#include "debug.h" #include "log.h" #include #include static std::string common_ggml_ne_string(const ggml_tensor * t) { std::string str; for (int i = 0; i < GGML_MAX_DIMS; ++i) { str += std::to_string(t->ne[i]); if (i + 1 < GGML_MAX_DIMS) { str += ", "; } } return str; } static float common_ggml_get_float_value(const uint8_t * data, ggml_type type, const size_t * nb, size_t i0, size_t i1, size_t i2, size_t i3) { size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0]; float v; if (type == GGML_TYPE_F16) { v = ggml_fp16_to_fp32(*(const ggml_fp16_t *) &data[i]); } else if (type == GGML_TYPE_F32) { v = *(const float *) &data[i]; } else if (type == GGML_TYPE_I64) { v = (float) *(const int64_t *) &data[i]; } else if (type == GGML_TYPE_I32) { v = (float) *(const int32_t *) &data[i]; } else if (type == GGML_TYPE_I16) { v = (float) *(const int16_t *) &data[i]; } else if (type == GGML_TYPE_I8) { v = (float) *(const int8_t *) &data[i]; } else if (type == GGML_TYPE_BF16) { v = ggml_bf16_to_fp32(*(const ggml_bf16_t *) &data[i]); } else { GGML_ABORT("fatal error"); } return v; } template void common_debug_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) { GGML_ASSERT(n > 0); float sum = 0; for (int64_t i3 = 0; i3 < ne[3]; i3++) { for (int64_t i2 = 0; i2 < ne[2]; i2++) { for (int64_t i1 = 0; i1 < ne[1]; i1++) { for (int64_t i0 = 0; i0 < ne[0]; i0++) { const float v = common_ggml_get_float_value(data, type, nb, i0, i1, i2, i3); sum += v; } } } } for (int64_t i3 = 0; i3 < ne[3]; i3++) { LOG_ERR(" [\n"); for (int64_t i2 = 0; i2 < ne[2]; i2++) { if (i2 == n && ne[2] > 2 * n) { LOG_ERR(" ..., \n"); i2 = ne[2] - n; } LOG_ERR(" [\n"); for (int64_t i1 = 0; i1 < ne[1]; i1++) { if (i1 == n && ne[1] > 2 * n) { LOG_ERR(" ..., \n"); i1 = ne[1] - n; } LOG_ERR(" ["); for (int64_t i0 = 0; i0 < ne[0]; i0++) { if (i0 == n && ne[0] > 2 * n) { LOG_ERR("..., "); i0 = ne[0] - n; } const float v = common_ggml_get_float_value(data, type, nb, i0, i1, i2, i3); LOG_ERR("%12.4f", v); if (i0 < ne[0] - 1) { LOG_ERR(", "); } } LOG_ERR("],\n"); } LOG_ERR(" ],\n"); } LOG_ERR(" ]\n"); LOG_ERR(" sum = %f\n", sum); } if constexpr (abort) { if (std::isnan(sum)) { LOG_ERR("encountered NaN - aborting\n"); exit(0); } } } /** * GGML operations callback during the graph execution. * * @param t current tensor * @param ask when ask is true, the scheduler wants to know if we are interested in data from this tensor * if we return true, a follow-up call will be made with ask=false in which we can do the actual collection. * see ggml_backend_sched_eval_callback * @param user_data user data to pass at each call back * @return true to receive data or continue the graph, false otherwise */ template bool common_debug_cb_eval(struct ggml_tensor * t, bool ask, void * user_data) { auto * cb_data = (base_callback_data *) user_data; const struct ggml_tensor * src0 = t->src[0]; const struct ggml_tensor * src1 = t->src[1]; if (ask) { return true; // Always retrieve data } bool matches_filter = cb_data->tensor_filters.empty(); if (!matches_filter) { for (const auto & filter : cb_data->tensor_filters) { if (std::regex_search(t->name, filter)) { matches_filter = true; break; } } } char src1_str[128] = { 0 }; if (src1) { snprintf(src1_str, sizeof(src1_str), "%s{%s}", src1->name, common_ggml_ne_string(src1).c_str()); } if (matches_filter) { LOG_ERR("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__, t->name, ggml_type_name(t->type), ggml_op_desc(t), src0->name, common_ggml_ne_string(src0).c_str(), src1 ? src1_str : "", common_ggml_ne_string(t).c_str()); } const bool is_host = ggml_backend_buffer_is_host(t->buffer); if (!is_host) { auto n_bytes = ggml_nbytes(t); cb_data->data.resize(n_bytes); ggml_backend_tensor_get(t, cb_data->data.data(), 0, n_bytes); } if (!ggml_is_quantized(t->type) && matches_filter) { uint8_t * data = is_host ? (uint8_t *) t->data : cb_data->data.data(); common_debug_print_tensor(data, t->type, t->ne, t->nb, 3); } return true; } // Explicit template instantiations template bool common_debug_cb_eval(ggml_tensor *, bool, void *); template bool common_debug_cb_eval(ggml_tensor *, bool, void *); template void common_debug_print_tensor(uint8_t *, ggml_type, const int64_t *, const size_t *, int64_t); template void common_debug_print_tensor(uint8_t *, ggml_type, const int64_t *, const size_t *, int64_t);