#include "llama-quant.h" #include "llama-impl.h" #include "llama-model.h" #include "llama-model-loader.h" #include #include #include #include #include #include #include #include #include #include #include // Quantization types. Changes to this struct must be replicated in quantize.cpp struct tensor_quantization { std::string name; ggml_type quant = GGML_TYPE_COUNT; }; static bool is_iq(const enum ggml_type t) { switch (t) { case GGML_TYPE_IQ1_S: case GGML_TYPE_IQ1_M: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ2_S: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ3_S: case GGML_TYPE_IQ4_NL: case GGML_TYPE_IQ4_XS: return true; default: return false; } } static bool is_iq(const enum llama_ftype t) { switch (t) { case LLAMA_FTYPE_MOSTLY_IQ1_S: case LLAMA_FTYPE_MOSTLY_IQ1_M: case LLAMA_FTYPE_MOSTLY_IQ2_XXS: case LLAMA_FTYPE_MOSTLY_IQ2_XS: case LLAMA_FTYPE_MOSTLY_IQ2_S: case LLAMA_FTYPE_MOSTLY_IQ2_M: case LLAMA_FTYPE_MOSTLY_IQ3_XXS: case LLAMA_FTYPE_MOSTLY_IQ3_XS: case LLAMA_FTYPE_MOSTLY_IQ3_S: case LLAMA_FTYPE_MOSTLY_IQ3_M: case LLAMA_FTYPE_MOSTLY_IQ4_XS: case LLAMA_FTYPE_MOSTLY_IQ4_NL: return true; default: return false; } } static enum ggml_type fallback_type(const enum ggml_type new_type) { switch (new_type) { case GGML_TYPE_TQ1_0: case GGML_TYPE_TQ2_0: return GGML_TYPE_Q4_0; // symmetric-ish fallback case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ2_S: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ3_S: case GGML_TYPE_IQ1_S: case GGML_TYPE_IQ1_M: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_IQ4_XS: return GGML_TYPE_IQ4_NL; case GGML_TYPE_Q4_K: return GGML_TYPE_Q5_0; case GGML_TYPE_Q5_K: return GGML_TYPE_Q5_1; case GGML_TYPE_Q6_K: return GGML_TYPE_Q8_0; default: return new_type; } } static void zeros(std::ofstream & file, size_t n) { char zero = 0; for (size_t i = 0; i < n; ++i) { file.write(&zero, 1); } } static std::string remap_layer(const std::string & orig_name, const std::vector & prune, std::map & mapped, int & next_id) { if (prune.empty()) { return orig_name; } static const std::regex pattern(R"(blk\.(\d+)\.)"); if (std::smatch match; std::regex_search(orig_name, match, pattern)) { const int blk = std::stoi(match[1]); std::string new_name = orig_name; if (mapped.count(blk)) { // Already mapped, do nothing } else if (std::find(prune.begin(), prune.end(), blk) != prune.end()) { mapped[blk] = ""; } else if (blk < prune.front()) { mapped[blk] = std::to_string(blk); next_id = blk + 1; } else { mapped[blk] = std::to_string(next_id); ++next_id; } return mapped[blk].empty() ? mapped[blk] : new_name.replace(match.position(1), match.length(1), mapped[blk]); } return orig_name; } static std::string remap_imatrix (const std::string & orig_name, const std::map & mapped) { if (mapped.empty()) { return orig_name; } static const std::regex pattern(R"(blk\.(\d+)\.)"); if (std::smatch match; std::regex_search(orig_name, match, pattern)) { const std::string blk(match[1]); std::string new_name = orig_name; for (const auto & p : mapped) { if (p.second == blk) { return new_name.replace(match.position(1), match.length(1), std::to_string(p.first)); } } GGML_ABORT("\n%s: imatrix mapping error for %s\n", __func__, orig_name.c_str()); } return orig_name; } struct quantize_state_impl { const llama_model & model; const llama_model_quantize_params * params; int n_attention_wv = 0; int n_ffn_down = 0; int n_ffn_gate = 0; int n_ffn_up = 0; int i_attention_wv = 0; int i_ffn_down = 0; int i_ffn_gate = 0; int i_ffn_up = 0; int n_k_quantized = 0; int n_fallback = 0; bool has_imatrix = false; bool has_activations = false; // used to figure out if a model shares tok_embd with the output weight bool has_output = false; quantize_state_impl(const llama_model & model, const llama_model_quantize_params * params) : model(model) , params(params) {} }; static void llama_tensor_dequantize_impl( ggml_tensor * tensor, std::vector> & output, std::vector & workers, const size_t nelements, const int nthread ) { if (output.size() < nelements) { output.resize(nelements); } float * f32_output = (float *) output.data(); const ggml_type_traits * qtype = ggml_get_type_traits(tensor->type); if (ggml_is_quantized(tensor->type)) { if (qtype->to_float == NULL) { throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type))); } } else if (tensor->type != GGML_TYPE_F16 && tensor->type != GGML_TYPE_BF16) { throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type))); } if (nthread < 2) { if (tensor->type == GGML_TYPE_F16) { ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements); } else if (tensor->type == GGML_TYPE_BF16) { ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements); } else if (ggml_is_quantized(tensor->type)) { qtype->to_float(tensor->data, f32_output, nelements); } else { GGML_ABORT("fatal error"); // unreachable } return; } size_t block_size; if (tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) { block_size = 1; } else { block_size = (size_t)ggml_blck_size(tensor->type); } size_t block_size_bytes = ggml_type_size(tensor->type); GGML_ASSERT(nelements % block_size == 0); size_t nblocks = nelements / block_size; size_t blocks_per_thread = nblocks / nthread; size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count size_t in_buff_offs = 0; size_t out_buff_offs = 0; for (int tnum = 0; tnum < nthread; tnum++) { size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread size_t thr_elems = thr_blocks * block_size; // number of elements for this thread size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) { if (typ == GGML_TYPE_F16) { ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels); } else if (typ == GGML_TYPE_BF16) { ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels); } else { qtype->to_float(inbuf, outbuf, nels); } }; workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems); in_buff_offs += thr_block_bytes; out_buff_offs += thr_elems; } for (auto & w : workers) { w.join(); } workers.clear(); } static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) { const std::string name = ggml_get_name(tensor); // TODO: avoid hardcoded tensor names - use the TN_* constants const llm_arch arch = qs.model.arch; const auto tn = LLM_TN(arch); auto use_more_bits = [](int i_layer, int n_layers) -> bool { return i_layer < n_layers/8 || i_layer >= 7*n_layers/8 || (i_layer - n_layers/8)%3 == 2; }; const int n_expert = std::max(1, (int)qs.model.hparams.n_expert); auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) { if (n_expert > 1) { // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but occasionally randomly // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work // for getting the current layer as I initially thought, and we need to resort to parsing the // tensor name. if (sscanf(name, "blk.