sup - k0);
__syncthreads();
#ifdef FAST_FP16_AVAILABLE
#pragma unroll
for (int k1 = 0; k1 < nbatch_V; k1 += np) {
half2 V_k[(DVp/2)/warp_size];
half2 KQ_k[cpw];
constexpr int cpy_ne_D = cpy_ne/2 < (DVp/2)/warp_size ? cpy_ne/2 : (DVp/2)/warp_size;
#pragma unroll
for (int i0 = 0; i0 < DVp/2; i0 += warp_size*cpy_ne_D) {
ggml_cuda_memcpy_1<cpy_ne_D*4>(&V_k[i0/warp_size], &KV_tmp[(k1 + threadIdx.y % np)*(DV/2) + i0 + threadIdx.x*cpy_ne_D]);
}
#pragma unroll
for (int jc_VKQ_0 = 0; jc_VKQ_0 < cpw; jc_VKQ_0 += KQ_cs) {
const int jc_KQ = jc_VKQ_0/KQ_cs + (threadIdx.y / np)*(cpw/KQ_cs);
half tmp[KQ_cs];
ggml_cuda_memcpy_1<KQ_cs*sizeof(half)>(
&tmp, KQ + jc_KQ*(nbatch_fa*KQ_cs) + (k0 + k1 + threadIdx.y % np)*KQ_cs);
#pragma unroll
for (int jc_VKQ_1 = 0; jc_VKQ_1 < KQ_cs; ++jc_VKQ_1) {
KQ_k[jc_VKQ_0+jc_VKQ_1] = __half2half2(tmp[jc_VKQ_1]);
}
}
#pragma unroll
for (int i0 = 0; i0 < DVp/2; i0 += warp_size) {
#pragma unroll
for (int jc_VKQ_0 = 0; jc_VKQ_0 < cpw; ++jc_VKQ_0) {
VKQ[jc_VKQ_0*((DVp/2)/warp_size) + i0/warp_size] += V_k[i0/warp_size]*KQ_k[jc_VKQ_0];
}
}
}
#else
#pragma unroll
for (int k1 = 0; k1 < nbatch_V; k1 += np) {
float2 V_k[(DVp/2)/warp_size];
float KQ_k[cpw];
constexpr int cpy_ne_D = cpy_ne < DVp/warp_size ? cpy_ne : DVp/warp_size;
#pragma unroll
for (int i0 = 0; i0 < DVp; i0 += warp_size*cpy_ne_D) {
ggml_cuda_memcpy_1<cpy_ne_D*4>(&V_k[i0/(2*warp_size)], &KV_tmp[(k1 + threadIdx.y % np)*DV + i0 + threadIdx.x*cpy_ne_D]);
}
#pragma unroll
for (int jc_VKQ_0 = 0; jc_VKQ_0 < cpw; jc_VKQ_0 += KQ_cs) {
const int jc_KQ = jc_VKQ_0/KQ_cs + (threadIdx.y / np)*(cpw/KQ_cs);
ggml_cuda_memcpy_1<KQ_cs*sizeof(float)>(
&KQ_k[jc_VKQ_0], KQ + jc_KQ*(nbatch_fa*KQ_cs) + (k0 + k1 + threadIdx.y % np)*KQ_cs);
}
#pragma unroll
for (int i0 = 0; i0 < DVp/2; i0 += warp_size) {
#pragma unroll
for (int jc_VKQ_0 = 0; jc_VKQ_0 < cpw; ++jc_VKQ_0) {
VKQ[jc_VKQ_0*((DVp/2)/warp_size) + i0/warp_size].x += V_k[i0/warp_size].x*KQ_k[jc_VKQ_0];
VKQ[jc_VKQ_0*((DVp/2)/warp_size) + i0/warp_size].y += V_k[i0/warp_size].y*KQ_k[jc_VKQ_0];
}
}
}
#endif // FAST_FP16_AVAILABLE
__syncthreads();
}
}
template<int DKQ, int DV, int ncols1, int ncols2, bool use_logit_softcap> // D == head size
__launch_bounds__(ggml_cuda_fattn_tile_get_nthreads(DKQ, DV, ncols1*ncols2), ggml_cuda_fattn_tile_get_occupancy(DKQ, DV, ncols1*ncols2))
static __global__ void flash_attn_tile(
const char * __restrict__ Q,
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const char * __restrict__ sinks,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
const float max_bias,
const float m0,
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
const int32_t nb01, const int32_t nb02, const int32_t nb03,
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
const int32_t nb11, const int32_t nb12, const int64_t nb13,
const int32_t nb21, const int32_t nb22, const int64_t nb23,
const int32_t ne31, const int32_t ne32, const int32_t ne33,
