llama.cpp/examples/lookup/lookup.cpp

209 lines
6.4 KiB
C++

#include "common.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
int main(int argc, char ** argv){
gpt_params params;
if(gpt_params_parse(argc, argv, params) == false){
return 1;
}
// maximum n-grams to search for in prompt
const int max_ngram_size = 3;
// length of the candidate / draft sequence, if match is found
const int n_draft = 10;
#ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("lookup", "log"));
LOG_TEE("Log start\n");
log_dump_cmdline(argc, argv);
#endif // LOG_DISABLE_LOGS
// init llama.cpp
llama_backend_init(params.numa);
llama_model * model = NULL;
llama_context * ctx = NULL;
// load the model
std::tie(model, ctx) = llama_init_from_gpt_params(params);
// tokenize the prompt
const bool add_bos = llama_should_add_bos_token(model);
LOG("add_bos tgt: %d\n", add_bos);
std::vector<llama_token> inp;
inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
const int max_context_size = llama_n_ctx(ctx);
const int max_tokens_list_size = max_context_size - 4;
if ((int) inp.size() > max_tokens_list_size) {
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
return 1;
}
fprintf(stderr, "\n\n");
for (auto id : inp) {
fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
}
fflush(stderr);
const int n_input = inp.size();
const auto t_enc_start = ggml_time_us();
llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
const auto t_enc_end = ggml_time_us();
int n_predict = 0;
int n_drafted = 0;
int n_accept = 0;
int n_past = inp.size();
bool has_eos = false;
struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
std::vector<llama_token> draft(n_draft);
llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, 1);
const auto t_dec_start = ggml_time_us();
while(true){
// print current draft sequence
LOG("drafted %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, draft).c_str());
int i_dft = 0;
while (true) {
//LOG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
// sample from the target model
llama_token id = llama_sampling_sample(ctx_sampling, ctx, NULL, 0);
llama_sampling_accept(ctx_sampling, ctx, id, true);
//LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, ctx_sampling->prev).c_str());
const std::string token_str = llama_token_to_piece(ctx, id);
printf("%s", token_str.c_str());
fflush(stdout);
if (id == llama_token_eos(model)) {
has_eos = true;
}
++n_predict;
// check if the target token matches the draft
if (i_dft < (int) draft.size() && id == draft[i_dft]) {
LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
++n_accept;
++n_past;
++i_dft;
continue;
}
LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
draft.clear();
draft.push_back(id);
// drafts[0].i_batch_tgt.push_back(0);
// llama_batch_clear(batch_dft);
// llama_batch_add (batch_dft, id, n_past_dft, { 0 }, true);
// llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
// // LOG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
// llama_decode (ctx_dft, batch_dft);
// ++n_past_dft;
break;
}
if (n_predict > params.n_predict || has_eos) {
break;
}
llama_batch_clear(batch_tgt);
llama_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);
bool match = false;
// generate n_pred tokens through prompt lookup
for (int ngram_size = max_ngram_size ; ngram_size > 0; --ngram_size){
if (match){
break;
}
const auto & prev = ctx_sampling->prev;
int prev_size = prev.size();
const llama_token * ngram = &prev[prev_size - ngram_size];
for (int i = 0; i <= (int) prev_size - (ngram_size * 2); ++i) {
if (prev[i] == ngram[0] && prev[i + 1] == ngram[1] && prev[i + 2] == ngram[2]) {
const int startIdx = i + ngram_size;
const int endIdx = startIdx + n_draft;
if (endIdx < prev_size){
match = true;
for (int j = startIdx; j < endIdx; ++j) {
LOG(" - draft candidate %d: %d\n", j, prev[j]);
draft.push_back(prev[j]);
llama_batch_add(batch_tgt, prev[j], n_past + j + 1, { 1 }, true);
++n_drafted;
}
}
}
}
}
llama_decode(ctx, batch_tgt);
++n_past;
draft.erase(draft.begin());
// we have our draft!
}
auto t_dec_end = ggml_time_us();
LOG_TEE("\n\n");
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
LOG_TEE("\n");
LOG_TEE("n_draft = %d\n", n_draft);
LOG_TEE("n_predict = %d\n", n_predict);
LOG_TEE("n_drafted = %d\n", n_drafted);
LOG_TEE("n_accept = %d\n", n_accept);
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
LOG_TEE("\ntarget:\n");
llama_print_timings(ctx);
llama_sampling_free(ctx_sampling);
llama_batch_free(batch_tgt);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
fprintf(stderr, "\n\n");
return 0;
}