%d.", &i_layer) != 1) { throw std::runtime_error(format("Failed to determine layer for tensor %s", name)); } if (i_layer < 0 || i_layer >= n_layer) { throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer)); } } return std::make_pair(i_layer, n_layer); }; // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings // with the quantization of the output tensor if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) { if (qs.params->output_tensor_type < GGML_TYPE_COUNT) { new_type = qs.params->output_tensor_type; } else { const int64_t nx = tensor->ne[0]; const int64_t qk_k = ggml_blck_size(new_type); if (ftype == LLAMA_FTYPE_MOSTLY_MXFP4_MOE) { new_type = GGML_TYPE_Q8_0; } else if (arch == LLM_ARCH_FALCON || nx % qk_k != 0) { new_type = GGML_TYPE_Q8_0; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { new_type = GGML_TYPE_Q5_K; } else if (new_type != GGML_TYPE_Q8_0) { new_type = GGML_TYPE_Q6_K; } } } else if (ftype == LLAMA_FTYPE_MOSTLY_MXFP4_MOE) { // MoE tensors -> MXFP4 // other tensors -> Q8_0 if (tensor->ne[2] > 1) { new_type = GGML_TYPE_MXFP4; } else { new_type = GGML_TYPE_Q8_0; } } else if (name == "token_embd.weight" || name == "per_layer_token_embd.weight") { if (qs.params->token_embedding_type < GGML_TYPE_COUNT) { new_type = qs.params->token_embedding_type; } else { if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { new_type = GGML_TYPE_Q2_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) { new_type = GGML_TYPE_IQ3_S; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { new_type = GGML_TYPE_IQ3_S; } else if (ftype == LLAMA_FTYPE_MOSTLY_TQ1_0 || ftype == LLAMA_FTYPE_MOSTLY_TQ2_0) { new_type = GGML_TYPE_Q4_K; } } } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { if (name.find("attn_v.weight") != std::string::npos) { if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K; else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; ++qs.i_attention_wv; } else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) { new_type = GGML_TYPE_Q4_K; } else if (name.find("ffn_down") != std::string::npos) { if (qs.i_ffn_down < qs.n_ffn_down/8) { new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; } ++qs.i_ffn_down; } else if (name.find("attn_output.weight") != std::string::npos) { if (qs.model.hparams.n_expert == 8) { new_type = GGML_TYPE_Q5_K; } else { if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS; else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S; } } } else if (name.find("attn_v.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) { new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) { new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS; } else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) { new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) { new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) { new_type = GGML_TYPE_Q5_K; } else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K; if (qs.model.type == LLM_TYPE_70B) { // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with // nearly negligible increase in model size by quantizing this tensor with more bits: if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K; } if (qs.model.hparams.n_expert == 8) { // for the 8-expert model, bumping this to Q8_0 trades just ~128MB // TODO: explore better strategies new_type = GGML_TYPE_Q8_0; } ++qs.i_attention_wv; } else if (name.find("attn_k.weight") != std::string::npos) { if (qs.model.hparams.n_expert == 8) { // for the 8-expert model, bumping this to Q8_0 trades just ~128MB // TODO: explore better strategies new_type = GGML_TYPE_Q8_0; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) { new_type = GGML_TYPE_IQ3_XXS; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { new_type = GGML_TYPE_IQ2_S; } } else if (name.find("attn_q.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) { new_type = GGML_TYPE_IQ3_XXS; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { new_type = GGML_TYPE_IQ2_S; } } else if (name.find("ffn_down") != std::string::npos) { auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str()); int i_layer = info.first, n_layer = info.second; if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) { if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) { new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 || (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) { new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) { new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) { if (arch == LLM_ARCH_FALCON) { new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K : use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; } else { if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; } } else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) { new_type = GGML_TYPE_Q5_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) { new_type = GGML_TYPE_Q5_K; } else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0) && qs.has_imatrix && i_layer < n_layer/8) { // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1; } ++qs.i_ffn_down; } else if (name.find("attn_output.weight") != std::string::npos) { if (arch != LLM_ARCH_FALCON) { if (qs.model.hparams.n_expert == 8) { if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) { new_type = GGML_TYPE_Q5_K; } } else { if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K; else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K; else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K; } } else { if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K; } } else if (name.find("attn_qkv.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) { new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K; } else if (name.find("ffn_gate") != std::string::npos) { auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str()); int i_layer = info.first, n_layer = info.second; if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) { new_type = GGML_TYPE_IQ3_XXS; } ++qs.i_ffn_gate; } else if (name.find("ffn_up") != std::string::npos) { auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str()); int i_layer = info.first, n_layer = info.second; if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) { new_type = GGML_TYPE_IQ3_XXS; } ++qs.i_ffn_up; } // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; //} // IK: let's remove this, else Q2_K is almost the same as Q3_K_S //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) { // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; //} // This can be used to reduce the size of the Q5_K_S model. // The associated PPL increase is fully in line with the size reduction //else { // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K; //} bool convert_incompatible_tensor = false; { const int64_t nx = tensor->ne[0]; const int64_t ny = tensor->ne[1]; const int64_t qk_k = ggml_blck_size(new_type); if (nx % qk_k != 0) { LLAMA_LOG_WARN("\n\n%s : tensor cols %" PRId64 " x %" PRId64 " are not divisible by %" PRId64 ", required for %s", __func__, nx, ny, qk_k, ggml_type_name(new_type)); convert_incompatible_tensor = true; } else { ++qs.n_k_quantized; } } if (convert_incompatible_tensor) { switch (new_type) { case GGML_TYPE_TQ1_0: case GGML_TYPE_TQ2_0: new_type = GGML_TYPE_Q4_0; break; // TODO: use a symmetric type instead case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ2_S: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ3_S: case GGML_TYPE_IQ1_S: case GGML_TYPE_IQ1_M: case GGML_TYPE_Q2_K: case GGML_TYPE_Q3_K: case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break; case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break; case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break; case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break; default: throw std::runtime_error("\nUnsupported tensor size encountered\n"); } if (tensor->ne[0] % ggml_blck_size(new_type) != 0) { new_type = GGML_TYPE_F16; } LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type)); ++qs.n_fallback; } return new_type; } static size_t llama_tensor_quantize_impl(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector & workers, const int nthread) { if (nthread < 2) { // single-thread size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix); if (!ggml_validate_row_data(new_type, new_data, new_size)) { throw std::runtime_error("quantized data validation failed"); } return new_size; } std::mutex mutex; int64_t counter = 0; size_t new_size = 0; bool valid = true; auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size, nrows, n_per_row, imatrix]() { const int64_t nrows_per_chunk = chunk_size / n_per_row; size_t local_size = 0; while (true) { std::unique_lock lock(mutex); int64_t first_row = counter; counter += nrows_per_chunk; if (first_row >= nrows) { if (local_size > 0) { new_size += local_size; } break; } lock.unlock(); const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk); size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix); local_size += this_size; // validate the quantized data const size_t row_size = ggml_row_size(new_type, n_per_row); void * this_data = (char *) new_data + first_row * row_size; if (!ggml_validate_row_data(new_type, this_data, this_size)) { std::unique_lock lock(mutex); valid = false; break; } } }; for (int it = 0; it < nthread - 1; ++it) { workers.emplace_back(compute); } compute(); for (auto & w : workers) { w.join(); } workers.clear(); if (!valid) { throw std::runtime_error("quantized data validation failed"); } return new_size; } // Returns per-tensor type overrides to meet target BPW at lowest ppl static std::unordered_map target_bpw_type( llama_model_loader & ml, std::vector> & buffer, const llama_model & model, const std::vector & tensors, const std::map & mapped, const std::unordered_map> * values_data, const std::unordered_map> * activations_data, const llama_model_quantize_params * params, int nthread ) { struct candidate_types { ggml_type type; float bpw; size_t bytes; float error; }; struct tensor_info { const llama_model_loader::llama_tensor_weight * w = nullptr; std::vector candidate = {}; int choice = -1; float min_bpw = 0.0; float max_bpw = 0.0; size_t n_elements = 0; }; constexpr ggml_type k_quants[] = { GGML_TYPE_Q2_K, GGML_TYPE_Q3_K, GGML_TYPE_Q4_K, GGML_TYPE_Q5_K, GGML_TYPE_Q6_K, GGML_TYPE_Q8_0, // TODO: find better way to handle F16/BF16 #ifdef GGML_USE_METAL GGML_TYPE_F16 #else GGML_TYPE_BF16 #endif }; constexpr ggml_type iq_quants[] = { GGML_TYPE_IQ1_S, GGML_TYPE_IQ2_S, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS, GGML_TYPE_Q5_K, GGML_TYPE_Q6_K, GGML_TYPE_Q8_0 }; auto tensor_bytes = [](const ggml_tensor * t, const ggml_type typ) -> size_t { const int64_t n_per_row = t->ne[0]; const size_t row_sz = ggml_row_size(typ, n_per_row); const int64_t nrows = ggml_nrows(t); return (size_t)nrows * row_sz; }; auto tensor_bpw = [&](const ggml_tensor * t, const ggml_type typ) -> double { const int64_t nelem = ggml_nelements(t); const size_t bytes = tensor_bytes(t, typ); return (double)bytes * 8.0 / (double)nelem; }; auto is_compatible = [&](const ggml_tensor * t, const ggml_type typ) -> bool { const int64_t n_per_row = t->ne[0]; const int64_t blck = ggml_blck_size(typ); if (blck <= 1) { return true; } return n_per_row % blck == 0; }; auto make_compatible = [&](const ggml_tensor * t, const ggml_type typ) -> ggml_type { if (is_compatible(t, typ)) { return typ; } ggml_type fb = fallback_type(typ); if (is_compatible(t, fb)) { return fb; } return GGML_TYPE_F16; }; auto name_tn = LLM_TN(model.arch); auto can_quantize = [&](const ggml_tensor * t) -> bool { // This list should be kept in sync with llama_tensor_quantize_impl() const std::string name = ggml_get_name(t); bool q = name.rfind("weight") == name.size() - 6; q &= ggml_n_dims(t) >= 2; q &= name.find("_norm.weight") == std::string::npos; q &= name.find("ffn_gate_inp.weight") == std::string::npos; q &= name.find("altup") == std::string::npos; q &= name.find("laurel") == std::string::npos; q &= name.find("per_layer_model_proj") == std::string::npos; q &= name != name_tn(LLM_TENSOR_POS_EMBD, "weight"); q &= name != name_tn(LLM_TENSOR_TOKEN_TYPES, "weight"); q &= name.find("ssm_conv1d.weight") == std::string::npos; q &= name.find("shortconv.conv.weight") == std::string::npos; q &= name.find("time_mix_first.weight") == std::string::npos; q &= name.find("time_mix_w0.weight") == std::string::npos; q &= name.find("time_mix_w1.weight") == std::string::npos; q &= name.find("time_mix_w2.weight") == std::string::npos; q &= name.find("time_mix_v0.weight") == std::string::npos; q &= name.find("time_mix_v1.weight") == std::string::npos; q &= name.find("time_mix_v2.weight") == std::string::npos; q &= name.find("time_mix_a0.weight") == std::string::npos; q &= name.find("time_mix_a1.weight") == std::string::npos; q &= name.find("time_mix_a2.weight") == std::string::npos; q &= name.find("time_mix_g1.weight") == std::string::npos; q &= name.find("time_mix_g2.weight") == std::string::npos; q &= name.find("time_mix_decay_w1.weight") == std::string::npos; q &= name.find("time_mix_decay_w2.weight") == std::string::npos; q &= name.find("time_mix_lerp_fused.weight") == std::string::npos; q &= name.find("attn_rel_b.weight") == std::string::npos; q &= !params->only_copy; return q; }; // Estimate error for a given type using a sampled subset of rows auto estimate_error = [&](const ggml_tensor * t, const ggml_type quant_type, const std::vector & f32_sample, const std::vector & sample_rows_per_slice, const float * values_sample, const float * activations_sample, std::vector & quantized_buffer, std::vector & dequantized_buffer) -> double { const int64_t n_per_row = t->ne[0]; const int64_t nrows = t->ne[1]; const int64_t ne2 = t->ne[2] > 0 ? t->ne[2] : 1; const size_t sample_element_count = f32_sample.size(); const size_t sample_row_count = sample_element_count / (size_t)n_per_row; if (sample_row_count == 0) { return 0.0; } const size_t row_sz = ggml_row_size(quant_type, n_per_row); const size_t buffer_sz = row_sz * sample_row_count; if (quantized_buffer.size() < buffer_sz) { quantized_buffer.resize(buffer_sz); } if (dequantized_buffer.size() < sample_element_count) { dequantized_buffer.resize(sample_element_count); } const bool has_values = values_sample != nullptr; const bool has_activations = activations_sample != nullptr; // Bias denominators per slice (only needed if we have activations) std::vector bias_denominator_per_slice(ne2, 0.0); if (has_activations) { for (int64_t s = 0; s < ne2; ++s) { const float * values = has_values ? values_sample + s * n_per_row : nullptr; const float * activations = activations_sample + s * n_per_row; double denom = 0.0; for (int64_t j = 0; j < n_per_row; ++j) { const double a = activations[j]; const double w = values ? values[j] : 1.0; denom += w * a * a; } bias_denominator_per_slice[s] = denom; } } // Compute per-row squared norms with weighting (if values are provided) std::vector row_sq_norm(sample_row_count, 0.0); { size_t offset = 0; size_t row_idx = 0; for (int64_t s = 0; s < ne2; ++s) { const int64_t rs = sample_rows_per_slice[s]; if (rs == 0) { continue; } const float * values = has_values ? values_sample + s * n_per_row : nullptr; for (int64_t r = 0; r < rs; ++r, ++row_idx) { const float * x = f32_sample.data() + offset; double rsn = 0.0; if (values) { for (int64_t j = 0; j < n_per_row; ++j) { const double v = values[j]; const double xx = x[j]; rsn += v * xx * xx; } } else { for (int64_t j = 0; j < n_per_row; ++j) { const double xx = x[j]; rsn += xx * xx; } } row_sq_norm[row_idx] = rsn; offset += (size_t)n_per_row; } } } // Quantize sampled rows slice-by-slice into quantized_buffer { size_t q_offset = 0; size_t f_offset = 0; for (int64_t slice = 0; slice < ne2; ++slice) { const int64_t rs = sample_rows_per_slice[slice]; if (rs == 0) { continue; } const float * value = has_values ? values_sample + slice * n_per_row : nullptr; (void)ggml_quantize_chunk(quant_type, f32_sample.data() + f_offset, quantized_buffer.data() + q_offset, 0, rs, n_per_row, value); q_offset += row_sz * (size_t)rs; f_offset += (size_t)rs * (size_t)n_per_row; } } // Dequantize into dequantized_buffer { const ggml_type_traits * traits = ggml_get_type_traits(quant_type); auto row_to_float = [&](size_t r) { uint8_t * src = quantized_buffer.data() + r * row_sz; float * dst = dequantized_buffer.data() + r * (size_t)n_per_row; if (quant_type == GGML_TYPE_F16) { ggml_fp16_to_fp32_row((const ggml_fp16_t *)src, dst, (int)n_per_row); } else if (quant_type == GGML_TYPE_BF16) { ggml_bf16_to_fp32_row((const ggml_bf16_t *)src, dst, (int)n_per_row); } else { if (!traits || !traits->to_float) { LLAMA_LOG_WARN("%s: unsupported quantization type %s\n", __func__, ggml_type_name(quant_type)); return false; } traits->to_float(src, dst, (int)n_per_row); } return true; }; for (size_t r = 0; r < sample_row_count; ++r) { if (!row_to_float(r)) { return 1e35; } } } // Compute error size_t offset = 0; size_t row_idx = 0; double total_err = 0.0; for (int64_t slice = 0; slice < ne2; ++slice) { const int64_t rs = sample_rows_per_slice[slice]; if (rs == 0) { continue; } const float * values = has_values ? values_sample + slice * n_per_row : nullptr; const float * activations = has_activations ? activations_sample + slice * n_per_row : nullptr; const double bias_denom = has_activations ? bias_denominator_per_slice[slice] : 0.0; double slice_err = 0.0; for (int64_t r = 0; r < rs; ++r, ++row_idx) { const float * x = f32_sample.data() + offset; const float * y = dequantized_buffer.data() + offset; double weighted_mse = 0.0; double bias_num = 0.0; if (values && activations) { for (int64_t j = 0; j < n_per_row; ++j) { const double v = values[j]; const double e = y[j] - x[j]; const double a = activations[j]; weighted_mse += v * e * e; bias_num += v * e * a; } } else if (values) { for (int64_t j = 0; j < n_per_row; ++j) { const double v = values[j]; const double e = y[j] - x[j]; weighted_mse += v * e * e; } } else if (activations) { for (int64_t j = 0; j < n_per_row; ++j) { const double e = y[j] - x[j]; const double a = activations[j]; weighted_mse += e * e; bias_num += e * a; } } else { for (int64_t j = 0; j < n_per_row; ++j) { const double e = y[j] - x[j]; weighted_mse += e * e; } } // bias_lambda adjusts the trade-off between systematic bias (introduced by block‑wise scaling) and MSE // larger value favours quantisation types that produce smaller bias even if the MSE is slightly larger constexpr float bias_lambda = 1.5f; constexpr double epsilon = 1e-12; double err_num = weighted_mse; if (activations && bias_lambda != 0.0f) { const double proj = bias_num * bias_num / (bias_denom + epsilon); err_num += (double)bias_lambda * proj; } const double err_den = row_sq_norm[row_idx] + epsilon; slice_err += err_num / err_den; offset += (size_t)n_per_row; } const double scale_rows = (double)nrows / std::max(1.0, (double)rs); total_err += slice_err * scale_rows; } return std::isfinite(total_err) ? total_err : 1e35; }; std::vector all; all.reserve(tensors.size()); for (const auto * tw : tensors) { std::vector workers; workers.reserve(std::max(1, nthread)); ggml_tensor * t = tw->tensor; const std::string name = ggml_get_name(t); if (!can_quantize(t)) { continue; } LLAMA_LOG_INFO("\t%s: - processing tensor %45s \t(%12d elements)\n", __func__, name.c_str(), (int)ggml_nelements(t)); if (!ml.use_mmap) { if (buffer.size() < ggml_nbytes(t)) { buffer.resize(ggml_nbytes(t)); } t->data = buffer.data(); } ml.load_data_for(t); // Dequantize only sampled rows into f32_sample const int64_t n_per_row = t->ne[0]; const int64_t nrows_total = t->ne[1]; const int64_t ne2 = t->ne[2] > 0 ? t->ne[2] : 1; // Larger sample_rows_per_expert values may result in more accurate error estimates, but will take longer to compute constexpr int sample_rows_per_expert = 384; std::vector f32_sample; f32_sample.reserve((size_t)ne2 * (size_t)std::min(nrows_total, sample_rows_per_expert) * (size_t)n_per_row); // deterministic sampling seed based on tensor name + fixed constant std::mt19937 rng(std::hash{}(name) ^0xeabada55cafed00d); std::vector sample_rows_per_slice(ne2, 0); const int64_t sample_rows_max = std::max(1, std::min(nrows_total, sample_rows_per_expert)); const int64_t stride = std::max(1, nrows_total / sample_rows_max); std::vector row_buffer(n_per_row); const ggml_type src_type = t->type; const ggml_type_traits *src_traits = ggml_get_type_traits(src_type); const bool src_is_quant = ggml_is_quantized(src_type); const size_t src_row_sz = ggml_row_size(src_type, n_per_row); for (int64_t slice = 0; slice < ne2; ++slice) { int64_t current_sampled_rows = 0; int64_t offset = 0; if (stride > 1) { std::uniform_int_distribution dist(0, stride - 1); offset = dist(rng); } for (int64_t r = offset; r < nrows_total && current_sampled_rows < sample_rows_max; r += stride) { if (src_type == GGML_TYPE_F32) { const float * src_row = (const float *)t->data + slice * (n_per_row * nrows_total) + r * n_per_row; f32_sample.insert(f32_sample.end(), src_row, src_row + n_per_row); } else if (src_type == GGML_TYPE_F16) { const ggml_fp16_t * src_row = (const ggml_fp16_t *)((const uint8_t *)t->data + slice * (src_row_sz * nrows_total) + r * src_row_sz); ggml_fp16_to_fp32_row(src_row, row_buffer.data(), (int)n_per_row); f32_sample.insert(f32_sample.end(), row_buffer.begin(), row_buffer.end()); } else if (src_type == GGML_TYPE_BF16) { const ggml_bf16_t * src_row = (const ggml_bf16_t *)((const uint8_t *)t->data + slice * (src_row_sz * nrows_total) + r * src_row_sz); ggml_bf16_to_fp32_row(src_row, row_buffer.data(), (int)n_per_row); f32_sample.insert(f32_sample.end(), row_buffer.begin(), row_buffer.end()); } else if (src_is_quant) { const uint8_t * qrow = (const uint8_t *)t->data + slice * (src_row_sz * nrows_total) + r * src_row_sz; if (!src_traits || !src_traits->to_float) { throw std::runtime_error(format("cannot dequantize type %s for sampling", ggml_type_name(src_type))); } src_traits->to_float(qrow, row_buffer.data(), (int)n_per_row); f32_sample.insert(f32_sample.end(), row_buffer.begin(), row_buffer.end()); } else { throw std::runtime_error(format("unsupported src type %s for sampling", ggml_type_name(src_type))); } ++current_sampled_rows; } sample_rows_per_slice[slice] = current_sampled_rows; } auto side_data = [&](const std::unordered_map> * m, const std::string & tensor_name) -> std::pair { if (!m) { return {nullptr, 0}; } const std::string key = remap_imatrix(tensor_name, mapped); const auto it = m->find(key); if (it == m->end()) { return {nullptr, 0}; } return { it->second.data(), it->second.size() }; }; // Copy this row's side data (values and activations), or broadcasts to all slices auto copy_or_broadcast = [&](const float *src, size_t src_sz, std::vector &dst) { const size_t want = (size_t)ne2 * (size_t)n_per_row; dst.clear(); if (!src || src_sz == 0) { return; } if (src_sz == want) { dst.resize(want); std::memcpy(dst.data(), src, want * sizeof(float)); } else if (src_sz == (size_t)n_per_row) { dst.resize(want); for (int64_t s = 0; s < ne2; ++s) { std::memcpy(dst.data() + s * n_per_row, src, n_per_row * sizeof(float)); } } else { LLAMA_LOG_WARN("%s: side data size mismatch for %s: got %zu, expected %zu or %zu; ignoring\n", __func__, name.c_str(), src_sz, (size_t)n_per_row, want); } }; const auto [values_all, values_sz] = side_data(values_data, name); const auto [activations_all, activations_sz] = side_data(activations_data, name); std::vector values_sample; std::vector activations_sample; if (values_all) { copy_or_broadcast(values_all, values_sz, values_sample); } if (activations_all) { copy_or_broadcast(activations_all, activations_sz, activations_sample); } const int64_t nelem = ggml_nelements(t); tensor_info info; info.w = tw; info.n_elements = nelem; // Prepare scratch buffers sized for the largest candidate row size size_t total_sampled_rows = f32_sample.size() / n_per_row; // Build list of candidate types first (compatible ones) const ggml_type * base_arr = is_iq(params->ftype) ? iq_quants : k_quants; const size_t base_sz = is_iq(params->ftype) ? std::size(iq_quants) : std::size(k_quants); size_t max_row_sz = 0; const bool has_valid_imatrix = !values_sample.empty() && values_sample.size() == (size_t)ne2 * (size_t)n_per_row; std::vector compatible_candidates; compatible_candidates.reserve(base_sz); for (size_t i = 0; i < base_sz; ++i) { ggml_type ts_type = base_arr[i]; if (is_iq(ts_type) && !has_valid_imatrix) { LLAMA_LOG_WARN("%s: skipping %s quantization for %s, no or mismatched imatrix provided\n", __func__, ggml_type_name(ts_type), name.c_str()); continue; } ggml_type tt = make_compatible(t, ts_type); if (!is_compatible(t, tt)) { continue; } compatible_candidates.push_back(tt); max_row_sz = std::max(max_row_sz, ggml_row_size(tt, n_per_row)); } std::sort(compatible_candidates.begin(), compatible_candidates.end()); compatible_candidates.erase(std::unique(compatible_candidates.begin(), compatible_candidates.end()), compatible_candidates.end()); // Now evaluate candidates std::vector eval_candidates(compatible_candidates.size()); const float * values = values_sample.empty() ? nullptr : values_sample.data(); const float * activations = activations_sample.empty() ? nullptr : activations_sample.data(); std::vector quantized_buffer(max_row_sz * total_sampled_rows); std::vector dequantised_buffer(f32_sample.size()); int n_eval_threads = std::max(1, std::min(nthread, (int)compatible_candidates.size())); std::atomic cidx{0}; std::vector eval_workers; eval_workers.reserve(n_eval_threads); for (int ti = 0; ti < n_eval_threads; ++ti) { eval_workers.emplace_back([&] { // thread-local scratch std::vector tl_quantized_buffer(quantized_buffer.size()); std::vector tl_dequantised_buffer(dequantised_buffer.size()); for (;;) { const size_t i = cidx.fetch_add(1, std::memory_order_relaxed); if (i >= compatible_candidates.size()) { break; } const ggml_type tt = compatible_candidates[i]; const auto bpw = (float)tensor_bpw(t, tt); const size_t bytes = tensor_bytes(t, tt); const auto err = (float)estimate_error(t, tt, f32_sample, sample_rows_per_slice, values, activations, tl_quantized_buffer, tl_dequantised_buffer); eval_candidates[i] = candidate_types{ tt, bpw, bytes, err }; } }); } for (auto &th : eval_workers) { th.join(); } for (auto &c : eval_candidates) { if (c.bytes > 0) { info.candidate.push_back(c); } } if (info.candidate.empty()) { // As a last resort, keep original type float bpw = ggml_nbytes(t) * 8.0f / nelem; info.candidate.push_back(candidate_types{ t->type, bpw, ggml_nbytes(t), 0.0 }); } // Keep only the pareto‑optimal candidates: if A has >= bytes and >= error than B, drop A. { std::vector pruned; pruned.reserve(info.candidate.size()); // Sort by bytes ascending, error ascending std::sort(info.candidate.begin(), info.candidate.end(), [](const candidate_types & a, const candidate_types & b) { if (a.bytes != b.bytes) { return a.bytes < b.bytes; } return a.error < b.error; }); double best_err = std::numeric_limits::infinity(); size_t last_bytes = std::numeric_limits::max(); for (const auto & c : info.candidate) { // Only keep the best error seen so far at strictly larger byte sizes if (c.bytes != last_bytes) { // first time we see this byte size last_bytes = c.bytes; if (c.error < best_err) { pruned.push_back(c); best_err = c.error; } } else { // same bytes: we already sorted by error; skip } } info.candidate.swap(pruned); } // Initialize choice at the smallest bpw candidate info.choice = 0; info.min_bpw = info.candidate.front().bpw; info.max_bpw = info.candidate.back().bpw; all.push_back(std::move(info)); } if (all.empty()) { return {}; } // Greedy allocation from minimum bpw upward to reach target_bpw auto current_total_bytes = [&]() -> size_t { size_t b = 0; for (const auto & ti : all) { b += ti.candidate[ti.choice].bytes; } return b; }; auto total_weights = [&]() -> size_t { size_t w = 0; for (const auto & ti : all) { w += ti.n_elements; } return w; }; const size_t tw = total_weights(); auto current_bpw = [&]() -> double { return (double)current_total_bytes() * 8.0f / (double)tw; }; // Precompute current bpw double bpw_now = current_bpw(); float target_bpw = params->target_bpw; // If minimal bpw is already above the target, we're constrained by the tensor's shape; return closest (min bpw) if (bpw_now >= target_bpw) { std::unordered_map overrides; for (const auto & ti : all) { overrides[ggml_get_name(ti.w->tensor)] = ti.candidate[ti.choice].type; } return overrides; } struct upgrade { int idx; int next; double err; size_t delta_bytes; double ratio; }; // Find next strictly-larger candidate index for a tensor auto next_distinct_idx = [&](const tensor_info & ti) -> int { const auto & cand = ti.candidate; const auto & cur = cand[ti.choice]; int j = ti.choice + 1; while (j < (int)cand.size() && cand[j].bytes == cur.bytes) { ++j; } return j < (int)cand.size() ? j : -1; }; auto recompute_best_upgrade = [&]() -> upgrade { const double eps = 1e-12; upgrade best{ -1, -1, 0.0, 0, -1.0 }; for (int i = 0; i < (int) all.size(); ++i) { const auto & ti = all[i]; if (ti.choice >= (int)ti.candidate.size() - 1) { continue; } const int j = next_distinct_idx(ti); if (j < 0) { continue; } const auto & cur = ti.candidate[ti.choice]; const auto & nxt = ti.candidate[j]; const size_t delta_bytes = nxt.bytes - cur.bytes; if (delta_bytes == 0) { continue; } double err = cur.error - nxt.error; err = std::max(err, 0.0); double ratio = err / (double)(delta_bytes * 8ull); if (ratio > best.ratio + eps || (std::abs(ratio - best.ratio) <= eps && delta_bytes < best.delta_bytes)) { best = upgrade{ i, j, err, delta_bytes, ratio }; } } return best; }; while (true) { upgrade up = recompute_best_upgrade(); if (up.idx < 0) { break; } size_t now_bytes = current_total_bytes(); size_t next_bytes = now_bytes + up.delta_bytes; double bpw_next = (double)next_bytes * 8.0 / (double)tw; if (bpw_next <= target_bpw + 1e-12) { all[up.idx].choice = up.next; bpw_now = bpw_next; } else { break; } } // We might still be below target so we try to find the best upgrade one last time { upgrade best_over{ -1, -1, 0.0, 0, -1.0 }; double best_over_gap = 1e300; double under_gap = target_bpw - bpw_now; size_t now_bytes = current_total_bytes(); for (int i = 0; i < (int) all.size(); ++i) { const auto & ti = all[i]; if (ti.choice >= (int)ti.candidate.size() - 