#include "debug.h" #include "arg.h" #include "common.h" #include "log.h" #include "llama.h" #include #include #include #include #include #include static void print_usage(int /*argc*/, char ** argv) { const std::string usage_template = R"( example usage: Print tensors: {prog} -m model.gguf -p "Hello my name is" --verbose The tensors to be printed can be filtered with --tensor-filter option. Save logits/embeddings: {prog} -m model.gguf -p "Hello my name is" --save-logits Add --embedding to save embeddings)" "\n"; // Fix the source code indentation above that is introduced by the raw string literal. std::string usage = std::regex_replace(usage_template, std::regex("\\n {8}"), "\n"); usage = std::regex_replace(usage, std::regex("\\{prog\\}"), argv[0]); LOG("%s\n", usage.c_str()); } static bool has_pooling(llama_context * ctx) { switch (llama_pooling_type(ctx)) { case LLAMA_POOLING_TYPE_NONE: case LLAMA_POOLING_TYPE_UNSPECIFIED: return false; default: return true; } } struct output_data { float * data_ptr = nullptr; int data_size = 0; std::string type_suffix; std::vector embd_norm; std::string prompt; std::vector tokens; output_data(llama_context * ctx, const llama_model * model, const common_params & params) { const llama_vocab * vocab = llama_model_get_vocab(model); const bool add_bos = llama_vocab_get_add_bos(vocab); tokens = common_tokenize(ctx, params.prompt, add_bos); prompt = params.prompt; if (params.embedding) { const int n_embd = llama_model_n_embd_out(model); const bool pooling = has_pooling(ctx); const int n_embd_count = pooling ? 1 : tokens.size(); const int n_floats = n_embd * n_embd_count; float * embd_raw = pooling ? llama_get_embeddings_seq(ctx, 0) : llama_get_embeddings(ctx); if (embd_raw == nullptr) { throw std::runtime_error("failed to get embeddings from the model"); } LOG_DBG("pooling_enabled: %s\n", pooling ? "true" : "false"); LOG_DBG("n_embd: %d\n", n_embd); LOG_DBG("n_floats: %d\n", n_floats); LOG_DBG("n_embd_count: %d\n", n_embd_count); data_ptr = embd_raw; data_size = n_floats; type_suffix = "-embeddings"; if (params.embd_normalize >= 0) { embd_norm.resize(n_floats); for (int i = 0; i < n_embd_count; i++) { common_embd_normalize(embd_raw+i*n_embd, embd_norm.data()+i*n_embd, n_embd, params.embd_normalize); } data_ptr = embd_norm.data(); } } else { const float * logits = llama_get_logits_ith(ctx, tokens.size() - 1); const int n_logits = llama_vocab_n_tokens(vocab); data_ptr = const_cast(logits); data_size = n_logits; type_suffix = ""; } } }; static void save_output_data(const output_data & output, const std::string & model_name, const std::string & output_dir) { std::filesystem::create_directory(output_dir); auto base_path = std::filesystem::path{output_dir} / ("llamacpp-" + model_name + output.type_suffix); // Save logits/embeddings to binary file. { std::filesystem::path filepath{base_path.string() + ".bin"}; std::ofstream file{filepath, std::ios::binary}; if (!file) { throw std::runtime_error("failed to open binary output file: " + filepath.string()); } file.write(reinterpret_cast(output.data_ptr), output.data_size * sizeof(float)); LOG("Data saved to %s\n", filepath.c_str()); } // Save logits/embeddings to text file. { std::filesystem::path filepath{base_path.string() + ".txt"}; std::ofstream file{filepath}; if (!file) { throw std::runtime_error("failed to open text output file: " + filepath.string()); } for (int i = 0; i < output.data_size; i++) { file << i << ": " << output.data_ptr[i] << '\n'; } LOG("Data saved to %s\n", filepath.c_str()); } // Save prompt and tokens to text file. { std::filesystem::path filepath{base_path.string() + "-prompt.txt"}; std::ofstream file{filepath}; if (!file) { throw std::runtime_error("failed to open prompt output file: " + filepath.string()); } file << "prompt: " << output.prompt << '\n'; file << "n_tokens: " << output.tokens.size() << '\n'; file << "token ids: "; for (size_t i = 0; i < output.tokens.size(); i++) { file << output.tokens[i]; if (i + 1 < output.tokens.size()) { file << ", "; } } file << '\n'; LOG("Prompt saved to %s\n", filepath.c_str()); } // Save token ids to binary file. { std::filesystem::path filepath{base_path.string() + "-tokens.bin"}; std::ofstream file{filepath, std::ios::binary}; if (!file) { throw std::runtime_error("failed to open tokens binary file: " + filepath.string()); } file.write(reinterpret_cast(output.tokens.data()), output.tokens.size() * sizeof(llama_token)); LOG("Tokens saved to %s\n", filepath.c_str()); } } static void print_tokenized_prompt(llama_context * ctx, const std::vector & tokens, const std::string & prompt) { const llama_model * model = llama_get_model(ctx); const llama_vocab * vocab = llama_model_get_vocab(model); LOG("Model add_bos: %s\n", llama_vocab_get_add_bos(vocab) ? "true" : "false"); LOG("Input prompt: \"%s\"\n", prompt.c_str()); LOG("Token ids (%zu):\n", tokens.size()); for (auto id : tokens) { std::string piece(128, '\0'); int n = llama_token_to_piece(vocab, id, piece.data(), piece.size(), 0, true); if (n < 0) { LOG_ERR("failed to convert token %d to piece\n", id); continue; } piece.resize(n); LOG("%s(%d) ", piece.c_str(), id); } LOG("\n"); } static bool run(llama_context * ctx, const common_params & params) { const llama_model * model = llama_get_model(ctx); const llama_vocab * vocab = llama_model_get_vocab(model); const bool add_bos = llama_vocab_get_add_bos(vocab); std::vector tokens = common_tokenize(ctx, params.prompt, add_bos); if (tokens.empty()) { LOG_ERR("%s : there are not input tokens to process - (try to provide a prompt with '-p')\n", __func__); return false; } if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size()))) { LOG_ERR("%s : failed to eval\n", __func__); return false; } print_tokenized_prompt(ctx, tokens, params.prompt); if (params.save_logits) { output_data output {ctx, model, params}; std::filesystem::path model_path{params.model.path}; std::string model_name{model_path.stem().string()}; save_output_data(output, model_name, params.logits_output_dir); } return true; } int main(int argc, char ** argv) { common_params params; if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_DEBUG, print_usage)) { return 1; } common_init(); llama_backend_init(); llama_numa_init(params.numa); base_callback_data cb_data(params, params.tensor_filter); auto llama_init = common_init_from_params(params); auto * model = llama_init->model(); auto * ctx = llama_init->context(); if (model == nullptr || ctx == nullptr) { LOG_ERR("%s : failed to init\n", __func__); return 1; } { LOG_INF("\n"); LOG_INF("%s\n", common_params_get_system_info(params).c_str()); LOG_INF("\n"); } if (!run(ctx, params)) { return 1; } LOG("\n"); llama_perf_context_print(ctx); llama_backend_free(); return 0; }