#include "models.h" ggml_cgraph * clip_graph_conformer::build() { const int n_frames = img.nx; const int n_pos = n_frames / 2; const int n_pos_embd = (((((n_frames + 1) / 2) + 1) / 2 + 1) / 2) * 2 - 1; GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos); ggml_tensor * pos_emb = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 512, n_pos_embd); ggml_set_name(pos_emb, "pos_emb"); ggml_set_input(pos_emb); ggml_build_forward_expand(gf, pos_emb); ggml_tensor * inp = build_inp_raw(1); cb(inp, "input", -1); auto * cur = ggml_cont(ctx0, ggml_transpose(ctx0, inp)); // pre encode, conv subsampling { // layer.0 - conv2d cur = ggml_conv_2d(ctx0, model.pre_encode_conv_X_w[0], cur, 2, 2, 1, 1, 1, 1); cur = ggml_add(ctx0, cur, model.pre_encode_conv_X_b[0]); cb(cur, "conformer.pre_encode.conv.{}", 0); // layer.1 - relu cur = ggml_relu_inplace(ctx0, cur); // layer.2 conv2d dw cur = ggml_conv_2d_dw_direct(ctx0, model.pre_encode_conv_X_w[2], cur, 2, 2, 1, 1, 1, 1); cur = ggml_add(ctx0, cur, model.pre_encode_conv_X_b[2]); cb(cur, "conformer.pre_encode.conv.{}", 2); // layer.3 conv2d cur = ggml_conv_2d_direct(ctx0, model.pre_encode_conv_X_w[3], cur, 1, 1, 0, 0, 1, 1); cur = ggml_add(ctx0, cur, model.pre_encode_conv_X_b[3]); cb(cur, "conformer.pre_encode.conv.{}", 3); // layer.4 - relu cur = ggml_relu_inplace(ctx0, cur); // layer.5 conv2d dw cur = ggml_conv_2d_dw_direct(ctx0, model.pre_encode_conv_X_w[5], cur, 2, 2, 1, 1, 1, 1); cur = ggml_add(ctx0, cur, model.pre_encode_conv_X_b[5]); cb(cur, "conformer.pre_encode.conv.{}", 5); // layer.6 conv2d cur = ggml_conv_2d_direct(ctx0, model.pre_encode_conv_X_w[6], cur, 1, 1, 0, 0, 1, 1); cur = ggml_add(ctx0, cur, model.pre_encode_conv_X_b[6]); cb(cur, "conformer.pre_encode.conv.{}", 6); // layer.7 - relu cur = ggml_relu_inplace(ctx0, cur); // flatten channel and frequency axis cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 0, 2, 1, 3)); cur = ggml_reshape_2d(ctx0, cur, cur->ne[0] * cur->ne[1], cur->ne[2]); // calculate out cur = ggml_mul_mat(ctx0, model.pre_encode_out_w, cur); cur = ggml_add(ctx0, cur, model.pre_encode_out_b); cb(cur, "conformer.pre_encode.out", -1); } // pos_emb cb(pos_emb, "pos_emb", -1); for (int il = 0; il < hparams.n_layer; il++) { const auto & layer = model.layers[il]; auto * residual = cur; cb(cur, "layer.in", il); // feed_forward1 cur = build_norm(cur, layer.ff_norm_w, layer.ff_norm_b, NORM_TYPE_NORMAL, 1e-5, il); cb(cur, "conformer.layers.{}.norm_feed_forward1", il); cur = build_ffn(cur, layer.ff_up_w, layer.ff_up_b, nullptr, nullptr, layer.ff_down_w, layer.ff_down_b, FFN_SILU, il); cb(cur, "conformer.layers.{}.feed_forward1.linear2", il); const auto fc_factor = 0.5f; residual = ggml_add(ctx0, residual, ggml_scale(ctx0, cur, fc_factor)); // self-attention { cur = build_norm(residual, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, 1e-5, il); cb(cur, "conformer.layers.{}.norm_self_att", il); ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur); Qcur = ggml_add(ctx0, Qcur, layer.q_b); Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, Qcur->ne[1]); ggml_tensor * Q_bias_u = ggml_add(ctx0, Qcur, layer.pos_bias_u); Q_bias_u = ggml_permute(ctx0, Q_bias_u, 0, 2, 1, 3); ggml_tensor * Q_bias_v = ggml_add(ctx0, Qcur, layer.pos_bias_v); Q_bias_v = ggml_permute(ctx0, Q_bias_v, 0, 2, 1, 3); // TODO @ngxson : some cont can/should be removed when ggml_mul_mat support these cases ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur); Kcur = ggml_add(ctx0, Kcur, layer.k_b); Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, Kcur->ne[1]); Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3)); ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur); Vcur = ggml_add(ctx0, Vcur, layer.v_b); Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, Vcur->ne[1]); Vcur = ggml_cont(ctx0, ggml_permute(ctx0, Vcur, 1, 2, 0, 3)); // build_attn won't fit due to matrix_ac and matrix_bd separation ggml_tensor * matrix_ac = ggml_mul_mat(ctx0, Q_bias_u, Kcur); matrix_ac = ggml_cont(ctx0, ggml_permute(ctx0, matrix_ac, 1, 0, 2, 3)); cb(matrix_ac, "conformer.layers.