1) { continue; } int j = next_distinct_idx(ti); if (j < 0) { continue; } const auto & cur = ti.candidate[ti.choice]; const auto & nxt = ti.candidate[j]; size_t delta_bytes = nxt.bytes - cur.bytes; if (delta_bytes == 0) { continue; } size_t over_bytes = now_bytes + delta_bytes; double bpw_over = (double)over_bytes * 8.0 / (double)tw; double err = cur.error - nxt.error; if (err < 0.0) { err = 0.0; } double ratio = err / (double)(delta_bytes * 8ull); double over_gap = std::abs(bpw_over - (double)target_bpw); if (over_gap < best_over_gap - 1e-12 || (std::abs(over_gap - best_over_gap) <= 1e-12 && ratio > best_over.ratio)) { best_over_gap = over_gap; best_over = upgrade{ i, j, err, delta_bytes, ratio }; } } if (best_over.idx >= 0) { if (best_over_gap < under_gap) { all[best_over.idx].choice = best_over.next; } } } // Build the override map std::unordered_map overrides; LLAMA_LOG_INFO("%s: - estimated tensor quantization mix:\n", __func__); for (const auto & ti : all) { LLAMA_LOG_INFO("\t%s: %45s - \t%8s, \t%1.4f bpw,\terror: %.4f\n", __func__, ggml_get_name(ti.w->tensor), ggml_type_name(ti.candidate[ti.choice].type), ti.candidate[ti.choice].bpw, ti.candidate[ti.choice].error); overrides[ggml_get_name(ti.w->tensor)] = ti.candidate[ti.choice].type; } return overrides; } static void llama_model_quantize_impl(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) { ggml_type default_type; llama_ftype ftype = params->ftype; switch (params->ftype) { case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break; case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break; case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break; case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break; case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break; case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break; case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break; case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break; case LLAMA_FTYPE_MOSTLY_MXFP4_MOE: default_type = GGML_TYPE_MXFP4; break; // K-quants case LLAMA_FTYPE_MOSTLY_Q2_K_S: case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break; case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break; case LLAMA_FTYPE_MOSTLY_Q3_K_S: case LLAMA_FTYPE_MOSTLY_Q3_K_M: case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break; case LLAMA_FTYPE_MOSTLY_Q4_K_S: case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break; case LLAMA_FTYPE_MOSTLY_Q5_K_S: case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break; case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break; case LLAMA_FTYPE_MOSTLY_TQ1_0: default_type = GGML_TYPE_TQ1_0; break; case LLAMA_FTYPE_MOSTLY_TQ2_0: default_type = GGML_TYPE_TQ2_0; break; case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break; case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break; case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break; case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break; case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break; case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break; case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break; case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break; case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break; case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break; case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break; default: throw std::runtime_error(format("invalid output file type %d\n", ftype)); } int nthread = params->nthread; if (nthread <= 0) { nthread = std::thread::hardware_concurrency(); } // mmap consistently increases speed on Linux, and also increases speed on Windows with // hot cache. It may cause a slowdown on macOS, possibly related to free memory. #if defined(__linux__) || defined(_WIN32) constexpr bool use_mmap = true; #else constexpr bool use_mmap = false; #endif llama_model_kv_override * kv_overrides = nullptr; if (params->kv_overrides) { auto * v = (std::vector*)params->kv_overrides; kv_overrides = v->data(); } std::vector splits = {}; llama_model_loader ml(fname_inp, splits, use_mmap, /*check_tensors*/ true, kv_overrides, nullptr); ml.init_mappings(false); // no prefetching llama_model model(llama_model_default_params()); model.load_arch (ml); model.load_hparams(ml); model.load_stats (ml); quantize_state_impl qs(model, params); if (params->only_copy) { ftype = ml.ftype; } const std::unordered_map> * values_data = nullptr; const std::unordered_map> * activations_data = nullptr; if (params->imatrix) { values_data = static_cast>*>(params->imatrix); if (values_data) { LLAMA_LOG_INFO("================================ Have weights data with %d entries",int(values_data->size())); qs.has_imatrix = true; // check imatrix for nans or infs for (const auto & kv : *values_data) { for (float f : kv.second) { if (!std::isfinite(f)) { throw std::runtime_error(format("imatrix contains non-finite value %f\n", f)); } } } } } if (params->activations) { activations_data = static_cast>*>(params->activations); if (activations_data) { LLAMA_LOG_INFO(" and %d activations",int(activations_data->size())); qs.has_activations = true; // check activations for nans or infs for (const auto & kv : *activations_data) { for (float f : kv.second) { if (!std::isfinite(f)) { throw std::runtime_error(format("activations contain non-finite value %f\n", f)); } } } } } LLAMA_LOG_INFO("\n"); gguf_context_ptr ctx_out { gguf_init_empty() }; std::vector prune_list = {}; if (params->prune_layers) { prune_list = *static_cast *>(params->prune_layers); } // copy the KV pairs from the input file gguf_set_kv (ctx_out.get(), ml.meta.get()); gguf_set_val_u32(ctx_out.get(), "general.quantization_version", GGML_QNT_VERSION); // TODO: use LLM_KV gguf_set_val_u32(ctx_out.get(), "general.file_type", ftype); // TODO: use LLM_KV // Remove split metadata gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_NO).c_str()); gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str()); gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str()); if (params->kv_overrides) { const std::vector & overrides = *(const std::vector *)params->kv_overrides; for (const auto & o : overrides) { if (o.key[0] == 0) break; if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) { gguf_set_val_f32(ctx_out.get(), o.key, o.val_f64); } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) { // Setting type to UINT32. See https://github.com/ggml-org/llama.cpp/pull/14182 for context gguf_set_val_u32(ctx_out.get(), o.key, (uint32_t)abs(o.val_i64)); } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) { gguf_set_val_bool(ctx_out.get(), o.key, o.val_bool); } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) { gguf_set_val_str(ctx_out.get(), o.key, o.val_str); } else { LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key); } } } std::map mapped; int blk_id = 0; int pruned_attention_w = 0; // make a list of weights std::vector tensors; tensors.reserve(ml.weights_map.size()); for (const auto & it : ml.weights_map) { const std::string remapped_name(remap_layer(it.first, prune_list, mapped, blk_id)); if (remapped_name.empty()) { if (it.first.find("attn_v.weight") != std::string::npos || it.first.find("attn_qkv.weight") != std::string::npos || it.first.find("attn_kv_b.weight") != std::string::npos) { pruned_attention_w++; } LLAMA_LOG_DEBUG("%s: pruning tensor %s\n", __func__, it.first.c_str()); continue; } else if (remapped_name != it.first) { ggml_set_name(it.second.tensor, remapped_name.c_str()); LLAMA_LOG_DEBUG("%s: tensor %s remapped to %s\n", __func__, it.first.c_str(), ggml_get_name(it.second.tensor)); } tensors.push_back(&it.second); } if (!prune_list.empty()) { gguf_set_val_u32(ctx_out.get(), ml.llm_kv(LLM_KV_BLOCK_COUNT).c_str(), blk_id); } // keep_split requires that the weights are sorted by split index if (params->keep_split) { std::sort(tensors.begin(), tensors.end(), [](const llama_model_loader::llama_tensor_weight * a, const llama_model_loader::llama_tensor_weight * b) { if (a->idx == b->idx) { return a->offs < b->offs; } return a->idx < b->idx; }); } for (const auto * it : tensors) { const struct ggml_tensor * tensor = it->tensor; const std::string name = ggml_get_name(tensor); // TODO: avoid hardcoded tensor names - use the TN_* constants if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos || name.find("attn_kv_b.weight")!