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
#ifdef FLASH_ATTN_AVAILABLE
// Skip unused kernel variants for faster compilation:
if (
#ifdef GGML_USE_WMMA_FATTN
(ncols2 != 1 && DV != 40 && DV != 72 && DV != 512) ||
#endif // GGML_USE_WMMA_FATTN
(use_logit_softcap && !(DV == 128 || DV == 256))
) {
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
max_bias, m0, m1, n_head_log2, logit_softcap,
ne00, ne01, ne02, ne03,
nb01, nb02, nb03,
ne10, ne11, ne12, ne13,
nb11, nb12, nb13,
nb21, nb22, nb23,
ne31, ne32, ne33,
nb31, nb32, nb33);
NO_DEVICE_CODE;
return;
}
static_assert(ggml_cuda_fattn_tile_get_config(DKQ, DV, ncols1*ncols2) != 0, "kernel config not defined");
constexpr int ncols = ncols1*ncols2;
constexpr int warp_size = 32;
constexpr int nwarps = ggml_cuda_fattn_tile_get_nthreads (DKQ, DV, ncols1*ncols2) / warp_size;
constexpr int nbatch_fa = ggml_cuda_fattn_tile_get_nbatch_fa(DKQ, DV, ncols1*ncols2);
constexpr int nbatch_K = ggml_cuda_fattn_tile_get_nbatch_K (DKQ, DV, ncols1*ncols2);
// In this kernel Q, K, V are matrices while i, j, k are matrix indices.
const int col_Q_0 = blockIdx.x * ncols1; // Index of the first Q column for this CUDA block to work on.
const int sequence = blockIdx.z / (ne02/ncols2);
const int head0 = blockIdx.z*ncols2 - sequence*ne02; // == blockIdx.z % (ne02/ncols2)
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
const float * Q_f = (const float *) (Q + nb03*sequence + nb02* head0 + nb01*col_Q_0);
const half2 * K_h2 = (const half2 *) (K + nb13*sequence + nb12*(head0 / gqa_ratio));
const half2 * V_h2 = (const half2 *) (V + nb23*sequence + nb22*(head0 / gqa_ratio)); // K and V have same shape
const half * maskh = mask ? (const half *) (mask + nb33*(sequence % ne33) + nb31*col_Q_0) : nullptr;
const int stride_K2 = nb11 / sizeof(half2);
const int stride_V2 = nb21 / sizeof(half2);
const int stride_mask = nb31 / sizeof(half);
const float slope = ncols2 == 1 ? get_alibi_slope(max_bias, head0, n_head_log2, m0, m1) : 1.0f;
constexpr int cpy_nb = ggml_cuda_get_max_cpy_bytes();
constexpr int cpy_ne = cpy_nb / 4;
constexpr int cpw = ncols > nwarps ? ncols/nwarps : 1; // Q columns per warp.
constexpr int np = nwarps > ncols ? nwarps/ncols : 1; // Number of parallel warps per Q column.
static_assert(cpw == 1 || np == 1, "bad cpw / np");
static_assert(nbatch_fa % (np*warp_size) == 0, "nbatch_fa % (np*warp_size) != 0");
constexpr int DKQp = (DKQ + 2*warp_size - 1) & ~(2*warp_size - 1); // DKQ padded to multiple of 2*warp_size.
constexpr int DVp = (DV + 2*warp_size - 1) & ~(2*warp_size - 1); // DV padded to multiple of 2*warp_size.
// Q_tmp == SRAM buffer to hold Q data for the entire lifetime of the kernel.
// KV_tmp == SRAM buffer to hold fragments of K/V data while iterating over ne11.
// KV_tmp is padded to avoid memory conflicts for K (cpy_ne) and OOB accesses for V (DVp-DV).
