#include "ggml-backend-impl.h" #include "ggml-cpu-impl.h" #include "ggml-impl.h" #include "ggml-openvino.h" #include "ggml-openvino/utils.h" #include #include #include #include #include #include #include #include #define GGML_OPENVINO_MAX_STREAMS 8 struct ggml_backend_openvino_context { int device; // the device ID currently in use std::string name; // context Name std::string description; // context description // OpenVINO core components ov::Core core; // OpenVINO core interface std::shared_ptr model; // compiled Model ov::InferRequest infer_request; // inference Request // OpenVINO Multi-stream support static const int MAX_STREAMS = 8; // define the maximum number of flows std::vector streams; // used to support multi-stream reasoning int current_stream; // the currently active stream index // state Management bool is_initialized; // initialize ggml_backend_openvino_context() : device(0), name("OpenVINO"), description("OpenVINO Backend Context"), current_stream(0), is_initialized(false) {} }; static void ggml_backend_openvino_free(ggml_backend_t backend) { ggml_backend_openvino_context * ctx = (ggml_backend_openvino_context *)backend->context; delete ctx; delete backend; } static const char * ggml_backend_openvino_get_name(ggml_backend_t backend) { return GGML_OPENVINO_NAME; GGML_UNUSED(backend); } static ggml_backend_buffer_type_t ggml_backend_openvino_get_default_buffer_type(ggml_backend_t backend) { return ggml_backend_cpu_buffer_type(); GGML_UNUSED(backend); } static void ggml_backend_openvino_add_forward(ggml_tensor * dst) { // Step 1: get the input tensor src0 和 src1 const struct ggml_tensor *src0 = dst->src[0]; const struct ggml_tensor *src1 = dst->src[1]; ov::Core core; // set the shape and stride of dst dst->ne[0] = src0->ne[0]; dst->ne[1] = src0->ne[1]; dst->nb[0] = src0->nb[0]; dst->nb[1] = src0->nb[1]; if (src0 == nullptr || src1 == nullptr) { std::cerr << "Error: src0 or src1 is null." << std::endl; return; } // Step 2: Check that the input tensor types and shapes match if (src0->type != GGML_TYPE_F32 || src1->type != GGML_TYPE_F32) { std::cerr << "Error: Unsupported tensor type. Only GGML_TYPE_F32 is supported for OpenVINO." << std::endl; return; } if (src0->ne[0] != src1->ne[0] || src0->ne[1] != src1->ne[1]) { std::cerr << "Error: src0 and src1 shapes do not match." << std::endl; return; } ov::Tensor input0 = ov::Tensor(ov::element::f32, {static_cast(src0->ne[0]), static_cast(src0->ne[1])}, src0->data); ov::Tensor input1 = ov::Tensor(ov::element::f32, {static_cast(src1->ne[0]), static_cast(src1->ne[1])}, src1->data); auto input0_param = std::make_shared(ov::element::f32, ov::Shape{static_cast(src0->ne[0]), static_cast(src0->ne[1])}); auto input1_param = std::make_shared(ov::element::f32, ov::Shape{static_cast(src0->ne[0]), static_cast(src0->ne[1])}); auto add = std::make_shared(input0_param, input1_param); auto model = std::make_shared(add, ov::ParameterVector{input0_param, input1_param}); // compile model and store in context #ifdef GGML_OPENVINO_GPU auto compiled_model = core.compile_model(model, "GPU"); #elif GGML_OPENVINO_NPU auto compiled_model = core.compile_model(model, "NPU"); #else auto compiled_model = core.compile_model(model, "CPU"); #endif // initialize infer request auto infer_request = compiled_model.create_infer_request(); // Step 4: set input data, copy src0 and src1 data to OpenVINO input tensors infer_request.set_tensor(input0_param, input0); infer_request.set_tensor(input1_param, input1); // Step 5: execute inference infer_request.infer(); // Step 6: get output data ov::Tensor output = infer_request.get_tensor(compiled_model.output()); // // Allocate memory for dst->data if not already allocated // if (dst->data == nullptr) { // dst->data = malloc(dst->nb[0] * dst->ne[0]); // if (dst->data == nullptr) { // std::cerr << "Error: Failed to allocate memory for dst->data." << std::endl; // return; // } // } std::memcpy(dst->data, output.data(), output.get_byte_size()); if (dst->ne[0] != src0->ne[0] || dst->ne[1] != src0->ne[1]) { std::cerr << "Error: dst tensor shape does not match input tensor shape." << std::endl; return; } // float* dst_data1 = (float*)(dst->data); // printf("Output data:");; // for (int i = 0; i < (10 < (int)(dst->ne[0]) ? 10 : (int)(dst->ne[0])); ++i) { // printf("%f ", dst_data1[i]); // } // printf("\n"); // fflush(stdout); } static void ggml_backend_openvino_mul_forward(ggml_tensor * dst) { struct ggml_tensor *src0 = dst->src[0]; struct ggml_tensor *src1 = dst->src[1]; ov::Core core; // define shape ov::Shape shape0 = {static_cast(src0->ne[1]), static_cast(src0->ne[0])}; // For Example: [7, 3072] ov::Shape shape1 = {static_cast(src1->ne[1]), static_cast(src1->ne[0])}; // For Example: [1, 3072] -> broadcast to [7, 3072] // create OpenVINO tensor (src0 and src1) ov::Tensor tensor0(ov::element::f32, shape0, src0->data); ov::Tensor tensor1(ov::element::f32, shape1, src1->data); // define input parameters auto input0 = std::make_shared(ov::element::f32, shape0); auto input1 = std::make_shared(ov::element::f32, shape1); // create a multiply operation using broadcasting auto multiply = std::make_shared(input0, input1); // create model auto model = std::make_shared(multiply, ov::ParameterVector{input0, input1}); // compile model and store in context #ifdef GGML_OPENVINO_GPU ov::CompiledModel compiled_model = core.compile_model(model, "GPU"); #elif GGML_OPENVINO_NPU ov::CompiledModel compiled_model = core.compile_model(model, "NPU"); #else ov::CompiledModel compiled_model = core.compile_model(model, "CPU"); #endif ov::InferRequest infer_request = compiled_model.create_infer_request(); infer_request.set_tensor(input0, tensor0); infer_request.set_tensor(input1, tensor1); infer_request.infer(); // get output tensor and copy it back to dst->data ov::Tensor output_tensor = infer_request.get_output_tensor(); std::memcpy(dst->data, output_tensor.data(), src0->ne[0] * src0->ne[1] * sizeof(float)); } static void ggml_backend_openvino_add(ggml_tensor * dst) { // Placeholder for OpenVINO add operation // GGML_ASSERT(ctx.device != 0); GGML_ASSERT(dst->data != nullptr); const struct ggml_tensor * src0 = dst->src[0]; const struct ggml_tensor * src1 = dst->src[1]; switch (src0->type) { case GGML_TYPE_F16: { if (src1->type == GGML_TYPE_F16) { // ggml_backend_openvino_add_forward(ctx, dst, src0, src1); } else if (src1->type == GGML_TYPE_F32) { // ggml_compute_forward_add_f16_f32(params, dst); } else { GGML_ABORT("fatal