#include #include #include #include #include #include #include #include "chat.h" #include "common.h" #include "llama.h" template static std::string join(const std::vector &values, const std::string &delim) { std::ostringstream str; for (size_t i = 0; i < values.size(); i++) { str << values[i]; if (i < values.size() - 1) { str << delim; } } return str.str(); } /** * Logging utils */ #define TAG "ai-chat" #define LOGv(...) __android_log_print(ANDROID_LOG_VERBOSE, TAG, __VA_ARGS__) #define LOGd(...) __android_log_print(ANDROID_LOG_DEBUG, TAG, __VA_ARGS__) #define LOGi(...) __android_log_print(ANDROID_LOG_INFO, TAG, __VA_ARGS__) #define LOGw(...) __android_log_print(ANDROID_LOG_WARN, TAG, __VA_ARGS__) #define LOGe(...) __android_log_print(ANDROID_LOG_ERROR, TAG, __VA_ARGS__) /** * LLama resources: context, model, batch and sampler */ constexpr int N_THREADS_MIN = 2; constexpr int N_THREADS_MAX = 4; constexpr int N_THREADS_HEADROOM = 2; constexpr int DEFAULT_CONTEXT_SIZE = 8192; constexpr int OVERFLOW_HEADROOM = 4; constexpr int BATCH_SIZE = 512; constexpr float DEFAULT_SAMPLER_TEMP = 0.3f; static llama_model * g_model; static llama_context * g_context; static llama_batch g_batch; static common_chat_templates_ptr g_chat_templates; static common_sampler * g_sampler; static void log_callback(ggml_log_level level, const char *fmt, void *data) { int priority; switch (level) { case GGML_LOG_LEVEL_ERROR: priority = ANDROID_LOG_ERROR; break; case GGML_LOG_LEVEL_WARN: priority = GGML_LOG_LEVEL_WARN; break; case GGML_LOG_LEVEL_INFO: priority = GGML_LOG_LEVEL_INFO; break; case GGML_LOG_LEVEL_DEBUG: priority = GGML_LOG_LEVEL_DEBUG; break; default: priority = ANDROID_LOG_DEFAULT; break; } __android_log_print(priority, TAG, fmt, data); } extern "C" JNIEXPORT void JNICALL Java_com_arm_aichat_internal_InferenceEngineImpl_init(JNIEnv *env, jobject /*unused*/, jstring nativeLibDir) { // Set llama log handler to Android llama_log_set(log_callback, nullptr); // Loading all CPU backend variants const auto *path_to_backend = env->GetStringUTFChars(nativeLibDir, 0); LOGi("Loading backends from %s", path_to_backend); ggml_backend_load_all_from_path(path_to_backend); env->ReleaseStringUTFChars(nativeLibDir, path_to_backend); // Initialize backends llama_backend_init(); LOGi("Backend initiated; Log handler set."); } extern "C" JNIEXPORT jint JNICALL Java_com_arm_aichat_internal_InferenceEngineImpl_load(JNIEnv *env, jobject, jstring jmodel_path) { llama_model_params model_params = llama_model_default_params(); const auto *model_path = env->GetStringUTFChars(jmodel_path, 0); LOGd("%s: Loading model from: \n%s\n", __func__, model_path); auto *model = llama_model_load_from_file(model_path, model_params); env->ReleaseStringUTFChars(jmodel_path, model_path); if (!model) { return 1; } g_model = model; return 0; } static llama_context *init_context(llama_model *model, const int n_ctx = DEFAULT_CONTEXT_SIZE) { if (!model) { LOGe("%s: model cannot be null", __func__); return nullptr; } // Multi-threading setup const int n_threads = std::max(N_THREADS_MIN, std::min(N_THREADS_MAX, (int) sysconf(_SC_NPROCESSORS_ONLN) - N_THREADS_HEADROOM)); LOGi("%s: Using %d threads", __func__, n_threads); // Context parameters setup llama_context_params ctx_params = llama_context_default_params(); const int trained_context_size = llama_model_n_ctx_train(model); if (n_ctx > trained_context_size) { LOGw("%s: Model was trained with only %d context size! Enforcing %d context size...", __func__, trained_context_size, n_ctx); } ctx_params.n_ctx = n_ctx; ctx_params.n_batch = BATCH_SIZE; ctx_params.n_ubatch = BATCH_SIZE; ctx_params.n_threads = n_threads; ctx_params.n_threads_batch = n_threads; auto *context = llama_init_from_model(g_model, ctx_params); if (context == nullptr) { LOGe("%s: llama_new_context_with_model() returned null)", __func__); } return context; } static common_sampler *new_sampler(float temp) { common_params_sampling sparams; sparams.temp = temp; return common_sampler_init(g_model, sparams); } extern "C" JNIEXPORT jint JNICALL Java_com_arm_aichat_internal_InferenceEngineImpl_prepare(JNIEnv * /*env*/, jobject /*unused*/) { auto *context = init_context(g_model); if (!context) { return 1; } g_context = context; g_batch = llama_batch_init(BATCH_SIZE, 0, 1); g_chat_templates = common_chat_templates_init(g_model, ""); g_sampler = new_sampler(DEFAULT_SAMPLER_TEMP); return 0; } static std::string get_backend() { std::vector backends; for (size_t i = 0; i < ggml_backend_reg_count(); i++) { auto *reg = ggml_backend_reg_get(i); std::string name = ggml_backend_reg_name(reg); if (name != "CPU") { backends.push_back(ggml_backend_reg_name(reg)); } } return backends.empty() ? "CPU" : join(backends, ","); } extern "C" JNIEXPORT jstring JNICALL Java_com_arm_aichat_internal_InferenceEngineImpl_systemInfo(JNIEnv *env, jobject /*unused*/) { return env->NewStringUTF(llama_print_system_info()); } extern "C" JNIEXPORT jstring JNICALL Java_com_arm_aichat_internal_InferenceEngineImpl_benchModel(JNIEnv *env, jobject /*unused*/, jint pp, jint tg, jint pl, jint nr) { auto *context = init_context(g_model, pp); if (!context) { const auto *const err_msg = "Fail to init_context! Bench aborted."; LOGe(err_msg); return env->NewStringUTF(err_msg); } auto pp_avg = 0.0; auto tg_avg = 0.0; auto pp_std = 0.0; auto tg_std = 0.0; const uint32_t n_ctx = llama_n_ctx(context); LOGi("n_ctx = %d", n_ctx); int i, j; int nri; for (nri = 0; nri < nr; nri++) { LOGi("Benchmark prompt processing (pp = %d)", pp); common_batch_clear(g_batch); const int n_tokens = pp; for (i = 0; i < n_tokens; i++) { common_batch_add(g_batch, 0, i, {0}, false); } g_batch.logits[g_batch.n_tokens - 1] = true; llama_memory_clear(llama_get_memory(context), false); const auto t_pp_start = ggml_time_us(); if (llama_decode(context, g_batch) != 0) { LOGe("llama_decode() failed during prompt processing"); } const auto t_pp_end = ggml_time_us(); // bench text generation LOGi("Benchmark text generation (tg = %d)", tg); llama_memory_clear(llama_get_memory(context), false); const auto t_tg_start = ggml_time_us(); for (i = 0; i < tg; i++) { common_batch_clear(g_batch); for (j = 0; j < pl; j++) { common_batch_add(g_batch, 0, i, {j}, true); } if (llama_decode(context, g_batch) != 0) { LOGe("llama_decode() failed during text generation"); } } const auto t_tg_end = ggml_time_us(); llama_memory_clear(llama_get_memory(context), false); const auto t_pp = double(t_pp_end - t_pp_start) / 1000000.0; const auto t_tg = double(t_tg_end - t_tg_start) / 1000000.0; const auto speed_pp = double(pp) / t_pp; const auto speed_tg = double(pl * tg) / t_tg; pp_avg += speed_pp; tg_avg += speed_tg; pp_std += speed_pp * speed_pp; tg_std += speed_tg * speed_tg; LOGi("pp %f t/s, tg %f t/s", speed_pp, speed_tg); } llama_free(context); pp_avg /= double(nr); tg_avg /= double(nr); if (nr > 1) { pp_std = sqrt(pp_std / double(nr - 1) - pp_avg * pp_avg * double(nr) / double(nr - 1)); tg_std = sqrt(tg_std / double(nr - 1) - tg_avg * tg_avg * double(nr) / double(nr - 1)); } else { pp_std = 0; tg_std = 0; } char