// KQ == SRAM buffer to hold KQ fragments between KQ and VKQ matrix multiplications.
// VKQ == Accumulators in registers for the final VKQ result.
#ifdef FAST_FP16_AVAILABLE
__shared__ half2 Q_tmp[ncols * DKQ/2];
__shared__ half2 KV_tmp[nbatch_fa * (nbatch_K/2 + cpy_ne) + DVp-DV];
__shared__ half KQ[ncols * nbatch_fa];
half2 VKQ[cpw * ((DVp/2)/warp_size)] = {{0.0f, 0.0f}};
#else
__shared__ float Q_tmp[ncols * DKQ];
__shared__ float KV_tmp[nbatch_fa * (nbatch_K + cpy_ne) + DVp-DV];
__shared__ float KQ[ncols * nbatch_fa];
float2 VKQ[cpw * ((DVp/2)/warp_size)] = {{0.0f, 0.0f}};
#endif // FAST_FP16_AVAILABLE
float KQ_max[cpw];
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
KQ_max[j0/nwarps] = -FLT_MAX/2.0f;
}
float KQ_sum[cpw] = {0.0f};
// Load Q data, convert to FP16 if fast:
#pragma unroll
for (int jc0 = 0; jc0 < cpw; ++jc0) {
const int jc = jc0 + (threadIdx.y / np)*cpw;
const int j = jc / ncols2;
const int c = jc % ncols2;
constexpr int cpy_ne_D = cpy_ne < DKQp/warp_size ? cpy_ne : DKQp/warp_size;
#pragma unroll
for (int i0 = 0; i0 < DKQp; i0 += np*warp_size*cpy_ne_D) {
if (i0 + np*warp_size*cpy_ne_D <= DKQ || i0 + (threadIdx.y % np)*(warp_size*cpy_ne_D) + threadIdx.x*cpy_ne_D < DKQ) {
float tmp_f[cpy_ne_D] = {0.0f};
if (ncols1 == 1 || col_Q_0 + j < ne01) {
ggml_cuda_memcpy_1<sizeof(tmp_f)>
(tmp_f, &Q_f[c*(nb02/sizeof(float)) + j*(nb01/sizeof(float))
+ i0 + (threadIdx.y % np)*(warp_size*cpy_ne_D) + threadIdx.x*cpy_ne_D]);
}
#pragma unroll
for (int i1 = 0; i1 < cpy_ne_D; ++i1) {
tmp_f[i1] *= scale;
}
#ifdef FAST_FP16_AVAILABLE
half2 tmp_h2[cpy_ne_D/2];
#pragma unroll
for (int i1 = 0; i1 < cpy_ne_D; i1 += 2) {
tmp_h2[i1/2] = make_half2(tmp_f[i1 + 0], tmp_f[i1 + 1]);
}
ggml_cuda_memcpy_1<sizeof(tmp_h2)>(
&Q_tmp[jc*(DKQ/2) + i0/2 + (threadIdx.y % np)*(warp_size*cpy_ne_D/2) + threadIdx.x*(cpy_ne_D/2)],
tmp_h2);
#else
ggml_cuda_memcpy_1<sizeof(tmp_f)>(
&Q_tmp[jc* DKQ + i0 + (threadIdx.y % np)*(warp_size*cpy_ne_D) + threadIdx.x* cpy_ne_D],
tmp_f);
#endif // FAST_FP16_AVAILABLE
}
}
}
__syncthreads();
// Main loop over KV cache:
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
if (ncols2 == 1) {
// Branch with out-of-bounds checks.
int k_VKQ_0 = blockIdx.y*nbatch_fa;
while (k_VKQ_0 < k_VKQ_max - nbatch_fa) {
constexpr bool oob_check = false;
flash_attn_tile_iter<warp_size, nwarps, ncols1, ncols2, DKQ, DV, nbatch_fa, nbatch_K, use_logit_softcap, oob_check>
(Q_tmp, K_h2, V_h2, maskh, logit_softcap, slope, KQ, KV_tmp,
stride_K2, stride_V2, stride_mask, KQ_max, KQ_sum, VKQ, k_VKQ_0, k_VKQ_max);
k_VKQ_0 += gridDim.y*nbatch_fa;
}
if (k_VKQ_0 < k_VKQ_max) {
constexpr bool oob_check = true;
flash_attn_tile_iter<warp_size, nwarps, ncols1, ncols2, DKQ, DV, nbatch_fa, nbatch_K, use_logit_softcap, oob_check>
(Q_tmp, K_h2, V_h2, maskh, logit_softcap, slope, KQ, KV_tmp,
stride_K2, stride_V2, stride_mask, KQ_max, KQ_sum, VKQ, k_VKQ_0, k_VKQ_max);
}
} else {
// Branch without out-of-bounds checks.