error"); } } break; case GGML_TYPE_F32: { if (src1->type == GGML_TYPE_F32) { { ggml_backend_openvino_add_forward(dst); } } else { GGML_ABORT("fatal error"); } } break; default: GGML_ABORT("%s: unsupported type %d\n", __func__, src1->type); } } static void ggml_backend_openvino_mul(ggml_tensor * dst) { GGML_ASSERT(dst->data != nullptr); const struct ggml_tensor * src0 = dst->src[0]; const struct ggml_tensor * src1 = dst->src[1]; GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now"); switch (src0->type) { case GGML_TYPE_F32: { ggml_backend_openvino_mul_forward(dst); } break; default: { GGML_ABORT("fatal error"); } } } void ggml_compute_forward_get_rows_f16(struct ggml_tensor *dst) { const struct ggml_tensor *src0 = dst->src[0]; const struct ggml_tensor *src1 = dst->src[1]; ov::Core core; ov::Shape shape0 = {static_cast(src0->ne[1]), static_cast(src0->ne[0])}; // [3072, 7] ov::Shape shape1 = {static_cast(src1->ne[0])}; // [7] ov::Tensor tensor0(ov::element::f16, shape0, src0->data); ov::Tensor tensor1(ov::element::i32, shape1, src1->data); auto input0 = std::make_shared(ov::element::f16, shape0); auto input1 = std::make_shared(ov::element::i32, shape1); auto gather = std::make_shared(input0, input1, ov::op::v0::Constant::create(ov::element::i64, ov::Shape{}, {0})); auto model = std::make_shared(gather, ov::ParameterVector{input0, input1}); ov::CompiledModel compiled_model = core.compile_model(model, "CPU"); ov::InferRequest infer_request = compiled_model.create_infer_request(); infer_request.set_tensor(input0, tensor0); infer_request.set_tensor(input1, tensor1); infer_request.infer(); ov::Tensor output_tensor = infer_request.get_output_tensor(); // Convert output tensor data type from f16 to f32 ov::Tensor output_tensor_f32 = ov::Tensor(ov::element::f32, output_tensor.get_shape()); for (size_t i = 0; i < output_tensor.get_size(); ++i) { output_tensor_f32.data()[i] = static_cast(output_tensor.data()[i]); } // Copy the converted data to dst->data std::memcpy(dst->data, output_tensor_f32.data(), output_tensor_f32.get_byte_size()); } void ggml_compute_forward_get_rows_f32(struct ggml_tensor *dst) { const struct ggml_tensor *src0 = dst->src[0]; const struct ggml_tensor *src1 = dst->src[1]; ov::Core core; ov::Shape shape0 = {static_cast(src0->ne[1]), static_cast(src0->ne[0])}; // [3072, 7] ov::Shape shape1 = {static_cast(src1->ne[0])}; // [7] ov::Tensor tensor0(ov::element::f32, shape0, src0->data); ov::Tensor tensor1(ov::element::i32, shape1, src1->data); auto input0 = std::make_shared(ov::element::f32, shape0); auto input1 = std::make_shared(ov::element::i32, shape1); auto gather = std::make_shared(input0, input1, ov::op::v0::Constant::create(ov::element::i64, ov::Shape{}, {0})); auto model = std::make_shared(gather, ov::ParameterVector{input0, input1}); ov::CompiledModel compiled_model = core.compile_model(model, "CPU"); ov::InferRequest infer_request = compiled_model.create_infer_request(); infer_request.set_tensor(input0, tensor0); infer_request.set_tensor(input1, tensor1); infer_request.infer(); ov::Tensor output_tensor = infer_request.get_output_tensor(); // Copy the converted data to dst->data std::memcpy(dst->data, output_tensor.data(), output_tensor.get_byte_size()); } void ggml_compute_forward_get_rows(struct ggml_tensor *dst) { const struct ggml_tensor *src0 = dst->src[0]; const struct ggml_tensor *src1 = dst->src[1]; switch (src0->type) { case GGML_TYPE_F16: { ggml_compute_forward_get_rows_f16(dst); } break; case GGML_TYPE_F32: { ggml_compute_forward_get_rows_f32(dst); } break; default: { GGML_ABORT("fatal error"); } } } void ggml_backend_openvino_rms_norm_f32(ggml_tensor *dst) { const struct ggml_tensor *src0 = dst->src[0]; assert(src0 != nullptr); GGML_ASSERT(ggml_are_same_shape(src0, dst)); GGML_ASSERT(src0->nb[0] == sizeof(float)); const int64_t ne0 = src0->ne[0]; const int64_t ne1 = src0->ne[1]; const int64_t ne2 = src0->ne[2]; const size_t input_size = ne0 * ne1 * ne2; const float *src_data = static_cast(src0->data); float *dst_data = static_cast(dst->data); assert(dst_data != nullptr); ov::Core core; ov::Shape input_shape = {static_cast(ne2), static_cast(ne1), static_cast(ne0)}; ov::Tensor input_tensor(ov::element::f32, input_shape, const_cast(src_data)); auto input_param = std::make_shared( input_tensor.get_element_type(), input_tensor.get_shape() ); assert(input_param != nullptr && "Input parameter creation failed!"); auto square = std::make_shared(input_param, input_param); auto reduce_sum = std::make_shared( square, ov::op::v0::Constant::create(ov::element::i64, ov::Shape{1}, {2}), true ); auto mean = std::make_shared( reduce_sum, ov::op::v0::Constant::create(ov::element::f32, ov::Shape{}, {static_cast(ne0)}) ); float eps; memcpy(&eps, dst->op_params, sizeof(float)); auto rms = std::make_shared( std::make_shared( mean, ov::op::v0::Constant::create(ov::element::f32, ov::Shape{}, {eps}) ) ); auto scale = std::make_shared( ov::op::v0::Constant::create(ov::element::f32, ov::Shape{}, {1.0f}), rms ); auto normalized_input = std::make_shared(input_param, scale); ov::ParameterVector parameters = {input_param}; auto model = std::make_shared(ov::NodeVector{normalized_input}, parameters); // static bool model_saved = false; // if (!model_saved) { // std::cout << "\n rms model saved" << std::endl; // ov::save_model(model, "//rms_norm_model.xml"); // model_saved = true; // } auto compiled_model = core.compile_model(model, "CPU"); auto infer_request = compiled_model.create_infer_request(); infer_request.set_input_tensor(0, input_tensor); infer_request.infer(); auto output_tensor = infer_request.get_output_tensor(); assert(output_tensor.get_size() == input_size); std::memcpy(dst_data, output_tensor.data(), input_size * sizeof(float)); } void ggml_backend_openvino_rms_norm(ggml_tensor * dst) { const struct ggml_tensor * src0 = dst->src[0]; switch (src0->type) { case GGML_TYPE_F32: { ggml_backend_openvino_rms_norm_f32(dst); } break; default: { GGML_ABORT("fatal error"); } } } // Extracting valid shapes std::vector get_effective_shape(const ggml_tensor * t) { std::vector shape; for (int i = 2; i >= 0; i--) { if (t->ne[i] != 1 || t->ne[2] != 1) shape.push_back(t->ne[i]); } return shape; } /* * Construct an index vector for Gather to extract non-contiguous data. * Parameters: * - valid_cols: number of valid columns per row (e.g., for src0, valid columns = 96) * - num_rows: number of rows in each batch (e.g., src0: 32 rows per batch) * - batch: number of