model_desc[128]; llama_model_desc(g_model, model_desc, sizeof(model_desc)); const auto model_size = double(llama_model_size(g_model)) / 1024.0 / 1024.0 / 1024.0; const auto model_n_params = double(llama_model_n_params(g_model)) / 1e9; const auto backend = get_backend(); std::stringstream result; result << std::setprecision(3); result << "| model | size | params | backend | test | t/s |\n"; result << "| --- | --- | --- | --- | --- | --- |\n"; result << "| " << model_desc << " | " << model_size << "GiB | " << model_n_params << "B | " << backend << " | pp " << pp << " | " << pp_avg << " ± " << pp_std << " |\n"; result << "| " << model_desc << " | " << model_size << "GiB | " << model_n_params << "B | " << backend << " | tg " << tg << " | " << tg_avg << " ± " << tg_std << " |\n"; return env->NewStringUTF(result.str().c_str()); } /** * Completion loop's long-term states: * - chat management * - position tracking */ constexpr const char *ROLE_SYSTEM = "system"; constexpr const char *ROLE_USER = "user"; constexpr const char *ROLE_ASSISTANT = "assistant"; static std::vector chat_msgs; static llama_pos system_prompt_position; static llama_pos current_position; static void reset_long_term_states(const bool clear_kv_cache = true) { chat_msgs.clear(); system_prompt_position = 0; current_position = 0; if (clear_kv_cache) llama_memory_clear(llama_get_memory(g_context), false); } /** * TODO-hyin: implement sliding-window version as a better alternative * * Context shifting by discarding the older half of the tokens appended after system prompt: * - take the [system_prompt_position] first tokens from the original prompt * - take half of the last (system_prompt_position - system_prompt_position) tokens * - recompute the logits in batches */ static void shift_context() { const int n_discard = (current_position - system_prompt_position) / 2; LOGi("%s: Discarding %d tokens", __func__, n_discard); llama_memory_seq_rm(llama_get_memory(g_context), 0, system_prompt_position, system_prompt_position + n_discard); llama_memory_seq_add(llama_get_memory(g_context), 0, system_prompt_position + n_discard, current_position, -n_discard); current_position -= n_discard; LOGi("%s: Context shifting done! Current position: %d", __func__, current_position); } static std::string chat_add_and_format(const std::string &role, const std::string &content) { common_chat_msg new_msg; new_msg.role = role; new_msg.content = content; auto formatted = common_chat_format_single( g_chat_templates.get(), chat_msgs, new_msg, role == ROLE_USER, /* use_jinja */ false); chat_msgs.push_back(new_msg); LOGi("%s: Formatted and added %s message: \n%s\n", __func__, role.c_str(), formatted.c_str()); return formatted; } /** * Completion loop's short-term states: * - stop generation position * - token chars caching * - current assistant message being generated */ static llama_pos stop_generation_position; static std::string cached_token_chars; static std::ostringstream assistant_ss; static void reset_short_term_states() { stop_generation_position = 0; cached_token_chars.clear(); assistant_ss.str(""); } static int decode_tokens_in_batches( llama_context *context, llama_batch &batch, const llama_tokens &tokens, const llama_pos start_pos, const bool compute_last_logit = false) { // Process tokens in batches using the global batch LOGd("%s: Decode %d tokens starting at position %d", __func__, (int) tokens.size(), start_pos); for (int i = 0; i < (int) tokens.size(); i += BATCH_SIZE) { const int cur_batch_size = std::min((int) tokens.size() - i, BATCH_SIZE); common_batch_clear(batch); LOGv("%s: Preparing a batch size of %d starting at: %d", __func__, cur_batch_size, i); // Shift context if current batch cannot fit into the context if (start_pos + i + cur_batch_size >= DEFAULT_CONTEXT_SIZE - OVERFLOW_HEADROOM) { LOGw("%s: Current batch won't fit into context! Shifting...", __func__); shift_context(); } // Add tokens to the batch with proper positions for (int j = 0; j < cur_batch_size; j++) { const llama_token token_id = tokens[i + j]; const llama_pos position = start_pos + i + j; const bool want_logit = compute_last_logit && (i + j == tokens.size() - 1); common_batch_add(batch, token_id, position, {0}, want_logit); } // Decode this batch const int decode_result = llama_decode(context, batch); if (decode_result) { LOGe("%s: llama_decode failed w/ %d", __func__, decode_result); return 1; } } return 0; } extern "C" JNIEXPORT jint JNICALL Java_com_arm_aichat_internal_InferenceEngineImpl_processSystemPrompt( JNIEnv *env, jobject /*unused*/, jstring jsystem_prompt ) { // Reset long-term & short-term states reset_long_term_states(); reset_short_term_states(); // Obtain system prompt from JEnv const auto *system_prompt = env->GetStringUTFChars(jsystem_prompt, nullptr); LOGd("%s: System prompt received: \n%s", __func__, system_prompt); std::string formatted_system_prompt(system_prompt); env->ReleaseStringUTFChars(jsystem_prompt, system_prompt); // Format system prompt if applicable const bool has_chat_template = common_chat_templates_was_explicit(g_chat_templates.get()); if (has_chat_template) { formatted_system_prompt = chat_add_and_format(ROLE_SYSTEM, system_prompt); } // Tokenize system prompt const auto system_tokens = common_tokenize(g_context, formatted_system_prompt, has_chat_template, has_chat_template); for (auto id: system_tokens) { LOGv("token: `%s`\t -> `%d`", common_token_to_piece(g_context, id).c_str(), id); } // Handle context overflow const int max_batch_size = DEFAULT_CONTEXT_SIZE - OVERFLOW_HEADROOM; if ((int) system_tokens.size() > max_batch_size) { LOGe("%s: System prompt too long for context! %d tokens, max: %d", __func__, (int) system_tokens.size(), max_batch_size); return 1; } // Decode system tokens in batches if (decode_tokens_in_batches(g_context, g_batch, system_tokens, current_position)) { LOGe("%s: llama_decode() failed!", __func__); return 2; } // Update position system_prompt_position = current_position = (int) system_tokens.size(); return 0; } extern "C" JNIEXPORT jint JNICALL Java_com_arm_aichat_internal_InferenceEngineImpl_processUserPrompt( JNIEnv *env, jobject /*unused*/, jstring juser_prompt, jint n_predict ) { // Reset short-term states reset_short_term_states(); // Obtain and tokenize user prompt const auto *const user_prompt = env->GetStringUTFChars(juser_prompt, nullptr); LOGd("%s: User prompt received: \n%s", __func__, user_prompt); std::string formatted_user_prompt(user_prompt); env->ReleaseStringUTFChars(juser_prompt, user_prompt); // Format user prompt if applicable const bool has_chat_template = common_chat_templates_was_explicit(g_chat_templates.get()); if (has_chat_template) { formatted_user_prompt = chat_add_and_format(ROLE_USER, user_prompt); } // Decode formatted user prompts auto user_tokens = common_tokenize(g_context, formatted_user_prompt, has_chat_template, has_chat_template); for (auto id: user_tokens) { LOGv("token: `%s`\t -> `%d`", common_token_to_piece(g_context, id).c_str(), id); } // Ensure user prompt doesn't exceed the context size by truncating if necessary. const int user_prompt_size = (int) user_tokens.size(); const int max_batch_size = DEFAULT_CONTEXT_SIZE - OVERFLOW_HEADROOM; if (user_prompt_size > max_batch_size) { const int skipped_tokens = user_prompt_size - max_batch_size; user_tokens.resize(max_batch_size); LOGw("%s: User prompt too long! Skipped %d tokens!", __func__, skipped_tokens); } // Decode user tokens in batches if (decode_tokens_in_batches(g_context, g_batch, user_tokens, current_position, true)) { LOGe("%s: llama_decode() failed!", __func__); return 2; } // Update position current_position += user_prompt_size; stop_generation_position = current_position + user_prompt_size + n_predict; return 0; } static bool is_valid_utf8(const char *string) { if (!string) { return true; } const auto *bytes = (const unsigned char *) string; int num; while (*bytes != 0x00) { if ((*bytes & 0x80) == 0x00) { // U+0000 to U+007F num = 1; } else if ((*bytes & 0xE0) == 0xC0) { // U+0080 to U+07FF num = 2; } else if ((*bytes & 0xF0) == 0xE0) { // U+0800 to U+FFFF num = 3; } else if ((*bytes & 0xF8) == 0xF0) { // U+10000 to U+10FFFF num = 4; } else { return false; } bytes += 1; for (int i = 1; i < num; ++i) { if ((*bytes & 0xC0) != 0x80) { return false; } bytes += 1; } } return true; } extern "C" JNIEXPORT jstring JNICALL Java_com_arm_aichat_internal_InferenceEngineImpl_generateNextToken( JNIEnv *env, jobject /*unused*/ ) { // Infinite text generation via context shifting if (current_position >= DEFAULT_CONTEXT_SIZE - OVERFLOW_HEADROOM) { LOGw("%s: Context full! Shifting...", __func__); shift_context(); } // Stop if reaching the marked position if (current_position >= stop_generation_position) { LOGw("%s: STOP: hitting stop position: %d", __func__, stop_generation_position); return nullptr; } // Sample next token const auto new_token_id = common_sampler_sample(g_sampler, g_context, -1); common_sampler_accept(g_sampler, new_token_id, true); // Populate the batch with new token, then decode common_batch_clear(g_batch); common_batch_add(g_batch, new_token_id, current_position, {0}, true); if (llama_decode(g_context, g_batch) != 0) { LOGe("%s: llama_decode() failed for generated token", __func__); return nullptr; } // Update position current_position++; // Stop if next token is EOG if (llama_vocab_is_eog(llama_model_get_vocab(g_model), new_token_id)) { LOGd("id: %d,\tIS EOG!\nSTOP.", new_token_id); chat_add_and_format(ROLE_ASSISTANT, assistant_ss.str()); return nullptr; } // If not EOG, convert to text auto new_token_chars = common_token_to_piece(g_context, new_token_id); cached_token_chars += new_token_chars; // Create and return a valid UTF-8 Java string jstring result = nullptr; if (is_valid_utf8(cached_token_chars.c_str())) { result = env->NewStringUTF(cached_token_chars.c_str()); LOGv("id: %d,\tcached: `%s`,\tnew: `%s`", new_token_id, cached_token_chars.c_str(), new_token_chars.c_str()); assistant_ss << cached_token_chars; cached_token_chars.clear(); } else { LOGv("id: %d,\tappend to cache", new_token_id); result = env->NewStringUTF(""); } return result; } extern "C" JNIEXPORT void JNICALL Java_com_arm_aichat_internal_InferenceEngineImpl_unload(JNIEnv * /*unused*/, jobject /*unused*/) { // Reset long-term & short-term states reset_long_term_states(); reset_short_term_states(); // Free up resources common_sampler_free(g_sampler); g_chat_templates.reset(); llama_batch_free(g_batch); llama_free(g_context); llama_model_free(g_model); } extern "C" JNIEXPORT void JNICALL Java_com_arm_aichat_internal_InferenceEngineImpl_shutdown(JNIEnv *env, jobject /*unused*/) { llama_backend_free(); }