for (int k_VKQ_0 = blockIdx.y*nbatch_fa; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*nbatch_fa) {
constexpr bool oob_check = false;
flash_attn_tile_iter<warp_size, nwarps, ncols1, ncols2, DKQ, DV, nbatch_fa, nbatch_K, use_logit_softcap, oob_check>
(Q_tmp, K_h2, V_h2, maskh, logit_softcap, slope, KQ, KV_tmp,
stride_K2, stride_V2, stride_mask, KQ_max, KQ_sum, VKQ, k_VKQ_0, k_VKQ_max);
}
}
#pragma unroll
for (int jc0 = 0; jc0 < cpw; ++jc0) {
KQ_sum[jc0] = warp_reduce_sum<warp_size>(KQ_sum[jc0]);
}
if constexpr (np > 1) {
static_assert(cpw == 1, "bad cpw");
static_assert(nbatch_fa*nbatch_K >= nwarps*DVp, "KV_tmp too small");
#ifdef FAST_FP16_AVAILABLE
half2 * VKQ_combine = (half2 *) KV_tmp;
#else
float * VKQ_combine = (float *) KV_tmp;
#endif // FAST_FP16_AVAILABLE
float * KQ_sum_combine = (float *) Q_tmp;
if (threadIdx.y % np != 0) {
#ifdef FAST_FP16_AVAILABLE
constexpr int cpy_ne_D = cpy_ne < (DVp/2)/warp_size ? cpy_ne : (DVp/2)/warp_size;
#pragma unroll
for (int i0 = 0; i0 < DVp/2; i0 += warp_size*cpy_ne_D) {
ggml_cuda_memcpy_1<cpy_ne_D*4>(&VKQ_combine[threadIdx.y*(DVp/2) + i0 + threadIdx.x*cpy_ne_D], &VKQ[i0/warp_size]);
}
#else
constexpr int cpy_ne_D = cpy_ne < DVp/warp_size ? cpy_ne : DVp/warp_size;
#pragma unroll
for (int i0 = 0; i0 < DVp; i0 += warp_size*cpy_ne_D) {
ggml_cuda_memcpy_1<cpy_ne_D*4>(
&VKQ_combine[threadIdx.y*DVp + i0 + threadIdx.x*cpy_ne_D], ((const float *) VKQ) + i0/warp_size);
}
#endif // FAST_FP16_AVAILABLE
if (threadIdx.x == 0) {
KQ_sum_combine[threadIdx.y] = KQ_sum[0];
}
return;
}
__syncthreads();
#pragma unroll
for (int ip = 1; ip < np; ++ip) {
#ifdef FAST_FP16_AVAILABLE
constexpr int cpy_ne_D = cpy_ne < (DVp/2)/warp_size ? cpy_ne : (DVp/2)/warp_size;
#pragma unroll
for (int i0 = 0; i0 < DVp/2; i0 += warp_size*cpy_ne_D) {
half2 tmp[cpy_ne_D];
ggml_cuda_memcpy_1<cpy_ne_D*4>(tmp, &VKQ_combine[(threadIdx.y + ip)*(DVp/2) + i0 + threadIdx.x*cpy_ne_D]);
#pragma unroll
for (int i1 = 0; i1 < cpy_ne_D; ++i1) {
VKQ[i0/warp_size + i1] += tmp[i1];
}
}
#else
constexpr int cpy_ne_D = cpy_ne < DVp/warp_size ? cpy_ne : DVp/warp_size;
#pragma unroll
for (int i0 = 0; i0 < DVp; i0 += warp_size*cpy_ne_D) {
float tmp[cpy_ne_D];
ggml_cuda_memcpy_1<cpy_ne_D*4>(tmp, &VKQ_combine[(threadIdx.y + ip)*DVp + i0 + threadIdx.x*cpy_ne_D]);
#pragma unroll
for (int i1 = 0; i1 < cpy_ne_D; ++i1) {
((float *)VKQ)[i0/warp_size + i1] += tmp[i1];
}
}
#endif // FAST_FP16_AVAILABLE
KQ_sum[0] += KQ_sum_combine[threadIdx.y + ip];
}
}
// Attention sink: adjust KQ max and sum only for the first of all parallel blocks:
if (sinks && blockIdx.y == 0) {
#pragma unroll
for (int jc0 = 0; jc0 < cpw; ++jc0) {
const int jc = jc0 + (threadIdx.y/np)*cpw;
const float sink = ((const float *) sinks)[head0 + jc % ncols2];
float KQ_max_new_j = fmaxf(KQ_max[jc0], sink);
