# Instructions: # # - Add a new model to the "models" list # - Run the script with your huggingface token: # # python3 convert-hf-to-gguf-update.py # # - Copy-paste the generated get_vocab_base_pre() function into convert-hf-to-gguf.py # - Update llama.cpp with the new pre-tokenizer if necessary # # TODO: generate tokenizer tests for llama.cpp # import os import requests import sys import json from hashlib import sha256 from enum import IntEnum, auto class TOKENIZER_TYPE(IntEnum): SPM = auto() BPE = auto() WPM = auto() # TODO: this string has to exercise as much pre-tokenizer functionality as possible # will be updated with time - contributions welcome chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български what\'s \'\'\'\'\'\'```````\"\"\"\"......!!!!!!??????' if len(sys.argv) == 2: token = sys.argv[1] else: print("Usage: python convert-hf-to-gguf-update.py ") sys.exit(1) # TODO: add models here, base models preferred models = [ { "name": "llama-v2", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", }, { "name": "llama-v3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", }, { "name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", }, { "name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", }, { "name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", }, { "name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", }, ] # make directory "models/tokenizers" if it doesn't exist if not os.path.exists("models/tokenizers"): os.makedirs("models/tokenizers") def download_file_with_auth(url, token, save_path): headers = {"Authorization": f"Bearer {token}"} response = requests.get(url, headers=headers) if response.status_code == 200: with open(save_path, 'wb') as f: f.write(response.content) print("File downloaded successfully.") else: print(f"Failed to download file. Status code: {response.status_code}") for model in models: name = model["name"] repo = model["repo"] tokt = model["tokt"] if not os.path.exists(f"models/tokenizers/{name}"): os.makedirs(f"models/tokenizers/{name}") else: print(f"Directory models/tokenizers/{name} already exists - skipping") continue print(f"Downloading {name} to models/tokenizers/{name}") url = f"{repo}/raw/main/tokenizer.json" save_path = f"models/tokenizers/{name}/tokenizer.json" download_file_with_auth(url, token, save_path) if tokt == TOKENIZER_TYPE.SPM: url = f"{repo}/resolve/main/tokenizer.model" save_path = f"models/tokenizers/{name}/tokenizer.model" download_file_with_auth(url, token, save_path) url = f"{repo}/raw/main/tokenizer_config.json" save_path = f"models/tokenizers/{name}/tokenizer_config.json" download_file_with_auth(url, token, save_path) # generate the source code for the convert-hf-to-gguf.py:get_vocab_base_pre() function: # TODO: auto-update convert-hf-to-gguf.py with the generated function src_ifs = "" for model in models: name = model["name"] tokt = model["tokt"] if tokt == TOKENIZER_TYPE.SPM: continue # create the tokenizer from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}") chktok = tokenizer.encode(chktxt) chkhsh = sha256(str(chktok).encode()).hexdigest() print(f"model: {name}") print(f"tokt: {tokt}") print(f"repo: {model['repo']}") print(f"chktok: {chktok}") print(f"chkhsh: {chkhsh}") # print the "pre_tokenizer" content from the tokenizer.json with open(f"models/tokenizers/{name}/tokenizer.json", "r") as f: cfg = json.load(f) pre_tokenizer = cfg["pre_tokenizer"] print("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4)) print(f"\n") src_ifs += f" if chkhsh == \"{chkhsh}\":\n" src_ifs += f" # ref: {model['repo']}\n" src_ifs += f" res = \"{name}\"\n" src_func = "" src_func += " def get_vocab_base_pre(self, tokenizer) -> str:\n" src_func += " # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that\n" src_func += " # is specific for the BPE pre-tokenizer used by the model\n" src_func += " # we will use this unique identifier to write a \"tokenizer.ggml.pre\" entry in the GGUF file which we can\n" src_func += " # use in llama.cpp to implement the same pre-tokenizer\n" src_func += "\n" src_func += f" chktxt = {repr(chktxt)}\n" src_func += "\n" src_func += " chktok = tokenizer.encode(chktxt)\n" src_func += " chkhsh = sha256(str(chktok).encode()).hexdigest()\n" src_func += "\n" src_func += " print(f\"chktok: {chktok}\")\n" src_func += " print(f\"chkhsh: {chkhsh}\")\n" src_func += "\n" src_func += " res = None\n" src_func += "\n" src_func += " # NOTE: if you get an error here, you need to add the model to the if-elif chain below\n" src_func += f"{src_ifs}\n" src_func += " if res is None:\n" src_func += " print( \"\\n\")\n" src_func += " print( \"**************************************************************************************\")\n" src_func += " print( \"** WARNING: The BPE pre-tokenizer was not recognized!\")\n" src_func += " print( \"** This means that it was not added yet or you are using an older version.\")\n" src_func += " print( \"** Check convert-hf-to-gguf-update.py and update it accordingly.\")\n" src_func += " print( \"**\")\n" src_func += " print(f\"** chkhsh: {chkhsh}\")\n" src_func += " print( \"**************************************************************************************\")\n" src_func += " print( \"\\n\")\n" src_func += " raise NotImplementedError(\"BPE pre-tokenizer was not recognized - update get_vocab_base_pre()\")\n" src_func += "\n" src_func += " print(f\"tokenizer.ggml.pre: {res}\")\n" src_func += " print(f\"chkhsh: {chkhsh}\")\n" src_func += "\n" src_func += " return res\n" print(src_func) print("\n") print("!!! Copy-paste the function above into convert-hf-to-gguf.py !!!") print("\n")