#include "models.h" ggml_cgraph * clip_graph_paddleocr::build() { // 2D input positions ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches); ggml_set_name(pos_h, "pos_h"); ggml_set_input(pos_h); ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches); ggml_set_name(pos_w, "pos_w"); ggml_set_input(pos_w); ggml_tensor * learned_pos_embd = resize_position_embeddings(); // build ViT with 2D position embeddings auto add_pos = [&](ggml_tensor * cur, const clip_layer &) { // first half is X axis and second half is Y axis return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false); }; ggml_tensor * inp = build_inp(); ggml_tensor * cur = build_vit( inp, n_patches, NORM_TYPE_NORMAL, hparams.ffn_op, learned_pos_embd, add_pos); cb(cur, "vit_out", -1); { // mlp_AR float proj_norm_eps = 1e-5; // PaddleOCR uses hard-coded value eps=1e-5 for Projector cur = build_norm(cur, model.mm_input_norm_w, model.mm_input_norm_b, NORM_TYPE_NORMAL, proj_norm_eps, -1); //cur = build_patch_merge_permute(cur, hparams.proj_scale_factor); // stack and padding int64_t stride = hparams.proj_scale_factor * hparams.proj_scale_factor; int64_t n_embd = cur->ne[0]; int64_t n_tokens = cur->ne[1]; int64_t n_tokens_padded = CLIP_ALIGN(n_tokens, stride); int64_t n_pad = n_tokens_padded - n_tokens; if (n_pad > 0) { cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0); cur = ggml_pad(ctx0, cur, n_pad * n_embd, 0, 0, 0); } cur = ggml_view_2d(ctx0, cur, n_embd * stride, n_tokens_padded / stride, ggml_row_size(cur->type, n_embd * stride), 0); cb(cur, "after_stacked", -1); cur = build_ffn(cur, model.mm_1_w, model.mm_1_b, nullptr, nullptr, model.mm_2_w, model.mm_2_b, hparams.ffn_op, -1); cb(cur, "mlp_out", -1); } // build the graph ggml_build_forward_expand(gf, cur); return gf; }