const float KQ_max_scale = expf(KQ_max[jc0] - KQ_max_new_j);
KQ_max[jc0] = KQ_max_new_j;
const float val = expf(sink - KQ_max[jc0]);
KQ_sum[jc0] = KQ_sum[jc0]*KQ_max_scale + val;
#ifdef FAST_FP16_AVAILABLE
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale, KQ_max_scale);
#pragma unroll
for (int i0 = 0; i0 < DVp/2; i0 += warp_size) {
VKQ[jc0*((DVp/2)/warp_size) + i0/warp_size] *= KQ_max_scale_h2;
}
#else
#pragma unroll
for (int i0 = 0; i0 < DVp/2; i0 += warp_size) {
VKQ[jc0*((DVp/2)/warp_size) + i0/warp_size].x *= KQ_max_scale;
VKQ[jc0*((DVp/2)/warp_size) + i0/warp_size].y *= KQ_max_scale;
}
#endif // FAST_FP16_AVAILABLE
}
}
// Write back results:
#pragma unroll
for (int jc0 = 0; jc0 < cpw; ++jc0) {
const int jc = jc0 + (threadIdx.y/np)*cpw;
const int j = jc / ncols2;
const int c = jc % ncols2;
if (ncols1 > 1 && col_Q_0 + j >= ne01) {
return;
}
const float scale = gridDim.y == 1 ? 1.0f/KQ_sum[jc0] : 1.0f;
const int j_dst_unrolled = ((sequence*ne01 + col_Q_0 + j)*ne02 + head0 + c)*gridDim.y + blockIdx.y;
#ifdef FAST_FP16_AVAILABLE
constexpr int cpy_ne_D = cpy_ne/2 < (DVp/2)/warp_size ? cpy_ne/2 : (DVp/2)/warp_size;
#pragma unroll
for (int i0 = 0; i0 < DVp/2; i0 += warp_size*cpy_ne_D) {
float2 tmp[cpy_ne_D];
#pragma unroll
for (int i1 = 0; i1 < cpy_ne_D; ++i1) {
tmp[i1] = __half22float2(VKQ[jc0*((DVp/2)/warp_size) + i0/warp_size + i1]);
tmp[i1].x *= scale;
tmp[i1].y *= scale;
}
if (i0 + warp_size*cpy_ne_D <= DV/2 || i0 + threadIdx.x*cpy_ne_D < DV/2) {
ggml_cuda_memcpy_1<sizeof(tmp)>(&dst[j_dst_unrolled*DV + 2*i0 + threadIdx.x*(2*cpy_ne_D)], tmp);
}
}
#else
constexpr int cpy_ne_D = cpy_ne < DVp/warp_size ? cpy_ne : DVp/warp_size;
#pragma unroll
for (int i0 = 0; i0 < DVp; i0 += warp_size*cpy_ne_D) {
if (i0 + warp_size*cpy_ne_D <= DV || i0 + threadIdx.x*cpy_ne_D < DV) {
#pragma unroll
for (int i1 = 0; i1 < cpy_ne_D/2; ++i1) {
VKQ[jc0*((DVp/2)/warp_size) + i0/(2*warp_size) + i1].x *= scale;
VKQ[jc0*((DVp/2)/warp_size) + i0/(2*warp_size) + i1].y *= scale;
}
ggml_cuda_memcpy_1<cpy_ne_D*4>(
&dst[j_dst_unrolled*DV + i0 + threadIdx.x*cpy_ne_D],
&VKQ[jc0*((DVp/2)/warp_size) + i0/(2*warp_size)]);
}
}
#endif // FAST_FP16_AVAILABLE
if (gridDim.y != 1 && threadIdx.x == 0) {
dst_meta[j_dst_unrolled] = make_float2(KQ_max[jc0], KQ_sum[jc0]);
}
}
#else
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
max_bias, m0, m1, n_head_log2, logit_softcap,
ne00, ne01, ne02, ne03,
nb01, nb02, nb03,
ne10, ne11, ne12, ne13,
nb11, nb12, nb13,
nb21, nb22, nb23,
ne31, ne32, ne33,
nb31, nb32, nb33);
NO_DEVICE_CODE;
#endif // FLASH_ATTN_AVAILABLE
}
template <int DKQ, int DV, int ncols2, bool use_logit_softcap>
static void launch_fattn_tile_switch_ncols1(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
const int id = ggml_cuda_get_device();