batches (e.g., 32) * - row_stride: physical row length (in elements), e.g., src0: nb[1]/(element_size) = 6144/2 = 3072 * - batch_stride: physical batch stride (in elements), e.g., src0: nb[2]/(element_size) = 192/2 = 96 */ std::vector build_indices(int valid_cols, int num_rows, int batch, int row_stride, int batch_stride) { std::vector indices; indices.reserve(valid_cols * num_rows * batch); for (int b = 0; b < batch; b++) { for (int r = 0; r < num_rows; r++) { for (int c = 0; c < valid_cols; c++) { // 计算物理索引 = b * batch_stride + r * row_stride + c indices.push_back(b * batch_stride + r * row_stride + c); } } } return indices; } void ggml_backend_openvino_mul_mat(struct ggml_tensor * dst) { assert(dst && dst->src[0] && dst->src[1]); const ggml_tensor * src0 = dst->src[0]; // src0 type F16 const ggml_tensor * src1 = dst->src[1]; // src1 type F32 if(!ggml_is_contiguous(src1) || dst->src[1]->ne[0] * dst->src[1]->nb[0] != dst->src[1]->nb[1]) { int valid_cols_src0 = dst->src[0]->ne[0]; int num_rows_src0 = dst->src[0]->ne[1]; int batch_src0 = dst->src[0]->ne[2]; int valid_cols_src1 = dst->src[1]->ne[0]; int num_rows_src1 = dst->src[1]->ne[1]; int batch_src1 = dst->src[1]->ne[2]; int row_stride_src0 = dst->src[0]->nb[1] / dst->src[0]->nb[0]; int batch_stride_src0 = dst->src[0]->nb[2] / dst->src[0]->nb[0]; int row_stride_src1 = dst->src[1]->nb[1] / dst->src[1]->nb[0]; int batch_stride_src1 = dst->src[1]->nb[2] / dst->src[1]->nb[0]; std::vector indices_src0 = build_indices(valid_cols_src0, num_rows_src0, batch_src0, row_stride_src0, batch_stride_src0); std::vector indices_src1 = build_indices(valid_cols_src1, num_rows_src1, batch_src1, row_stride_src1, batch_stride_src1); // Total number of elements size_t total_src0 = indices_src0.size(); // = 96 * 32 * 32 size_t total_src1 = indices_src1.size(); // = 96 * 7 * 32 // Treat src0->data and src1->data as 1D tensors // Note: The total length of physical data should be enough to cover the last valid element index + 1. // flat shapes: ov::Shape flat_shape_src0 = { total_src0 }; ov::Shape flat_shape_src1 = { total_src1 }; // Create a Parameter node for collecting non-continuous data auto param_src0 = std::make_shared(ov::element::f16, flat_shape_src0); auto param_src1 = std::make_shared(ov::element::f32, flat_shape_src1); // Create an index Constant node auto indices_const_src0 = ov::op::v0::Constant::create(ov::element::i64, flat_shape_src0, indices_src0); auto indices_const_src1 = ov::op::v0::Constant::create(ov::element::i64, flat_shape_src1, indices_src1); // Use the Gather operator to collect valid data // axis = 0 auto axis_const = ov::op::v0::Constant::create(ov::element::i64, {1}, {0}); auto gathered_src0 = std::make_shared(param_src0, indices_const_src0, axis_const); auto gathered_src1 = std::make_shared(param_src1, indices_const_src1, axis_const); // Reshape to batched form: // For src0: valid matrix size for each batch [num_rows_src0, valid_cols_src0] = [32,96], total batches = 32, // Therefore, reshape to 3D Tensor: shape = [32, 32, 96] where first dimension is batch. std::vector shape_src0_cont = { batch_src0, num_rows_src0, valid_cols_src0 }; auto reshape_src0 = std::make_shared( gathered_src0, ov::op::v0::Constant::create(ov::element::i64, { shape_src0_cont.size() }, shape_src0_cont), false); // For src1: valid matrix size for each batch [num_rows_src1, valid_cols_src1] = [7,96], batch = 32, // Reshape to 3D Tensor: shape = [32, 7, 96]. std::vector shape_src1_cont = { batch_src1, num_rows_src1, valid_cols_src1 }; auto reshape_src1 = std::make_shared( gathered_src1, ov::op::v0::Constant::create(ov::element::i64, { shape_src1_cont.size() }, shape_src1_cont), false); // For src0, first Convert from F16 to F32 auto src0_f32 = std::make_shared(reshape_src0, ov::element::f32); // Use Batched Transpose: swap the last two dimensions, dimension order [0, 2, 1] auto transpose_order = ov::op::v0::Constant::create(ov::element::i64, {3}, std::vector{0, 2, 1}); auto src0_transposed = std::make_shared(src0_f32, transpose_order); auto A = src0_transposed; auto B = reshape_src1; auto batched_matmul = std::make_shared(B, A, false, false); // batched_matmul output: shape = [32,7,32] std::vector full_dst_shape = { dst->ne[2], dst->ne[1], dst->ne[0]}; auto final_shape_const = ov::op::v0::Constant::create(ov::element::i64, { full_dst_shape.size() }, full_dst_shape); auto model = std::make_shared(ov::NodeVector{ batched_matmul }, ov::ParameterVector{param_src0, param_src1}); ov::Core core; auto compiled_model = core.compile_model(model, "CPU"); auto infer_request = compiled_model.create_infer_request(); // Construct input Tensors: treat src0->data and src1->data as 1D flat data respectively ov::Tensor tensor_src0(ov::element::f16, flat_shape_src0, src0->data); ov::Tensor tensor_src1(ov::element::f32, flat_shape_src1, src1->data); infer_request.set_input_tensor(0, tensor_src0); infer_request.set_input_tensor(1, tensor_src1); ov::Tensor tensor_dst(ov::element::f32, ov::Shape(full_dst_shape.begin(), full_dst_shape.end()), dst->data); infer_request.set_output_tensor(0, tensor_dst); infer_request.infer(); return ; } // Valid shape std::vector eff_shape_src0 = get_effective_shape(src0); std::vector eff_shape_src1 = get_effective_shape(src1); std::vector eff_shape_dst = get_effective_shape(dst); // Determine whether it is batched (effective rank==3) or two-dimensional (rank==2) or one-dimensional (rank==1) int rank = static_cast(eff_shape_dst.size()); if (rank != 1 && rank != 2 && rank != 3) throw std::runtime_error("Only rank 1, 2 or 3 supported"); // Total number of flattened elements size_t total_src0 = 1; for (auto d : eff_shape_src0) total_src0 *= d; size_t total_src1 = 1; for (auto d : eff_shape_src1) total_src1 *= d; ov::Shape flat_shape_src0 = { total_src0 }; ov::Shape flat_shape_src1 = { total_src1 }; auto param_flat_src0 = std::make_shared(ov::element::f16, flat_shape_src0); auto param_flat_src1 = std::make_shared(ov::element::f32, flat_shape_src1); auto reshape_src0 = std::make_shared( param_flat_src0, ov::op::v0::Constant::create(ov::element::i64, { eff_shape_src0.size() }, eff_shape_src0), false); auto reshape_src1 = std::make_shared( param_flat_src1, ov::op::v0::Constant::create(ov::element::i64, { eff_shape_src1.size() }, eff_shape_src1), false); // Convert src0: F16 -> F32 auto src0_f32 = std::make_shared(reshape_src0, ov::element::f32); // Transpose src0_f32: // For the 2D case, the shape of reshape_src0 is [3072,9216], and after transposition, it is [9216,3072]. // For the batched case, assuming the shape is [M, K, Batch], batch-wise transposition is required: use order [0, 2, 1]. ov::Output A_for_mul; if (rank == 1) { auto trans_order = ov::op::v0::Constant::create(ov::element::i64, {2}, std::vector{1, 0}); A_for_mul = std::make_shared(src0_f32, trans_order); } else if (rank == 2) { auto trans_order = ov::op::v0::Constant::create(ov::element::i64, {2}, std::vector{1, 0}); A_for_mul = std::make_shared(src0_f32, trans_order); } else { // rank == 3 auto trans_order = ov::op::v0::Constant::create(ov::element::i64, {3}, std::vector{0, 2, 1}); A_for_mul = std::make_shared(src0_f32, trans_order); } ov::Core core; ov::Tensor tensor_src0{ov::element::f16, flat_shape_src0, (void *)src0->data}; ov::Tensor tensor_src1{ov::element::f32, flat_shape_src1, (void *)src1->data}; ov::Tensor tensor_dst(ov::element::f32, ov::Shape(eff_shape_dst.begin(), eff_shape_dst.end()), dst->data); std::shared_ptr matmul = std::make_shared(reshape_src1, A_for_mul, false, false); auto model = std::make_shared(ov::NodeVector{matmul}, ov::ParameterVector{param_flat_src0, param_flat_src1}); auto compiled_model = core.compile_model(model, "CPU"); auto infer_request = compiled_model.create_infer_request(); infer_request.set_input_tensor(0, tensor_src0); infer_request.set_input_tensor(1, tensor_src1); infer_request.set_output_tensor(0, tensor_dst); infer_request.infer(); } void ggml_backend_openvino_reshape(ggml_tensor *dst) { GGML_UNUSED(dst); } void ggml_backend_openvino_view(ggml_tensor *dst) { GGML_UNUSED(dst); } void ggml_backend_openvino_dup_bytes(struct ggml_tensor *dst) { const struct ggml_tensor *src0 = dst->src[0]; // Validate tensor properties GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); GGML_ASSERT(src0->type == dst->type); // Determine tensor properties const size_t element_size = ggml_type_size(src0->type); // Case 1: Both tensors are contiguous if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) { ov::Shape flat_shape = { static_cast(ggml_nelements(dst)) }; // Construct the logical shape of the target tensor ov::Shape dst_shape = { static_cast(dst->ne[2]), static_cast(dst->ne[1]), static_cast(dst->ne[0]) }; // --- Construct the OpenVINO computation graph --- // 1. Define input parameter, type f32, shape flat_shape: [8192] auto input_param = std::make_shared(ov::element::f32, flat_shape); // 2. Create a Constant node to represent the new shape of the target Reshape(dst_shape) // Note: dst_shape needs to be converted to an int64_t array std::vector dst_shape_vec(dst_shape.begin(), dst_shape.end()); auto reshape_const = ov::op::v0::Constant::create(ov::element::i64, { dst_shape_vec.size() }, dst_shape_vec); // 3. Use the Reshape operator to reshape the input tensor to the target shape(dst_shape) auto reshape_op = std::make_shared(input_param, reshape_const, false); // 4. Construct the model, whose output is the result of reshape_op auto model = std::make_shared(ov::OutputVector{ reshape_op }, ov::ParameterVector{ input_param }); // --- Compile and execute --- ov::Core core; auto compiled_model = core.compile_model(model, "CPU"); auto infer_request = compiled_model.create_infer_request(); // Construct input Tensor: directly wrap src0->data, shape is flat_shape[8192] ov::Tensor input_tensor(ov::element::f32, flat_shape, src0->data); infer_request.set_input_tensor(0, input_tensor); // Construct output Tensor: dst->data, shape is dst_shape: [1,1,8192] ov::Tensor output_tensor(ov::element::f32, dst_shape, dst->data); infer_request.set_output_tensor(0, output_tensor); // Execute inference, the computation graph flattens the data of src0 and reshapes it to the shape of dst->ne, and writes it directly to dst->data infer_request.infer(); return; } // Case 2: Compatible types, dimensions, and strides const size_t ne00 = src0->ne[0]; const size_t ne01 = src0->ne[1]; const size_t nb00 = src0->nb[0]; const size_t nb01 = src0->nb[1]; const size_t nb0 = dst->nb[0]; if (src0->type == dst->type && ne00 == dst->ne[0] && nb00 == element_size && nb0 == element_size) { // Assume that the data type is f32 and each element is 4 bytes // Logically, the number of valid elements per row is 3072 (src0->ne[0]), and the number of rows is 7 (src0->ne[1]) size_t valid_elems = static_cast(src0->ne[0]); // 3072 size_t num_rows = static_cast(src0->ne[1]); // 7 // Number of floats physically stored per row = nb[1] / element_size = 36864/4 = 9216 size_t phys_stride = static_cast(src0->nb[1]) / element_size; // 9216 // Total number of physical elements = (num_rows - 1)*phys_stride + valid_elems size_t total_phys = (num_rows - 1) * phys_stride + valid_elems; // 6*9216 + 3072 = 58368 // size_t total_phys = num_rows * phys_stride; // 1. Wrap src0->data into a 1D tensor with shape [58368] ov::Shape flat_input_shape = { total_phys }; auto flat_input_param = std::make_shared(ov::element::f32, flat_input_shape); // 2. Construct index tensor idx with shape [3072,7] // For each logical position (i,j) (i in [0,3072), j in [0,7)), calculate index = j*phys_stride + i. std::vector indices; indices.reserve(valid_elems * num_rows); for (size_t j = 0; j < num_rows; j++) { for (size_t i = 0; i < valid_elems; i++) { indices.push_back(static_cast(j * phys_stride + i)); } } ov::Shape indices_shape = { valid_elems, num_rows }; // [3072,7] auto indices_const = ov::op::v0::Constant::create(ov::element::i64, indices_shape, indices); // 3. Use the Gather operator (axis=0) to collect valid data // Note: The third parameter is axis, and a value of 0 means collecting data from the 1D input according to the index auto axis_const = ov::op::v0::Constant::create(ov::element::i64, {1}, {0}); auto gathered = std::make_shared(flat_input_param, indices_const, axis_const); // The shape of gathered should be [3072,7] // 4. Reshape gathered into a 4D tensor [3072,7,1,1] auto reshape_const = ov::op::v0::Constant::create( ov::element::i64, {4}, std::vector{ static_cast(valid_elems), static_cast(num_rows), 1, 1 } ); auto reshaped = std::make_shared(gathered, reshape_const, false); // The reshaped shape is [3072,7,1,1] // 5. Construct the model and output it as reshaped auto model = std::make_shared(ov::OutputVector{reshaped}, ov::ParameterVector{flat_input_param}); // --- Compile and execute --- ov::Core core; auto compiled_model = core.compile_model(model, "CPU"); auto infer_request = compiled_model.create_infer_request(); // Construct input Tensor: directly wrap src0->data, shape is flat_input_shape = [58368] ov::Tensor input_tensor(ov::element::f32, flat_input_shape, src0->data); infer_request.set_input_tensor(0, input_tensor); // Construct output Tensor: dst is continuous storage, and its logical shape is [3072,7,1,1] ov::Shape output_shape = { static_cast(dst->ne[0]), static_cast(dst->ne[1]), static_cast(dst->ne[2]), static_cast(dst->ne[3])}; ov::Tensor output_tensor(ov::element::f32, output_shape, dst->data); infer_request.set_output_tensor(0, output_tensor); // Execute inference. The computation graph uses Gather to collect the first 3072 valid elements of each row of src0, // and reshape them to [3072,7,1,1] and write them directly to dst->data infer_request.infer(); /* for (size_t i01 = 0; i01 < ne01; ++i01) { const char *src_row = reinterpret_cast(src0->data) + i01 * nb01; char *dst_row = reinterpret_cast(dst->data) + i01 * dst->nb[1]; ov::Tensor src_row_tensor(ov::element::f32, {ne00}, const_cast(reinterpret_cast(src_row))); ov::Tensor dst_row_tensor(ov::element::f32, {ne00}, reinterpret_cast(dst_row)); std::memcpy(dst_row_tensor.data(), src_row_tensor.data(), ne00 * sizeof(float)); }*/ return; } // Case 3: Non-contiguous source, contiguous destination const int64_t ne02 = src0->ne[2]; const int64_t ne03 = src0->ne[3]; const int64_t nb02 = src0->nb[2]; const int64_t nb03 = src0->nb[3]; // dst->ne =[3072,7,1,1], dst->nb =[4,12288,86016,86016], dst->type=GGML_TYPE_F32 // dst->src[0]->ne=[96,32,7,1], dst->src[0]->nb=[4,2688,384,86016], dst->src[0]->type=GGML_TYPE_F32 if (ggml_is_contiguous(dst)) { size_t valid_i = static_cast(src0->ne[0]); // 96 size_t valid_j = static_cast(src0->ne[1]); // 32 size_t valid_k = static_cast(src0->ne[2]); // 7 // Output the logical shape of dst: dst->ne = [3072, 7, 1, 1] // 3072 = 32 * 96, 7 is consistent with src0->ne[2] size_t total_valid = valid_i * valid_j * valid_k; // 96 * 32 * 7 = 21504 // Physics step length: size_t stride_j = static_cast(src0->nb[1]) / ggml_type_size(src0->type); // 2688/4 = 672 size_t stride_k = static_cast(src0->nb[2]) / ggml_type_size(src0->type); // 384/4 = 96 // Construct index array, output order: for k in [0,6], for j in [0,31], for i in [0,95]: // desired input index = j * stride_j + k * stride_k + i std::vector indices; indices.reserve(total_valid); for (size_t k = 0; k < valid_k; k++) { for (size_t j = 0; j < valid_j; j++) { for (size_t i = 0; i < valid_i; i++) { int64_t idx = static_cast(j * stride_j + k * stride_k + i); indices.push_back(idx); } } } // The size of indices should be 21504 // 1. Construct input: treat src0->data as a 1D tensor. The valid range is 0~21503. ov::Shape flat_input_shape = { total_valid }; auto input_param = std::make_shared(ov::element::f32, flat_input_shape); // 2. Construct index constant: 1D tensor, shape [21504] ov::Shape indices_shape = { total_valid }; auto indices_const = ov::op::v0::Constant::create(ov::element::i64, indices_shape, indices); // 3. Set axis=0 (collect data from 1D input) auto axis_const = ov::op::v0::Constant::create(ov::element::i64, {1}, {0}); // 4. Use the Gather operator (OpenVINO v8 Gather is used here) to collect valid data auto gathered = std::make_shared(input_param, indices_const, axis_const); // gathered has a shape of [21504] // 5. Reshape gathered to [3072,7,1,1], because 3072*7 = 21504 ov::Shape target_shape = { static_cast(dst->ne[0]), static_cast(dst->ne[1]), static_cast(dst->ne[2]), static_cast(dst->ne[3])}; // [3072,7,1,1] auto reshape_const = ov::op::v0::Constant::create(ov::element::i64, {4}, std::vector{ static_cast(dst->ne[0]), static_cast(dst->ne[1]), 1, 1 }); auto reshaped = std::make_shared(gathered, reshape_const, false); // 6. Construct model auto model = std::make_shared(ov::OutputVector{reshaped}, ov::ParameterVector{input_param}); // --- Compile and execute --- ov::Core core; auto compiled_model = core.compile_model(model, "CPU"); auto infer_request = compiled_model.create_infer_request(); // Construct input Tensor: directly wrap src0->data. Note: src0->data is regarded as a one-dimensional array according to the physical valid area, flat_input_shape: [21504] ov::Tensor input_tensor(ov::element::f32, flat_input_shape, src0->data); infer_request.set_input_tensor(0, input_tensor); // Construct output Tensor: dst->data is stored continuously, with shape target_shape: [3072,7,1,1] ov::Tensor output_tensor(ov::element::f32, target_shape, dst->data); infer_request.set_output_tensor(0, output_tensor); // Execute reasoning: The computation graph uses Gather+Reshape to collect each valid element of src0 in a predetermined order and write it directly to dst->data infer_request.infer(); return; } std::cout << "Duplication of bytes completed successfully." << std::endl; } static void ggml_backend_openvino_transpose(ggml_tensor *dst) { // NOP GGML_UNUSED(dst); } static void ggml_backend_openvino_permute(const struct ggml_tensor * dst) { // NOP GGML_UNUSED(dst); } void ggml_backend_openvino_cpy(struct ggml_tensor *dst) { const struct ggml_tensor *src0 = dst->src[0]; assert(src0 != nullptr); assert(ggml_nelements(dst) == ggml_nelements(src0)); // Extract shapes ov::Shape src_shape(src0->ne, src0->ne + 4); ov::Shape dst_shape(dst->ne, dst->ne + 4); // Initialize OpenVINO core ov::Core core; // Create OpenVINO parameter for the source tensor auto src_input = std::make_shared(ov::element::f32, src_shape); std::shared_ptr model; if (ggml_is_contiguous(dst)) { // Contiguous Case: Flatten src and reshape to dst shape ov::Shape flattened_shape = {ggml_nelements(src0)}; auto flatten = std::make_shared( src_input, ov::op::v0::Constant::create(ov::element::i64, {1}, flattened_shape), false); auto reshape_to_dst = std::make_shared( flatten, ov::op::v0::Constant::create(ov::element::i64, {4}, dst_shape), false); auto dst_output = std::make_shared(reshape_to_dst, ov::element::f16); model = std::make_shared( ov::ResultVector{std::make_shared(dst_output)}, ov::ParameterVector{src_input}, "ContiguousCopy"); // Compile and execute the model auto compiled_model = core.compile_model(model, "CPU"); ov::Tensor src_tensor(ov::element::f32, src_shape, src0->data); ov::Tensor dst_tensor(ov::element::f16, dst_shape, dst->data); auto infer_request = compiled_model.create_infer_request(); infer_request.set_input_tensor(0, src_tensor); infer_request.set_output_tensor(0, dst_tensor); infer_request.infer(); } else { std::vector gather_idx; for (int row = 0; row < dst->src[0]->ne[1]; row++) { for (int col = 0; col < dst->src[0]->ne[0]; col++) { gather_idx.push_back((row*dst->src[0]->nb[1]+col*dst->src[0]->nb[0])/4); } } size_t N = gather_idx.size(); ov::Shape gather_idx_shape = {N, 1}; std::vector scatter_idx; for (int row = 0; row < dst->ne[1]; row++) { for (int col = 0; col < dst->ne[0]; col++) { scatter_idx.push_back(row * dst->nb[1] / 2 + col); } } ov::Shape scatter_idx_shape = {N, 1}; // param_src0 shape => 1D, rank=1, size is large enough. For example, row*col= 21504 + some padding, e.g. 80000 // ov::Shape flat_src0_shape = {80000}; ov::Shape flat_src0_shape = {dst->src[0]->nb[2]}; auto param_src0 = std::make_shared(ov::element::f32, flat_src0_shape); // auto param_src00 = std::make_shared(ov::element::f32, flat_src0_shape); auto gather_indices_const = ov::op::v0::Constant::create(ov::element::i64, gather_idx_shape, gather_idx); auto gather_axis_const = ov::op::v0::Constant::create(ov::element::i64, {1}, {0}); auto gathered = std::make_shared( param_src0, gather_indices_const, gather_axis_const); auto converted = std::make_shared(gathered, ov::element::f16); // param_dst_base shape => 1D, rank=1, size够大, e.g. row=3072 => i up to 3071 => offset i*64=196544 + j*2, e.g.200000 // ov::Shape flat_dst_shape = {200000, 1}; ov::Shape flat_dst_shape = {dst->nb[2], 1}; auto param_dst_base = std::make_shared(ov::element::f16, flat_dst_shape); // auto param_dst_base11 = std::make_shared(ov::element::f16, flat_dst_shape); auto scatter_indices_const = ov::op::v0::Constant::create(ov::element::i64, scatter_idx_shape, scatter_idx); // ScatterNDUpdate( base, scatter_indices, updates ) // scatter_indices last dimension = 1 => each index is 1D coordinate auto scatter = std::make_shared( param_dst_base, scatter_indices_const, converted ); ov::ParameterVector params = { param_src0, param_dst_base }; // ov::ParameterVector params = { param_src0}; // ov::ParameterVector params = { param_src00, param_dst_base11}; auto model = std::make_shared(ov::OutputVector{ scatter }, params); auto compiled_model = core.compile_model(model, "CPU"); auto infer_request = compiled_model.create_infer_request(); ov::Tensor tensor_src0(ov::element::f32, flat_src0_shape, src0->data); ov::Tensor tensor_dst_base(ov::element::f16, flat_dst_shape, dst->data); infer_request.set_input_tensor(0, tensor_src0); infer_request.set_input_tensor(1, tensor_dst_base); ov::Tensor out_tensor(ov::element::f16, flat_dst_shape, dst->data); infer_request.set_output_tensor(0, out_tensor); infer_request.infer(); } } static enum ggml_status ggml_backend_openvino_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { // Find the indices of GGML_OP_CONT, GGML_OP_CPY nodes, GGML_OP_MUL_MAT and so on. std::vector cont_indices; std::vector reshape_indices; std::vector view_indices; std::vector cpy_indices; std::vector transpose_indices; std::vector permute_indices; std::vector mul_mat_indices; for (int i = 0; i < cgraph->n_nodes; i++) { if (cgraph->nodes[i]->op == GGML_OP_CONT) { cont_indices.push_back(i); } else if (cgraph->nodes[i]->op == GGML_OP_RESHAPE) { reshape_indices.push_back(i); } else if (cgraph->nodes[i]->op == GGML_OP_VIEW) { view_indices.push_back(i); } else if (cgraph->nodes[i]->op == GGML_OP_CPY) { cpy_indices.push_back(i); } else if (cgraph->nodes[i]->op == GGML_OP_TRANSPOSE) { transpose_indices.push_back(i); } else if (cgraph->nodes[i]->op == GGML_OP_PERMUTE) { permute_indices.push_back(i); } else if (cgraph->nodes[i]->op == GGML_OP_MUL_MAT) { mul_mat_indices.push_back(i); } } // openvino_frontend_compute(backend, cgraph); // Process nodes in order for (int i = 0; i < cgraph->n_nodes; i++) { if (std::find(reshape_indices.begin(), reshape_indices.end(), i) != reshape_indices.end()) { ggml_backend_openvino_reshape(cgraph->nodes[i]); // } else if (std::find(cont_indices.begin(), cont_indices.end(), i) != cont_indices.end()) { // ggml_backend_openvino_dup_bytes(cgraph->nodes[i]); } else if (std::find(view_indices.begin(), view_indices.end(), i) != view_indices.end()) { ggml_backend_openvino_view(cgraph->nodes[i]); } else if (std::find(cpy_indices.begin(), cpy_indices.end(), i) != cpy_indices.end()) { ggml_backend_openvino_cpy(cgraph->nodes[i]); } else if (std::find(transpose_indices.begin(), transpose_indices.end(), i) != transpose_indices.end()) { ggml_backend_openvino_transpose(cgraph->nodes[i]); } else if (std::find(permute_indices.begin(), permute_indices.end(), i) != permute_indices.end()) { ggml_backend_openvino_permute(cgraph->nodes[i]); } else if (std::find(mul_mat_indices.begin(), mul_mat_indices.end(), i) != mul_mat_indices.end()) { ggml_backend_openvino_mul_mat(cgraph->nodes[i]); } else { // Process a range of nodes with openvino_frontend_compute int start_index = i; while (i < cgraph->n_nodes && std::find(cpy_indices.begin(), cpy_indices.end(), i) == cpy_indices.end() && //std::find(cont_indices.begin(), cont_indices.end(), i) == cont_indices.end() && std::find(mul_mat_indices.begin(), mul_mat_indices.end(), i) == mul_mat_indices.end()) { i++; } if (start_index < i) { openvino_frontend_compute(backend, cgraph, start_index, --i); } } } return GGML_STATUS_SUCCESS; GGML_UNUSED(backend); GGML_UNUSED(ctx); } static const ggml_backend_i ggml_backend_openvino_interface = { /* .get_name = */ ggml_backend_openvino_get_name, /* .free = */ ggml_backend_openvino_free, /* .get_default_buffer_type = */ ggml_backend_openvino_get_default_buffer_type, /* .set_tensor_async = */ NULL, /* .get_tensor_async = */ NULL, /* .cpy_tensor_async = */ NULL, /* .synchronize = */ NULL, /* .graph_plan_create = */ NULL, /* .graph_plan_free = */ NULL, /* .graph_plan_update = */ NULL, /* .graph_plan_compute = */ NULL, /* .graph_compute = */ ggml_backend_openvino_graph_compute, /* .supports_op = */ NULL, /* .supports_buft = */ NULL, /* .offload_op = */ NULL, /* .event_record = */ NULL, /* .event_wait = */ NULL, }; int ggml_backend_openvino_get_device_count() { return ggml_openvino_info().device_count; } static ggml_guid_t ggml_backend_openvino_guid(void) { static ggml_guid guid = { 0x12, 0xa8, 0xae, 0xf4, 0xc0, 0x1e, 0x61, 0x97, 0x8f, 0xeb, 0x33, 0x04, 0xa1, 0x33, 0x51, 0x2d }; return &guid; } // backend API GGML_API ggml_backend_t ggml_backend_openvino_init(int device) { if (device < 0 || device >= ggml_backend_openvino_get_device_count()) { GGML_LOG_ERROR("%s: invalid device %d\n", __func__, device); return nullptr; } ggml_backend_openvino_context * ctx = new ggml_backend_openvino_context; if (ctx == nullptr) { GGML_LOG_ERROR("%s: failed to allocate context\n", __func__); return nullptr; } ggml_backend_t openvino_backend = new ggml_backend { /* .guid = */ ggml_backend_openvino_guid(), /* .interface = */ ggml_backend_openvino_interface, /* .device = */ ggml_backend_reg_dev_get(ggml_backend_openvino_reg(), device), /* .context = */ ctx, }; return openvino_backend; } GGML_API bool ggml_backend_is_openvino(ggml_backend_t backend) { GGML_ASSERT(backend->context != nullptr); return true; } // device buffer GGML_API ggml_backend_buffer_type_t ggml_backend_openvino_buffer_type(int device) { GGML_ASSERT(device >= 0); return nullptr; } // split tensor buffer that splits matrices by rows across multiple devices GGML_API ggml_backend_buffer_type_t ggml_backend_openvino_split_buffer_type(const float *tensor_split) { GGML_ASSERT(tensor_split != nullptr); return nullptr; } // pinned host buffer for use with the CPU backend for faster copies between CPU // and GPU GGML_API ggml_backend_buffer_type_t ggml_backend_openvino_host_buffer_type(void) { return nullptr;} struct ggml_backend_openvino_buffer_type_context { int device; std::string name; }; static const char * ggml_backend_openvino_buffer_type_get_name(ggml_backend_buffer_type_t buft) { ggml_backend_openvino_buffer_type_context * ctx = (ggml_backend_openvino_buffer_type_context *)buft->context; return ctx->name.c_str(); } static bool ggml_backend_buft_is_openvino(ggml_backend_buffer_type_t buft) { return buft->iface.get_name == ggml_backend_openvino_buffer_type_get_name; } static const char * ggml_backend_openvino_split_buffer_type_get_name(ggml_backend_buffer_type_t buft) { return GGML_OPENVINO_NAME "_Split"; GGML_UNUSED(buft); } static bool ggml_backend_buft_is_openvino_split(ggml_backend_buffer_type_t buft) { return buft->iface.get_name == ggml_backend_openvino_split_buffer_type_get_name; } struct ggml_backend_openvino_device_context { int device; std::string name; std::string description; }; static const char * ggml_backend_openvino_device_get_name(ggml_backend_dev_t dev) { ggml_backend_openvino_device_context * ctx = (ggml_backend_openvino_device_context *)dev->context; return ctx->name.c_str(); } static const char * ggml_backend_openvino_device_get_description(ggml_backend_dev_t dev) { ggml_backend_openvino_device_context * ctx = (ggml_backend_openvino_device_context *)dev->context; return ctx->description.c_str(); } // TODO static void ggml_backend_openvino_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) { GGML_ASSERT(dev->context != nullptr); GGML_ASSERT(free != nullptr); GGML_ASSERT(total != nullptr); ggml_backend_openvino_device_context * ctx = (ggml_backend_openvino_device_context *)dev->context; // Placeholder GGML_ASSERT(ctx->device >= 0); // ggml_openvino_set_device(ctx->device); } static enum ggml_backend_dev_type ggml_backend_openvino_device_get_type(ggml_backend_dev_t dev) { GGML_UNUSED(dev); return GGML_BACKEND_DEVICE_TYPE_CPU; // return GGML_BACKEND_DEVICE_TYPE_GPU_FULL; } static void ggml_backend_openvino_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) { props->name = ggml_backend_openvino_device_get_name(dev); props->description = ggml_backend_openvino_device_get_description(dev); props->type = ggml_backend_openvino_device_get_type(dev); ggml_backend_openvino_device_get_memory(dev, &props->memory_free, &props->memory_total); bool host_buffer = getenv("GGML_OPENVINO_NO_PINNED") == nullptr; #ifdef GGML_OPENVINO_NO_PEER_COPY bool events = false; #else bool events = true; #endif props->caps = { /* .async = */ true, /* .host_buffer = */ host_buffer, /* .buffer_from_host_ptr = */ false, /* .events = */ events, }; } static ggml_backend_t ggml_backend_openvino_device_init(ggml_backend_dev_t dev, const char * params) { GGML_UNUSED(params); ggml_backend_openvino_device_context * ctx = (ggml_backend_openvino_device_context *)dev->context; return ggml_backend_openvino_init(ctx->device); } static ggml_backend_buffer_type_t ggml_backend_openvino_device_get_buffer_type(ggml_backend_dev_t dev) { ggml_backend_openvino_device_context * ctx = (ggml_backend_openvino_device_context *)dev->context; return ggml_backend_openvino_buffer_type(ctx->device); } static ggml_backend_buffer_type_t ggml_backend_openvino_device_get_host_buffer_type(ggml_backend_dev_t dev) { GGML_UNUSED(dev); return ggml_backend_openvino_host_buffer_type(); } static ggml_backend_buffer_t ggml_backend_openvino_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) { GGML_UNUSED(dev); GGML_UNUSED(ptr); GGML_UNUSED(size); GGML_UNUSED(max_tensor_size); return nullptr; } static ggml_backend_buffer_t ggml_backend_openvino_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) { GGML_UNUSED(dev); GGML_UNUSED(ptr); GGML_UNUSED(size); GGML_UNUSED(max_tensor_size); return nullptr; } std::set get_openvino_available_opsets() { ov::Core core; std::set unique_ops; for (const auto& opset : ov::get_available_opsets()) { for (const auto& op : opset.second().get_type_info_set()) { unique_ops.insert(op.name); } } return unique_ops; } static bool ggml_backend_openvino_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) { GGML_ASSERT(dev->reg != nullptr); #ifdef OPENVINO_OP_DEBUG static const std::set& openvino_ops = []() -> const std::set& { static const std::set ops = get_openvino_available_opsets(); return ops; }(); switch (op->op) { case GGML_OP_NONE: case GGML_OP_PERMUTE: case GGML_OP_RESHAPE: case GGML_OP_TRANSPOSE: case GGML_OP_VIEW: return true; case GGML_OP_ADD: return true; case GGML_OP_MUL: return true; case GGML_OP_MUL_MAT: return false; case GGML_OP_UNARY: switch (ggml_get_unary_op(op)) { case GGML_UNARY_OP_SILU: return false; case GGML_UNARY_OP_ABS: case GGML_UNARY_OP_SGN: case GGML_UNARY_OP_NEG: case GGML_UNARY_OP_STEP: case GGML_UNARY_OP_TANH: case GGML_UNARY_OP_ELU: case GGML_UNARY_OP_RELU: case GGML_UNARY_OP_SIGMOID: case GGML_UNARY_OP_GELU: case GGML_UNARY_OP_GELU_QUICK: case GGML_UNARY_OP_HARDSWISH: case GGML_UNARY_OP_HARDSIGMOID: case GGML_UNARY_OP_EXP: case GGML_UNARY_OP_COUNT: return false; } return false; default: return false; } #else static const std::set& openvino_ops = []() -> const std::set& { static const std::set ops = get_openvino_available_opsets(); return ops; }(); static const std::map> op_mapping = { {GGML_OP_ACC, {"Add"}}, {GGML_OP_ADD, {"Add"}}, {GGML_OP_ADD1, {"Add"}}, {GGML_OP_ADD_REL_POS, {"Add", "MatMul", "Reshape"}}, {GGML_OP_ARANGE, {"Range"}}, {GGML_OP_ARGMAX, {"TopK"}}, {GGML_OP_ARGSORT, {"TopK"}}, {GGML_OP_CLAMP, {"Clamp"}}, {GGML_OP_CONCAT, {"Concat"}}, {GGML_OP_CONV_TRANSPOSE_1D, {"ConvolutionBackpropData"}}, {GGML_OP_CONV_TRANSPOSE_2D, {"ConvolutionBackpropData"}}, {GGML_OP_COS, {"Cos"}}, {GGML_OP_CROSS_ENTROPY_LOSS, {"Softmax", "Log", "Multiply", "ReduceSum", "Negative"}}, {GGML_OP_DIAG, {"Eye", "Multiply"}}, {GGML_OP_DIAG_MASK_INF, {"Eye", "Multiply", "Select", "Broadcast"}}, {GGML_OP_DIAG_MASK_ZERO, {"Eye", "Multiply", "Select", "Broadcast"}}, {GGML_OP_DIV, {"Divide"}}, {GGML_OP_FLASH_ATTN_EXT, {"ScaledDotProductAttention"}}, {GGML_OP_GET_ROWS, {"Gather"}}, {GGML_OP_GROUP_NORM, {"GroupNormalization"}}, {GGML_OP_IM2COL, {"Custom", "Reshape", "Transpose"}}, {GGML_OP_LEAKY_RELU, {"PReLU"}}, {GGML_OP_LOG, {"Log"}}, {GGML_OP_MEAN, {"ReduceMean"}}, {GGML_OP_MUL, {"Multiply"}}, {GGML_OP_MUL_MAT, {"MatMul"}}, {GGML_OP_MUL_MAT_ID, {"MatMul", "Identity"}}, {GGML_OP_NORM, {"NormalizeL2"}}, {GGML_OP_OUT_PROD, {"MatMul", "Reshape"}}, {GGML_OP_PAD, {"Pad"}}, {GGML_OP_PERMUTE, {"Transpose"}}, {GGML_OP_POOL_1D, {"AvgPool", "MaxPool"}}, {GGML_OP_POOL_2D, {"AvgPool", "MaxPool"}}, {GGML_OP_REPEAT, {"Tile"}}, {GGML_OP_RESHAPE, {"Reshape"}}, {GGML_OP_RMS_NORM, {"Multiply", "Divide", "Sqrt"}}, {GGML_OP_ROPE, {"Custom"}}, {GGML_OP_SCALE, {"Multiply", "Constant"}}, {GGML_OP_SET, {"Assign"}}, {GGML_OP_SIN, {"Sin"}}, {GGML_OP_SOFT_MAX, {"Softmax"}}, {GGML_OP_SQR, {"Power"}}, {GGML_OP_SQRT, {"Sqrt"}}, {GGML_OP_SSM_CONV, {"Custom"}}, {GGML_OP_SSM_SCAN, {"Custom"}}, {GGML_OP_SUB, {"Subtract"}}, {GGML_OP_SUM, {"ReduceSum"}}, {GGML_OP_SUM_ROWS, {"ReduceSum", "Squeeze", "Unsqueeze"}}, {GGML_OP_TIMESTEP_EMBEDDING, {"Range", "Power", "Multiply", "Sin", "Cos", "Concat"}}, {GGML_OP_TRANSPOSE, {"Transpose"}}, {GGML_OP_UPSCALE, {"Interpolate"}}, {GGML_OP_VIEW, {"Reshape"}}, {GGML_OP_WIN_PART, {"StridedSlice", "Concat", "Reshape", "Custom"}}, {GGML_OP_WIN_UNPART, {"Reshape", "Transpose", "Custom"}}, }; auto it = op_mapping.find(op->op); if (it == op_mapping.end()) { return false; } for (const std::string& op_name : it->second) { if (openvino_ops.count(op_name) == 0) { return false; } } return true; #endif } static bool ggml_backend_openvino_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) { return ggml_backend_buft_is_host(buft); GGML_UNUSED(dev); } static const struct ggml_backend_device_i ggml_backend_openvino_device_interface = { /* .get_name = */ ggml_backend_openvino_device_get_name, /* .get_description = */ ggml_backend_openvino_device_get_description, /* .get_memory = */ ggml_backend_openvino_device_get_memory, /* .get_type = */ ggml_backend_openvino_device_get_type, /* .get_props = */ ggml_backend_openvino_device_get_props, /* .init_backend = */ ggml_backend_openvino_device_init, /* .get_buffer_type = */ ggml_backend_openvino_device_get_buffer_type, /* .get_host_buffer_type = */ NULL, /* .buffer_from_host_ptr = */ ggml_backend_openvino_device_buffer_from_ptr, /* .supports_op = */ ggml_backend_openvino_device_supports_op, /* .supports_buft = */ ggml_backend_openvino_device_supports_buft, /* .offload_op = */ NULL, /* .event_new = */ NULL, /* .event_free = */ NULL, /* .event_synchronize = */ NULL, }; struct ggml_backend_openvino_reg_context { std::vector devices; }; static const char * ggml_backend_openvino_reg_get_name(ggml_backend_reg_t reg) { return GGML_OPENVINO_NAME; GGML_UNUSED(reg); } static size_t ggml_backend_openvino_reg_get_device_count(ggml_backend_reg_t reg) { return ggml_openvino_info().device_count; GGML_UNUSED(reg); // TODO ggml_backend_openvino_reg_context * ctx = (ggml_backend_openvino_reg_context *)reg->context; return ctx->devices.size(); } static ggml_backend_dev_t ggml_backend_openvino_reg_get_device(ggml_backend_reg_t reg, size_t index) { ggml_backend_openvino_reg_context * ctx = (ggml_backend_openvino_reg_context *)reg->context; GGML_ASSERT(index < ctx->devices.size()); return ctx->devices[index]; // GGML_ASSERT(index == 0); // static ggml_backend_device ggml_backend_openvino_device = { // /* .iface = */ ggml_backend_openvino_device_interface, // /* .reg = */ reg, // /* .context = */ nullptr, // }; // return &ggml_backend_openvino_device; // GGML_UNUSED(reg); // GGML_UNUSED(index); } static void * ggml_backend_openvino_get_proc_address(ggml_backend_reg_t reg, const char * name) { GGML_UNUSED(reg); if (strcmp(name, "ggml_backend_split_buffer_type") == 0) { return (void *)ggml_backend_openvino_split_buffer_type; } // if (strcmp(name, "ggml_backend_register_host_buffer") == 0) { // return (void *)ggml_backend_openvino_register_host_buffer; // } // if (strcmp(name, "ggml_backend_unregister_host_buffer") == 0) { // return (void *)ggml_backend_openvino_unregister_host_buffer; // } return nullptr; } static const struct ggml_backend_reg_i ggml_backend_openvino_reg_interface = { /* .get_name = */ ggml_backend_openvino_reg_get_name, /* .get_device_count = */ ggml_backend_openvino_reg_get_device_count, /* .get_device = */ ggml_backend_openvino_reg_get_device, /* .get_proc_address = */ ggml_backend_openvino_get_proc_address, }; static int get_openvino_device_count() { ov::Core core; auto devices = core.get_available_devices(); // return devices.size(); return 1; } static ggml_openvino_device_info ggml_openvino_init() { ggml_openvino_device_info info = {}; // TODO info.device_count = get_openvino_device_count(); return info; } const ggml_openvino_device_info & ggml_openvino_info() { static ggml_openvino_device_info info = ggml_openvino_init(); return info; } GGML_API ggml_backend_reg_t ggml_backend_openvino_reg(void) { static ggml_backend_reg reg; static bool initialized = false; { static std::mutex mutex; std::lock_guard lock(mutex); if (!initialized) { ggml_backend_openvino_reg_context * ctx = new ggml_backend_openvino_reg_context; // GGML_LOG_DEBUG("ggml_openvino_info().device_count = %d \n", ggml_openvino_info().device_count); for (int i = 0; i < ggml_openvino_info().device_count; i++) { ggml_backend_openvino_device_context * dev_ctx = new ggml_backend_openvino_device_context; dev_ctx->device = i; dev_ctx->name = GGML_OPENVINO_NAME + std::to_string(i); // ggml_openvino_set_device(i); dev_ctx->description = ov::get_openvino_version().description; ggml_backend_dev_t dev = new ggml_backend_device { /* .interface = */ ggml_backend_openvino_device_interface, /* .reg = */ ®, /* .context = */ dev_ctx }; ctx->devices.push_back(dev); } reg = ggml_backend_reg { /* .interface = */ ggml_backend_openvino_reg_interface, /* .context = */ ctx }; } initialized = true; } return ® }