= std::string::npos) { ++qs.n_attention_wv; } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) { qs.has_output = true; } } qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer; // sanity checks for models that have attention layers if (qs.n_attention_wv != 0) { const auto & n_head_kv_iter = model.hparams.n_head_kv_arr.begin(); // attention layers have a non-zero number of kv heads int32_t n_attn_layer = model.hparams.n_layer - std::count(n_head_kv_iter, n_head_kv_iter + model.hparams.n_layer, 0); if (llama_model_has_encoder(&model)) { n_attn_layer *= 3; } GGML_ASSERT((qs.n_attention_wv == n_attn_layer - pruned_attention_w) && "n_attention_wv is unexpected"); } size_t total_size_org = 0; size_t total_size_new = 0; std::vector workers; workers.reserve(nthread); int idx = 0; std::vector> read_data; std::vector> work; std::vector> f32_conv_buf; uint16_t n_split = 1; // Assume split index is continuous if (params->keep_split) { for (const auto * it : tensors) { n_split = std::max(uint16_t(it->idx + 1), n_split); } } std::vector ctx_outs(n_split); ctx_outs[0] = std::move(ctx_out); // populate the original tensors so we get an initial meta data for (const auto * it : tensors) { uint16_t i_split = params->keep_split ? it->idx : 0; ggml_tensor * tensor = it->tensor; if (!ctx_outs[i_split]) { ctx_outs[i_split].reset(gguf_init_empty()); } gguf_add_tensor(ctx_outs[i_split].get(), tensor); } // Set split info if needed if (n_split > 1) { for (size_t i = 0; i < ctx_outs.size(); ++i) { gguf_set_val_u16(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i); gguf_set_val_u16(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split); gguf_set_val_i32(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), (int32_t)tensors.size()); } } std::unordered_map bpw_overrides = {}; if (params->target_bpw != -1.0f && !params->only_copy) { if (params->imatrix) { if (params->activations) { LLAMA_LOG_INFO("%s: imatrix with activations provided, target bpw quantization will be more accurate\n", __func__); } else { LLAMA_LOG_WARN("%s: imatrix without activations provided, target bpw quantization will be less accurate\n", __func__); } LLAMA_LOG_INFO("%s: computing tensor quantization mix to achieve %.4f bpw\n", __func__, params->target_bpw); bpw_overrides = target_bpw_type(ml, read_data, model, tensors, mapped, values_data, activations_data, params, nthread); } else { LLAMA_LOG_WARN("%s: no imatrix provided, target bpw will not apply\n", __func__); } } int cur_split = -1; std::ofstream fout; auto close_ofstream = [&]() { // Write metadata and close file handler if (fout.is_open()) { fout.seekp(0); std::vector data(gguf_get_meta_size(ctx_outs[cur_split].get())); gguf_get_meta_data(ctx_outs[cur_split].get(), data.data()); fout.write((const char *) data.data(), data.size()); fout.close(); } }; auto new_ofstream = [&](int index) { cur_split = index; GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context"); std::string fname = fname_out; if (params->keep_split) { std::vector split_path(llama_path_max(), 0); llama_split_path(split_path.data(), split_path.size(), fname_out.c_str(), cur_split, n_split); fname = std::string(split_path.data()); } fout = std::ofstream(fname, std::ios::binary); fout.exceptions(std::ofstream::failbit); // fail fast on write errors const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split].get()); // placeholder for the meta data ::zeros(fout, meta_size); }; const auto tn = LLM_TN(model.arch); new_ofstream(0); for (const auto * it : tensors) { const size_t align = GGUF_DEFAULT_ALIGNMENT; const auto & weight = *it; ggml_tensor * tensor = weight.tensor; if (weight.idx != cur_split && params->keep_split) { close_ofstream(); new_ofstream(weight.idx); } const std::string name = ggml_get_name(tensor); if (!ml.use_mmap) { if (read_data.size() < ggml_nbytes(tensor)) { read_data.resize(ggml_nbytes(tensor)); } tensor->data = read_data.data(); } ml.load_data_for(tensor); LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ", ++idx, ml.n_tensors, ggml_get_name(tensor), llama_format_tensor_shape(tensor).c_str(), ggml_type_name(tensor->type)); // This used to be a regex, but has an extreme cost to compile times. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'? // quantize only 2D and 3D tensors (experts) quantize &= (ggml_n_dims(tensor) >= 2); // do not quantize norm tensors quantize &= name.find("_norm.weight") == std::string::npos; quantize &= params->quantize_output_tensor || name != "output.weight"; quantize &= !params->only_copy; // do not quantize expert gating tensors // NOTE: can't use LLM_TN here because the layer number is not known quantize &= name.find("ffn_gate_inp.weight") == std::string::npos; // these are very small (e.g. 4x4) quantize &= name.find("altup") == std::string::npos; quantize &= name.find("laurel") == std::string::npos; // these are not too big so keep them as it is quantize &= name.find("per_layer_model_proj") == std::string::npos; // do not quantize positional embeddings and token types (BERT) quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight"); quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight"); // do not quantize Mamba's small yet 2D weights // NOTE: can't use LLM_TN here because the layer number is not known quantize &= name.find("ssm_conv1d.weight") == std::string::npos; quantize &= name.find("shortconv.conv.weight") == std::string::npos; // do not quantize RWKV's small yet 2D weights quantize &= name.find("time_mix_first.weight") == std::string::npos; quantize &= name.find("time_mix_w0.weight") == std::string::npos; quantize &= name.find("time_mix_w1.weight") == std::string::npos; quantize &= name.find("time_mix_w2.weight") == std::string::npos; quantize &= name.find("time_mix_v0.weight") == std::string::npos; quantize &= name.find("time_mix_v1.weight") == std::string::npos; quantize &= name.find("time_mix_v2.weight") == std::string::npos; quantize &= name.find("time_mix_a0.weight") == std::string::npos; quantize &= name.find("time_mix_a1.weight") == std::string::npos; quantize &= name.find("time_mix_a2.weight") == std::string::npos; quantize &= name.find("time_mix_g1.weight") == std::string::npos; quantize &= name.find("time_mix_g2.weight") == std::string::npos; quantize &= name.find("time_mix_decay_w1.weight") == std::string::npos; quantize &= name.find("time_mix_decay_w2.weight") == std::string::npos; quantize &= name.find("time_mix_lerp_fused.weight") == std::string::npos; // do not quantize relative position bias (T5) quantize &= name.find("attn_rel_b.weight") == std::string::npos; ggml_type new_type; void * new_data; size_t new_size; if (quantize) { new_type = default_type; // get more optimal quantization type based on the tensor shape, layer, etc. if (!params->pure && ggml_is_quantized(default_type)) { int fallback = qs.n_fallback; new_type = llama_tensor_get_type(qs, new_type, tensor, ftype); // get quantization type overrides targeting a given bits per weight budget if (params->target_bpw != -1.0f && !bpw_overrides.empty()) { const auto override = bpw_overrides.find(name); if (override != bpw_overrides.end() && override->second != new_type) { LLAMA_LOG_DEBUG("(bpw override %s) ", ggml_type_name(new_type)); new_type = override->second; } } // unless the user specifies a type, and the tensor shape will not require fallback quantisation if (params->tensor_types && qs.n_fallback - fallback == 0) { const std::vector & tensor_types = *static_cast *>(params->tensor_types); const std::string tensor_name(tensor->name); for (const auto & [tname, qtype] : tensor_types) { if (std::regex pattern(tname); std::regex_search(tensor_name, pattern)) { if (qtype != new_type) { LLAMA_LOG_DEBUG("(type override %s) ", ggml_type_name(new_type)); new_type = qtype; // if two or more types are specified for the same tensor, the last match wins } } } } } if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) { new_type = params->token_embedding_type; } if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) { new_type = params->output_tensor_type; } // If we've decided to quantize to the same type the tensor is already // in then there's nothing to do. quantize = tensor->type != new_type; } if (!quantize) { new_type = tensor->type; new_data = tensor->data; new_size = ggml_nbytes(tensor); LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0); } else { const int64_t nelements = ggml_nelements(tensor); const float * imatrix = nullptr; if (values_data) { auto it = values_data->find(remap_imatrix(tensor->name, mapped)); if (it == values_data->end()) { LLAMA_LOG_INFO("\n====== %s: did not find weights for %s, ", __func__, tensor->name); } else { if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) { imatrix = it->second.data(); } else { LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__, int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name); // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix // this is a significant error and it may be good idea to abort the process if this happens, // since many people will miss the error and not realize that most of the model is being quantized without an imatrix // tok_embd should be ignored in this case, since it always causes this warning if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) { throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s", int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name)); } } } } if ((new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_S || new_type == GGML_TYPE_IQ1_S || (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) || (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) { LLAMA_LOG_ERROR("\n\n============================================================\n"); LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name); LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n"); LLAMA_LOG_ERROR("============================================================\n\n"); throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name)); } float * f32_data; if (tensor->type == GGML_TYPE_F32) { f32_data = (float *) tensor->data; } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) { throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type))); } else { llama_tensor_dequantize_impl(tensor, f32_conv_buf, workers, nelements, nthread); f32_data = (float *) f32_conv_buf.data(); } LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type)); fflush(stdout); if (work.size() < (size_t)nelements * 4) { work.resize(nelements * 4); // upper bound on size } new_data = work.data(); const int64_t n_per_row = tensor->ne[0]; const int64_t nrows = tensor->ne[1]; static const int64_t min_chunk_size = 32 * 512; const int64_t chunk_size = (n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row)); const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1]; const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size; const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1; // quantize each expert separately since they have different importance matrices new_size = 0; for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) { const float * f32_data_03 = f32_data + i03 * nelements_matrix; void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows; const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr; new_size += llama_tensor_quantize_impl(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use); // TODO: temporary sanity check that the F16 -> MXFP4 is lossless #if 0 if (new_type == GGML_TYPE_MXFP4) { auto * x = f32_data_03; //LLAMA_LOG_INFO("nrows = %d, n_per_row = %d\n", nrows, n_per_row); std::vector deq(nrows*n_per_row); const ggml_type_traits * qtype = ggml_get_type_traits(new_type); qtype->to_float(new_data_03, deq.data(), deq.size()); double err = 0.0f; for (int i = 0; i < (int) deq.size(); ++i) { err += fabsf(deq[i] - x[i]); //if (fabsf(deq[i] - x[i]) > 0.00001 && i < 256) { if (deq[i] != x[i]) { LLAMA_LOG_INFO("deq[%d] = %f, x[%d] = %f\n", i, deq[i], i, x[i]); } } //LLAMA_LOG_INFO("err = %f\n", err); GGML_ASSERT(err == 0.00000); } #endif } LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0); } total_size_org += ggml_nbytes(tensor); total_size_new += new_size; // update the gguf meta data as we go gguf_set_tensor_type(ctx_outs[cur_split].get(), name.c_str(), new_type); GGML_ASSERT(gguf_get_tensor_size(ctx_outs[cur_split].get(), gguf_find_tensor(ctx_outs[cur_split].get(), name.c_str())) == new_size); gguf_set_tensor_data(ctx_outs[cur_split].get(), name.c_str(), new_data); // write tensor data + padding fout.write((const char *) new_data, new_size); zeros(fout, GGML_PAD(new_size, align) - new_size); } close_ofstream(); LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0); LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0); if (qs.n_fallback > 0) { LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n", __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback); } } // // interface implementation // llama_model_quantize_params llama_model_quantize_default_params() { llama_model_quantize_params result = { /*.nthread =*/ 0, /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1, /*.output_tensor_type =*/ GGML_TYPE_COUNT, /*.token_embedding_type =*/ GGML_TYPE_COUNT, /*.allow_requantize =*/ false, /*.quantize_output_tensor =*/ true, /*.only_copy =*/ false, /*.pure =*/ false, /*.keep_split =*/ false, /*.imatrix =*/ nullptr, /*.activations =*/ nullptr, /*.kv_overrides =*/ nullptr, /*.tensor_type =*/ nullptr, /*.prune_layers =*/ nullptr, /*.target_bpw =*/ -1.0f }; return result; } uint32_t llama_model_quantize( const char * fname_inp, const char * fname_out, const llama_model_quantize_params * params) { try { llama_model_quantize_impl(fname_inp, fname_out, params); } catch (const std::exception & err) { LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what()); return 1; } return 0; }