const int cc = ggml_cuda_info().devices[id].cc;
const int warp_size = 32;
constexpr size_t nbytes_shared = 0;
#ifdef GGML_USE_HIP
if constexpr (DV <= 128) {
if (Q->ne[1] > 32/ncols2) {
constexpr int cols_per_block = 64;
const int nwarps = ggml_cuda_fattn_tile_get_nthreads (DKQ, DV, cols_per_block, cc) / warp_size;
const int nbatch_fa = ggml_cuda_fattn_tile_get_nbatch_fa(DKQ, DV, cols_per_block, cc);
fattn_kernel_t fattn_kernel = flash_attn_tile<DKQ, DV, cols_per_block/ncols2, ncols2, use_logit_softcap>;
launch_fattn<DV, cols_per_block/ncols2, ncols2>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, nbatch_fa, true, true, false, warp_size);
return;
}
}
#endif // GGML_USE_HIP
#ifndef GGML_USE_HIP
if constexpr (DV <= 256)
#endif // GGML_USE_HIP
{
if (Q->ne[1] > 16/ncols2) {
constexpr int cols_per_block = 32;
const int nwarps = ggml_cuda_fattn_tile_get_nthreads (DKQ, DV, cols_per_block, cc) / warp_size;
const int nbatch_fa = ggml_cuda_fattn_tile_get_nbatch_fa(DKQ, DV, cols_per_block, cc);
fattn_kernel_t fattn_kernel = flash_attn_tile<DKQ, DV, cols_per_block/ncols2, ncols2, use_logit_softcap>;
launch_fattn<DV, cols_per_block/ncols2, ncols2>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, nbatch_fa, true, true, false, warp_size);
return;
}
}
if (Q->ne[1] > 8/ncols2) {
constexpr int cols_per_block = 16;
const int nwarps = ggml_cuda_fattn_tile_get_nthreads (DKQ, DV, cols_per_block, cc) / warp_size;
const int nbatch_fa = ggml_cuda_fattn_tile_get_nbatch_fa(DKQ, DV, cols_per_block, cc);
fattn_kernel_t fattn_kernel = flash_attn_tile<DKQ, DV, cols_per_block/ncols2, ncols2, use_logit_softcap>;
launch_fattn<DV, cols_per_block/ncols2, ncols2>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, nbatch_fa, true, true, false, warp_size);
return;
}
if constexpr (ncols2 <= 8) {
if (Q->ne[1] > 4/ncols2) {
constexpr int cols_per_block = 8;
const int nwarps = ggml_cuda_fattn_tile_get_nthreads (DKQ, DV, cols_per_block, cc) / warp_size;
const int nbatch_fa = ggml_cuda_fattn_tile_get_nbatch_fa(DKQ, DV, cols_per_block, cc);
fattn_kernel_t fattn_kernel = flash_attn_tile<DKQ, DV, cols_per_block/ncols2, ncols2, use_logit_softcap>;
launch_fattn<DV, cols_per_block/ncols2, ncols2>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, nbatch_fa, true, true, false, warp_size);
return;
}
}
if constexpr (ncols2 <= 4) {
if (Q->ne[1] > 2/ncols2) {
constexpr int cols_per_block = 4;
const int nwarps = ggml_cuda_fattn_tile_get_nthreads (DKQ, DV, cols_per_block, cc) / warp_size;
const int nbatch_fa = ggml_cuda_fattn_tile_get_nbatch_fa(DKQ, DV, cols_per_block, cc);
fattn_kernel_t fattn_kernel = flash_attn_tile<DKQ, DV, cols_per_block/ncols2, ncols2, use_logit_softcap>;
launch_fattn<DV, cols_per_block/ncols2, ncols2>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, nbatch_fa, true, true, false, warp_size);