{}.self_attn.id3", il); auto * p = ggml_mul_mat(ctx0, layer.linear_pos_w, pos_emb); cb(p, "conformer.layers.{}.self_attn.linear_pos", il); p = ggml_reshape_3d(ctx0, p, d_head, n_head, p->ne[1]); p = ggml_permute(ctx0, p, 0, 2, 1, 3); auto * matrix_bd = ggml_mul_mat(ctx0, Q_bias_v, p); matrix_bd = ggml_cont(ctx0, ggml_permute(ctx0, matrix_bd, 1, 0, 2, 3)); // rel shift { const auto pos_len = matrix_bd->ne[0]; const auto q_len = matrix_bd->ne[1]; const auto h = matrix_bd->ne[2]; matrix_bd = ggml_pad(ctx0, matrix_bd, 1, 0, 0, 0); matrix_bd = ggml_roll(ctx0, matrix_bd, 1, 0, 0, 0); matrix_bd = ggml_reshape_3d(ctx0, matrix_bd, q_len, pos_len + 1, h); matrix_bd = ggml_view_3d(ctx0, matrix_bd, q_len, pos_len, h, matrix_bd->nb[1], matrix_bd->nb[2], matrix_bd->nb[0] * q_len); matrix_bd = ggml_cont_3d(ctx0, matrix_bd, pos_len, q_len, h); } matrix_bd = ggml_view_3d(ctx0, matrix_bd, matrix_ac->ne[0], matrix_bd->ne[1], matrix_bd->ne[2], matrix_bd->nb[1], matrix_bd->nb[2], 0); auto * scores = ggml_add(ctx0, matrix_ac, matrix_bd); scores = ggml_scale(ctx0, scores, 1.0f / std::sqrt(d_head)); cb(scores, "conformer.layers.{}.self_attn.id0", il); ggml_tensor * attn = ggml_soft_max(ctx0, scores); ggml_tensor * x = ggml_mul_mat(ctx0, attn, Vcur); x = ggml_permute(ctx0, x, 2, 0, 1, 3); x = ggml_cont_2d(ctx0, x, x->ne[0] * x->ne[1], x->ne[2]); ggml_tensor * out = ggml_mul_mat(ctx0, layer.o_w, x); out = ggml_add(ctx0, out, layer.o_b); cb(out, "conformer.layers.{}.self_attn.linear_out", il); cur = out; } residual = ggml_add(ctx0, residual, cur); cur = build_norm(residual, layer.norm_conv_w, layer.norm_conv_b, NORM_TYPE_NORMAL, 1e-5, il); cb(cur, "conformer.layers.{}.norm_conv", il); // conv { auto * x = cur; auto * conv_pw1_w = ggml_reshape_2d(ctx0, layer.conv_pw1_w, layer.conv_pw1_w->ne[1], layer.conv_pw1_w->ne[2]); x = ggml_mul_mat(ctx0, conv_pw1_w, x); x = ggml_add(ctx0, x, layer.conv_pw1_b); cb(x, "conformer.layers.{}.conv.pointwise_conv1", il); // ggml_glu doesn't support sigmoid // TODO @ngxson : support this ops in ggml { int64_t d = x->ne[0] / 2; ggml_tensor * gate = ggml_sigmoid(ctx0, ggml_view_2d(ctx0, x, d, x->ne[1], x->nb[1], d * x->nb[0])); x = ggml_mul(ctx0, ggml_view_2d(ctx0, x, d, x->ne[1], x->nb[1], 0), gate); x = ggml_cont(ctx0, ggml_transpose(ctx0, x)); } // use ggml_ssm_conv for f32 precision x = ggml_pad(ctx0, x, 4, 0, 0, 0); x = ggml_roll(ctx0, x, 4, 0, 0, 0); x = ggml_pad(ctx0, x, 4, 0, 0, 0); auto * conv_dw_w = ggml_reshape_2d(ctx0, layer.conv_dw_w, layer.conv_dw_w->ne[0], layer.conv_dw_w->ne[2]); x = ggml_ssm_conv(ctx0, x, conv_dw_w); x = ggml_add(ctx0, x, ggml_reshape_1d(ctx0, layer.conv_dw_b, layer.conv_dw_b->ne[0])); x = ggml_add(ctx0, ggml_mul(ctx0, x, layer.conv_norm_w), layer.conv_norm_b); x = ggml_silu(ctx0, x); // pointwise_conv2 auto * conv_pw2_w = ggml_reshape_2d(ctx0, layer.conv_pw2_w, layer.conv_pw2_w->ne[1], layer.conv_pw2_w->ne[2]); x = ggml_mul_mat(ctx0, conv_pw2_w, x); x = ggml_add(ctx0, x, layer.conv_pw2_b); cur = x; } residual = ggml_add(ctx0, residual, cur); cur = build_norm(residual, layer.ff_norm_1_w, layer.ff_norm_1_b, NORM_TYPE_NORMAL, 1e-5, il); cb(cur, "conformer.layers.{}.norm_feed_forward2", il); cur = build_ffn(cur, layer.ff_up_1_w, layer.ff_up_1_b, nullptr, nullptr, layer.ff_down_1_w, layer.ff_down_1_b, FFN_SILU, il); // TODO(tarek): read activation for ffn from hparams cb(cur, "conformer.layers.{}.feed_forward2.linear2", il); residual = ggml_add(ctx0, residual, ggml_scale(ctx0, cur, fc_factor)); cb(residual, "conformer.layers.{}.conv.id", il); cur = build_norm(residual, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, 1e-5, il); cb(cur, "conformer.layers.{}.norm_out", il); } // audio adapter cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1); cb(cur, "audio_adapter.model.{}", 0); cur = build_ffn(cur, model.mm_1_w, model.mm_1_b, nullptr, nullptr, model.mm_3_w, model.mm_3_b, FFN_GELU_ERF, -1); cb(cur, "projected", -1); ggml_build_forward_expand(gf, cur); return gf; }