return;
}
}
if constexpr (ncols2 <= 2) {
constexpr int cols_per_block = 2;
const int nwarps = ggml_cuda_fattn_tile_get_nthreads (DKQ, DV, cols_per_block, cc) / warp_size;
const int nbatch_fa = ggml_cuda_fattn_tile_get_nbatch_fa(DKQ, DV, cols_per_block, cc);
fattn_kernel_t fattn_kernel = flash_attn_tile<DKQ, DV, cols_per_block/ncols2, ncols2, use_logit_softcap>;
launch_fattn<DV, cols_per_block/ncols2, ncols2>
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, nbatch_fa, true, true, false, warp_size);
return;
}
GGML_ABORT("fatal error");
}
template <int DKQ, int DV, bool use_logit_softcap>
static void launch_fattn_tile_switch_ncols2(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const ggml_tensor * K = dst->src[1];
const ggml_tensor * mask = dst->src[3];
float max_bias = 0.0f;
memcpy(&max_bias, (const float *) KQV->op_params + 1, sizeof(float));
GGML_ASSERT(Q->ne[2] % K->ne[2] == 0);
const int gqa_ratio = Q->ne[2] / K->ne[2];
const bool nvidia = GGML_CUDA_CC_IS_NVIDIA(ggml_cuda_info().devices[ggml_cuda_get_device()].cc);
const int gqa_limit = nvidia && gqa_ratio <= 4 ? 16 : INT_MAX;
const bool use_gqa_opt = mask && max_bias == 0.0f && Q->ne[1] <= gqa_limit && K->ne[1] % FATTN_KQ_STRIDE == 0;
if constexpr (DV == 512) {
if (use_gqa_opt && gqa_ratio % 16 == 0) {
launch_fattn_tile_switch_ncols1<DKQ, DV, 16, use_logit_softcap>(ctx, dst);
return;
}
}
if constexpr (DV <= 256) {
if (use_gqa_opt && gqa_ratio % 8 == 0) {
launch_fattn_tile_switch_ncols1<DKQ, DV, 8, use_logit_softcap>(ctx, dst);
return;
}
if (use_gqa_opt && gqa_ratio % 4 == 0) {
launch_fattn_tile_switch_ncols1<DKQ, DV, 4, use_logit_softcap>(ctx, dst);
return;
}
if (use_gqa_opt && gqa_ratio % 2 == 0) {
launch_fattn_tile_switch_ncols1<DKQ, DV, 2, use_logit_softcap>(ctx, dst);
return;
}
launch_fattn_tile_switch_ncols1<DKQ, DV, 1, use_logit_softcap>(ctx, dst);
return;
}
GGML_ABORT("fatal error");
}
template <int DKQ, int DV>
void ggml_cuda_flash_attn_ext_tile_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_switch_ncols2<DKQ, DV, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_switch_ncols2<DKQ, DV, use_logit_softcap>(ctx, dst);
}
}
void ggml_cuda_flash_attn_ext_tile(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
#define DECL_FATTN_TILE_CASE(DKQ, DV) \
template void ggml_cuda_flash_attn_ext_tile_case \
<DKQ, DV>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
extern DECL_FATTN_TILE_CASE( 40, 40);
extern DECL_FATTN_TILE_CASE( 64, 64);
extern DECL_FATTN_TILE_CASE( 72, 72);
extern DECL_FATTN_TILE_CASE( 80, 80);
extern DECL_FATTN_TILE_CASE( 96, 96);
extern DECL_FATTN_TILE_CASE(112, 112);
extern DECL_FATTN_TILE_CASE(128, 128);
extern DECL_FATTN_TILE_CASE(256, 256);
extern DECL_FATTN_TILE_CASE(576, 512);